Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1473 KB  
Article
Climate Change Impacts on Agricultural Suitability in Rio Grande do Sul, Brazil
by Emma Haggerty, Ethan R. Wertlieb and Dmitry A. Streletskiy
Environments 2025, 12(7), 222; https://doi.org/10.3390/environments12070222 - 28 Jun 2025
Viewed by 1070
Abstract
Changing climatic conditions are significant determinants of agricultural productivity. Rio Grande do Sul is the southernmost state and the second-largest agricultural producer in Brazil. The suitability of its land for farming can be used as a proxy for agricultural and economic success, making [...] Read more.
Changing climatic conditions are significant determinants of agricultural productivity. Rio Grande do Sul is the southernmost state and the second-largest agricultural producer in Brazil. The suitability of its land for farming can be used as a proxy for agricultural and economic success, making it a pertinent case for exploring the consequences of climate change on major crop production. The latest available climate and environmental data was used to develop an agricultural Suitability Index (SI) that quantifies the suitability of land for rice, tobacco, soybean, and corn production in 2020 (present), 2050 (near-future), and 2100 (far-future) under moderate (SSP245) and extreme (SSP585) climate scenarios. SI scores for each municipality of Rio Grande do Sul consider inputs from a three-layer framework (climatic, non-climatic, and current production) to provide critical insight into potential shifts in agricultural productivity. While terrestrial suitability for crop growth varies both spatially and temporally, widespread decreases in suitability for all four crops are expected across the state under both scenarios. Soybean is expected to be the least affected crop, and rice is the most affected crop, tied to shifting patterns in precipitation, which significantly determines suitability. Local and state governments, agribusinesses, and family producers will have to adapt to environmental challenges to ensure the provision of food, labor, and economic security. Full article
Show Figures

Figure 1

29 pages, 28225 KB  
Review
Toxic Legacy—Environmental Impacts of Historic Metal Mining and Metallurgy in the Harz Region (Germany) at Local, Regional and Supra-Regional Levels
by Louisa Friederike Steingräber, Friedhart Knolle, Horst Kierdorf, Catharina Ludolphy and Uwe Kierdorf
Environments 2025, 12(7), 215; https://doi.org/10.3390/environments12070215 - 26 Jun 2025
Viewed by 1943
Abstract
As a legacy of historical metal mining and the processing and smelting of metalliferous ores, metal pollution is a serious environmental problem in many areas around the globe. This review summarizes the history, technical development and environmental hazards of historic metal mining and [...] Read more.
As a legacy of historical metal mining and the processing and smelting of metalliferous ores, metal pollution is a serious environmental problem in many areas around the globe. This review summarizes the history, technical development and environmental hazards of historic metal mining and metallurgical activities in the Harz Region (Germany), one of the oldest and most productive mining landscapes in Central Europe. The release of large amounts of metal-containing waste into rivers during historic ore processing and the ongoing leaching of metals from slag heaps, tailings dumps and contaminated soils and sediments are the main sources of metal pollution in the Harz Mountains and its foreland. This pollution extends along river systems with tributaries from the Harz Mountains and can even be detected in mudflats of the North Sea. In addition to fluvial discharges, atmospheric pollution by smelter smoke has led to long-term damage to soils and vegetation in the Harz Region. Currently, the ecological hazards caused by the legacy pollution from historical metal mining and metallurgy in the Harz Region are only partially known, particularly regarding the effects of changes in river ecosystems as a consequence of climate change. This review discusses the complexity and dynamics of human–environment interactions in the Harz Mountains and its surroundings, with a focus on lead (Pb) pollution. The paper also identifies future research directions with respect to metal contamination. Full article
Show Figures

Figure 1

21 pages, 3040 KB  
Article
Drinking Water and Sanitation Safety Planning for Medical Facilities: An Innovative PoU Approach for a Water System Description Using Ecomaps
by Lara Kamm, Ralf M. Hagen, Nico T. Mutters, Ricarda M. Schmithausen, Ruth Weppler and Manuel Döhla
Environments 2025, 12(7), 217; https://doi.org/10.3390/environments12070217 - 26 Jun 2025
Viewed by 676
Abstract
Drinking Water Safety Plans (DWSP) in buildings serve to identify health hazards associated with the drinking water system. Sanitation Safety Plans (SSP) fulfill the same purpose for the sewage system. Water Safety Plans (WSP) include DWSPs, SSPs, and water systems like gray water [...] Read more.
Drinking Water Safety Plans (DWSP) in buildings serve to identify health hazards associated with the drinking water system. Sanitation Safety Plans (SSP) fulfill the same purpose for the sewage system. Water Safety Plans (WSP) include DWSPs, SSPs, and water systems like gray water and firefighting water. WSPs are based on a high-quality description of the water systems. This paper presents a new methodology for describing water systems. In contrast to previous approaches, the system description begins at the point where the water is consumed. These points of use are described using ecomaps, which are then supplemented with information about the pipe network. This approach makes it possible to fulfill four relevant premises: (1) the system description includes all essential parts of the drinking water installation, (2) the system description is possible with usual equipment, (3) the system description can be carried out with the least possible additional personnel costs, and (4) the system description is controllable, versionable, changeable, and forgery-proof. The ecomaps created in this way are suitable for the next step within the WSP framework, namely hazard and risk assessment. In addition, the ecomaps can be integrated into a quality, occupational safety, or environmental management system. Aspects of water security can be added to enable the ecomaps to be used as the basis for a total integrated water management system. Full article
Show Figures

Figure 1

22 pages, 1199 KB  
Article
Assessment of Health Risks Associated with PM10 and PM2.5 Air Pollution in the City of Zvolen and Comparison with Selected Cities in the Slovak Republic
by Patrick Ivan, Marián Schwarz and Miriama Mikušová
Environments 2025, 12(7), 212; https://doi.org/10.3390/environments12070212 - 20 Jun 2025
Viewed by 1041
Abstract
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with [...] Read more.
Air pollution is one of the most serious environmental threats, with particulate matter PM10 and PM2.5 representing its most harmful components, significantly affecting public health. These particles are primarily generated by transport, industry, residential heating, and agriculture, and are associated with increased incidence of respiratory and cardiovascular diseases, asthma attacks, and heart attacks, as well as chronic illnesses and premature mortality. The most vulnerable groups include children, the elderly, and individuals with pre-existing health conditions. This study focuses on the analysis of health risks associated with PM10 and PM2.5 air pollution in the city of Zvolen, which serves as a representative case due to its urban structure, traffic load, and industrial activity. The aim is to assess the current state of air quality, identify the main sources of pollution, and evaluate the health impacts of particulate matter on the local population. The results will be compared with selected Slovak cities—Banská Bystrica and Ružomberok—to understand regional differences in exposure and its health consequences. The results revealed consistently elevated concentrations of particulate matter (PM) across all analyzed cities, frequently exceeding the guideline values recommended by the World Health Organization (WHO), although remaining below the thresholds set by current national legislation. The lowest average concentrations were recorded in the city of Zvolen (PM10: 20 μg/m3; PM2.5: 15 μg/m3). These lower values may be attributed to the location of the reference monitoring station operated by the Slovak Hydrometeorological Institute (SHMÚ), situated on J. Alexy Street in the southern part of the city—south of Zvolen’s primary industrial emitter, Kronospan. Due to predominantly southerly wind patterns, PM particles are transported northward, potentially leading to higher pollution loads in the northern areas of the city, which are currently not being monitored. We analyzed trends in PM10 and PM2.5 concentrations and their relationship with hospitalization data for respiratory diseases. The results indicate a clear correlation between the concentration of suspended particulate matter and the number of hospital admissions due to respiratory illnesses. Our findings thus confirm the significant adverse effects of particulate air pollution on population health and highlight the urgent need for systematic monitoring and effective measures to reduce emissions, particularly in urban areas. Full article
Show Figures

Figure 1

11 pages, 632 KB  
Article
Unveiling Stress Vulnerability and Occupational Noise Perception as Burnout Predictors: Results of an Exploratory Study in Industrial Environments
by Carlos Carvalhais, Luísa Antunes Ribeiro and Cristiana C. Pereira
Environments 2025, 12(6), 208; https://doi.org/10.3390/environments12060208 - 17 Jun 2025
Viewed by 680
Abstract
Burnout is a complex phenomenon influenced by both environmental and individual factors. This pilot study explores the predictive role of occupational noise perception and stress vulnerability on burnout symptoms among industrial workers. A cross-sectional survey was conducted with 119 Portuguese workers exposed to [...] Read more.
Burnout is a complex phenomenon influenced by both environmental and individual factors. This pilot study explores the predictive role of occupational noise perception and stress vulnerability on burnout symptoms among industrial workers. A cross-sectional survey was conducted with 119 Portuguese workers exposed to occupational noise. Participants completed validated self-report measures assessing noise perception, stress vulnerability, and burnout. Path analysis revealed that both higher stress vulnerability and greater perceived occupational noise were significant predictors of elevated burnout levels. Furthermore, gender emerged as a relevant predictor, with women reporting significantly higher burnout symptoms than men. Age was inversely related to stress vulnerability, indicating greater resilience among older workers. These findings suggest that individual differences in stress vulnerability and noise perception contribute meaningfully to burnout risk, beyond traditional occupational hazard assessments. The study underscores the need for holistic occupational health strategies, integrating both environmental modifications and psychosocial interventions aimed at enhancing workers’ coping capacities. This study contributes novel insights into the interplay between perceived noise and psychological vulnerability in industrial settings, supporting broader preventive measures for work-related mental health outcomes. Full article
Show Figures

Figure 1

32 pages, 4453 KB  
Article
Integration of Earth Observation and Field-Based Monitoring for Morphodynamic Characterisation of Tropical Beach Ecosystems
by James Murphy, Jonathan E. Higham, Andrew J. Plater, Kasey E. Clark and Rachel Collin
Environments 2025, 12(6), 205; https://doi.org/10.3390/environments12060205 - 16 Jun 2025
Viewed by 1306
Abstract
Coastal erosion poses a significant threat to small tropical island regions, where coastal tourism and infrastructure play vital economic roles. However, the processes affecting tropical beaches, particularly in Central America, remain underexplored due to a lack of data on waves and atmospheric conditions. [...] Read more.
Coastal erosion poses a significant threat to small tropical island regions, where coastal tourism and infrastructure play vital economic roles. However, the processes affecting tropical beaches, particularly in Central America, remain underexplored due to a lack of data on waves and atmospheric conditions. We propose a novel approach that utilises low-cost smartphone and satellite imagery to characterise beach ecosystems, where typically expensive and technologically intensive monitoring strategies are impractical and background data are scarce. As a test of its performance under real conditions, we apply this approach to four contrasting beaches in the low-lying islands of the Bocas del Toro Archipelago, Panama. We employ Earth Observation data and field-based monitoring to enhance understanding of beach erosion. Optical flow tracking velocimetry (OFTV) is applied to smartphone camera footage to provide a quantitative metric of wave characteristics during the high wave energy season. These data are combined with satellite-derived shoreline change data and additional field data on beach profiles and grain size. The results reveal distinct patterns of accretion and erosion across the study sites determined by wave climate, beach morphology, and grain size. Accreting beaches are generally characterised by longer wave periods, more consistent wave velocities, and finer, positively skewed sediments indicative of swell-dominated conditions and dissipative beach profiles. Conversely, more erosive sites are associated with shorter wave periods, more variable wave velocities, coarser and better-sorted sediments, and a shorter, steeper beach profile. Seasonal erosion during the high-energy wave season (January–April) and subsequent recovery were observed at most sites. This work demonstrates how foundational data for evidence-based coastal management can be generated in remote locations that lack essential baseline data. Full article
Show Figures

Figure 1

18 pages, 733 KB  
Review
Dredge Sediment as an Opportunity: A Comprehensive and Updated Review of Beneficial Uses in Marine, River, and Lagoon Eco-Systems
by Chiara Fratini, Serena Anselmi and Monia Renzi
Environments 2025, 12(6), 200; https://doi.org/10.3390/environments12060200 - 12 Jun 2025
Viewed by 1420
Abstract
Dredging is essential for the maintenance of ports, waterways, lakes, and lagoons to ensure their operability and economic value. Over the last few decades, scientists have focused on the significant environmental challenges associated with dredging, including habitat destruction, loss of biodiversity, sediment suspension, [...] Read more.
Dredging is essential for the maintenance of ports, waterways, lakes, and lagoons to ensure their operability and economic value. Over the last few decades, scientists have focused on the significant environmental challenges associated with dredging, including habitat destruction, loss of biodiversity, sediment suspension, and contamination with heavy metals and organic pollutants. The huge loss of sediment in coastal areas and the associated erosion processes are now forcing stakeholders to look ahead and turn potential problems into an opportunity to develop new sediment management strategies, beyond environmental protection, toward ecosystem restoration and coastal resilience. Moreover, the European and Italian strategies, such as the European Green Deal (EGD) and the Italian Ecological Transition Plan (PTE), highlight the need to reuse dredge sediment in circular economy strategies, transforming them into valuable resources for construction, agriculture, and environmental restoration projects. European legislation on dredging is fundamental to the issue of management and priorities of dredged materials, but the implementation rules are deferred to individual member states. In Italy, the Ministerial Decree 173/2016 covers the main aspects of dredge activities and dredge sediment management. Moreover, it encourages the remediation and reuse of the dredge sediment. This study starts with a comprehensive analysis of the innovative remediation techniques that minimize impacts and promote sustainable, beneficial sediment management. Different remediation methods, such as electrochemical treatments, chemical stabilization, emerging nanotechnologies, bioremediation, and phytoremediation, will be evaluated for their effectiveness in reducing pollution. Finally, we highlight new perspectives, integrated strategies, and multidisciplinary approaches that combine various technological innovations, including artificial intelligence, to enhance sediment reuse with the aim of promoting economic growth and environmental protection. Full article
Show Figures

Figure 1

11 pages, 1202 KB  
Article
The Impacts of Gentrification on Air Pollutant Levels and Child Opportunity Index near New York City Schools
by Kyung Hwa Jung, Zachary Pitkowsky, Kira L. Argenio, James W. Quinn, Jeanette A. Stingone, Andrew G. Rundle, Jean-Marie Bruzzese, Steven Chillrud, Matthew Perzanowski and Stephanie Lovinsky-Desir
Environments 2025, 12(6), 199; https://doi.org/10.3390/environments12060199 - 11 Jun 2025
Viewed by 684
Abstract
Introduction: Gentrification, commonly defined as low-socioeconomic-status (SES) neighborhoods experiencing rapid increases in rental value, can lead to changes in the built and social neighborhood environment. Schools are an important location for pollutant exposure and child opportunities because children spend significant time in school. [...] Read more.
Introduction: Gentrification, commonly defined as low-socioeconomic-status (SES) neighborhoods experiencing rapid increases in rental value, can lead to changes in the built and social neighborhood environment. Schools are an important location for pollutant exposure and child opportunities because children spend significant time in school. Given their central role in both environmental and social contexts, we examined the relationship between gentrification, pollutants, and child opportunity near schools in New York City. Methods: School locations (Ntotal = 1482) were classified into gentrifying (n = 624), non-gentrifying (n = 198), and higher-SES (ineligible for gentrification; n = 660) neighborhoods. Annual average pollutant levels (black carbon (BC), fine particulates (PM2.5), nitrogen dioxide (NO2)) were assessed near schools. Child opportunity index (COI 2.0) was used to evaluate overall opportunity and three domains: education; health/environment; social/economic. Results: On average, pollution was highest in gentrifying neighborhoods compared to non-gentrifying (5–8.6% difference) and higher-SES (4.8–14.8% difference) neighborhoods. Average air pollution levels remained consistently higher in gentrifying neighborhoods both before and after gentrification compared to non-gentrifying and higher-SES neighborhoods. Regarding childhood opportunity, education, and social/economic opportunities were better and health/environment opportunities were worse in gentrifying compared to non-gentrifying neighborhoods. Conclusions: Gentrifying neighborhoods are at risk for higher exposure to pollutants and lower health/environment childhood opportunities compared to other neighborhoods. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

15 pages, 1166 KB  
Article
A Multidimensional Assessment of CO2-Intensive Economies Through the Green Economy Index Framework
by Halina Falfushynska
Environments 2025, 12(6), 195; https://doi.org/10.3390/environments12060195 - 9 Jun 2025
Viewed by 707
Abstract
Despite growing international consensus on the urgency of climate action, global CO2 emissions have continued to rise, exposing a critical implementation gap between environmental ambition and reality. This study explores the readiness and structural capacity of the world’s most CO2-intensive [...] Read more.
Despite growing international consensus on the urgency of climate action, global CO2 emissions have continued to rise, exposing a critical implementation gap between environmental ambition and reality. This study explores the readiness and structural capacity of the world’s most CO2-intensive countries to transition toward a green and hydrogen-based economy. We introduce and apply the Green Economy Index, a composite measure integrating 31 indicators across four core dimensions—political and regulatory efficiency, socio-economic status, infrastructure, and sustainable targets. Using data from 29 countries emitting over 200 Mt of CO2 in 2022, the analysis combines principal component analysis, Random Forest modeling, and network-based correlation analysis to classify nations into frontrunners, transitional performers, and structural laggers. The results reveal significant disparities in green economy readiness, with high-income countries showing institutional maturity and infrastructural robustness, while middle-income nations remain constrained by fossil fuel dependencies and governance challenges. Importantly, we highlight the growing utility of machine learning and multivariate statistics in capturing complex sustainability interdependencies. The Green Economy Index framework offers a relevant tool to benchmark progress, diagnose barriers, and guide targeted interventions in global decarbonization efforts. Full article
Show Figures

Figure 1

25 pages, 4088 KB  
Article
Urban Source Apportionment of Potentially Toxic Elements in Thessaloniki Using Syntrichia Moss Biomonitoring and PMF Modeling
by Themistoklis Sfetsas, Sopio Ghoghoberidze, Panagiotis Karnoutsos, Vassilis Tziakas, Marios Karagiovanidis and Dimitrios Katsantonis
Environments 2025, 12(6), 188; https://doi.org/10.3390/environments12060188 - 4 Jun 2025
Cited by 1 | Viewed by 810
Abstract
Urban air pollution from potentially toxic elements (PTEs) presents a critical threat to public health and environmental sustainability. The current study employed Syntrichia moss in a passive biomonitoring capacity to ascertain the levels of atmospheric PTE pollution in Thessaloniki, Greece. A comprehensive collection [...] Read more.
Urban air pollution from potentially toxic elements (PTEs) presents a critical threat to public health and environmental sustainability. The current study employed Syntrichia moss in a passive biomonitoring capacity to ascertain the levels of atmospheric PTE pollution in Thessaloniki, Greece. A comprehensive collection of 192 moss samples was undertaken at 16 urban sampling points over the March–July 2024 period. Concentrations of 21 PTEs were quantified using ICP-MS, and contamination levels were assessed through contamination factor (CF), enrichment factor (EF), and pollution load index (PLI). Positive matrix factorization (PMF) modeling and multivariate statistical analyses were used to identify pollution sources and spatiotemporal variations. Results revealed persistent hotspots with significant anthropogenic enrichments of elements, such as Fe, Mn, Sn in industrial zones and Tl, Ce, Pt in traffic corridors. PMF modeling attributed 48% of the measured PTE variance to traffic-related sources, 35% to industrial sources, and 17% to crustal material. Seasonal transitions showed a significant 3.5-fold increase in Tl during summer, indicating elevated traffic-related emissions. This integrated multi-index and source apportionment framework demonstrates the efficacy of Syntrichia moss for high-resolution urban air quality assessment. The approach offers a cost-effective, scalable, and environmentally friendly tool to support EU-aligned air quality management strategies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

17 pages, 1856 KB  
Article
Convergence Research for Microplastic Pollution at the Watershed Scale
by Heejun Chang, Elise Granek, Amanda Gannon, Jordyn M. Wolfand and Janice Brahney
Environments 2025, 12(6), 187; https://doi.org/10.3390/environments12060187 - 3 Jun 2025
Cited by 1 | Viewed by 875
Abstract
Microplastics are found in Earth’s atmosphere, lithosphere, hydrosphere, pedosphere, and ecosphere. While there is a growing interest and need to solve this grand challenge in both the academic and policy realms, few have engaged with academics, policymakers, and community partners to co-identify the [...] Read more.
Microplastics are found in Earth’s atmosphere, lithosphere, hydrosphere, pedosphere, and ecosphere. While there is a growing interest and need to solve this grand challenge in both the academic and policy realms, few have engaged with academics, policymakers, and community partners to co-identify the problem, co-design research, and co-produce knowledge in tackling this issue. Using a convergence research framework, we investigated the perception of microplastic pollution among different end users, delivered educational materials to K-12 teachers and practitioners, and identified key sampling points for assessing environmental microplastic concentrations in the Columbia River Basin, United States. Three community partner workshops identified regional issues and concerns associated with microplastic pollution and explored potential policy intervention strategies. The stakeholder survey, co-designed with community partners, identified varying perceptions around microplastic pollution across educators, government employees, non-profit employees, and industry practitioners. Pre- and post-test results of teacher workshops show increases in participants’ knowledge after taking a four-week summer class with the knowledge being translated to their students. Community partners also helped develop a unique passive sampling plan for atmospheric deposition of microplastics using synoptic moss samples and provided freshwater samples for microplastic quantification across the basin. Our study drew three major lessons for successfully conducting convergence environmental research—(1) communication and trust building, supported by the use of key-informants to expand networks; (2) co-creation through collaboration, where partners and students shaped research and education to enhance impact; and (3) change-making, as project insights were translated into policy discussions, community outreach, and classrooms. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Plastic Contamination)
Show Figures

Figure 1

23 pages, 863 KB  
Article
Evaluation of Standardised (ISO) Leaching Tests for Assessing Leaching and Solid–Solution Partitioning of Perfluoroalkyl Substances (PFAS) in Soils
by Dan B. Kleja, Hugo Campos-Pereira, Johannes Kikuchi-McIntosh, Michael Pettersson, Oksana Golovko and Anja Enell
Environments 2025, 12(6), 179; https://doi.org/10.3390/environments12060179 - 29 May 2025
Viewed by 1939
Abstract
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are [...] Read more.
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are valuable tools for assessing the site-specific leaching behaviour of contaminants. Here, we report the results of an evaluation of two standardized leaching tests for PFAS-contaminated soil materials: the batch test (ISO 21268-2:2019) using either demineralized water or 1 mM CaCl2 as leachants (liquid-to-solid (L/S) ratio of 10) and the up-flow percolation test (ISO 21268-3:2019) using 1 mM CaCl2 as leachant. One field-contaminated soil and three spiked (12 PFAS compounds) soils (aged 5 months) were included in the study. Desorption kinetics in the batch test were fast and equilibrium was obtained for all PFAS compounds within 24 h, the prescribed equilibration time. The same solubility was obtained for short-chain PFAS (PFBA, PFHxA, PFHpA, PFBS) in demineralized water and 1 mM CaCl2, whereas significantly lower solubility was often observed for long-chain PFAS in CaCl2 than in water, probably due to decreased charge repulsion between soil surfaces and PFAS compounds. In the up-flow percolation test, concentrations of short-chain PFAS in leachates decreased rapidly with increasing L/S, in contrast to long-chain PFAS, where concentrations decreased gradually or remained constant. Solid–solution partitioning coefficients (Kd), calculated from the data of the batch and percolation tests (1 mM CaCl2), were generally in agreement, although differing by more than three orders of magnitude between different PFAS compounds. Uncertainties and pitfalls when calculating Kd values from leaching test data are also explored. Full article
Show Figures

Figure 1

14 pages, 762 KB  
Review
Drivers of Mercury Accumulation in Juvenile Antarctic Krill, Epipelagic Fish and Adélie Penguins in Different Regions of the Southern Ocean
by Roberto Bargagli and Emilia Rota
Environments 2025, 12(6), 180; https://doi.org/10.3390/environments12060180 - 29 May 2025
Viewed by 1678
Abstract
Antarctica and the Southern Ocean are important sinks in the global mercury (Hg) cycle, and in the marine environment, inorganic Hg can be converted by bacteria to monomethylmercury (MeHg), a highly bioavailable and toxic compound that biomagnifies along food webs. In the Southern [...] Read more.
Antarctica and the Southern Ocean are important sinks in the global mercury (Hg) cycle, and in the marine environment, inorganic Hg can be converted by bacteria to monomethylmercury (MeHg), a highly bioavailable and toxic compound that biomagnifies along food webs. In the Southern Ocean, higher concentrations of Hg and MeHg have typically been reported in the coastal waters of the Ross and Amundsen Seas, where katabatic winds can transport Hg from the Antarctic Plateau and create coastal polynyas, which results in spring depletion events of atmospheric Hg. However, some studies on MeHg biomagnification in Antarctic marine food webs have reported higher Hg concentrations in penguins from sub-Antarctic waters and, unexpectedly, higher levels in juvenile krill than those in adult Antarctic krill. In light of recent estimates of the phytoplankton and zooplankton biomass and distribution in the Southern Ocean, this review suggests that although most studies on MeHg biomagnification refer to the short diatom–krill–vertebrate food chain, alternative and more complex pelagic food webs exist in the Southern Ocean. Thus, juvenile krill and micro- and mesozooplankton grazing on very small autotrophs and heterotrophs, which have high surface-to-volume ratios for MeHg ad-/absorption, may accumulate more Hg than consumers of large diatoms, such as adult krill. In addition, the increased availability of Hg and the different diet contribute to a greater metal accumulation in the feathers of Adélie penguins from the Ross Sea than that of those from the sub-Antarctic. Full article
Show Figures

Figure 1

17 pages, 873 KB  
Article
Association of PFAS and Metals with Cardiovascular Disease Risk: Exploring the Mediating Effect of Diet
by Augustina Odediran, Kenneth Bollen and Emmanuel Obeng-Gyasi
Environments 2025, 12(6), 178; https://doi.org/10.3390/environments12060178 - 28 May 2025
Cited by 1 | Viewed by 1024
Abstract
Background: Cardiovascular disease (CVD) is a major global health burden influenced by genetic, behavioral, and environmental factors. Among these, exposure to per- and poly-fluoroalkyl substances (PFASs) and toxic metals has been increasingly implicated in adverse cardiovascular outcomes. However, the mediating role of dietary [...] Read more.
Background: Cardiovascular disease (CVD) is a major global health burden influenced by genetic, behavioral, and environmental factors. Among these, exposure to per- and poly-fluoroalkyl substances (PFASs) and toxic metals has been increasingly implicated in adverse cardiovascular outcomes. However, the mediating role of dietary inflammation in these associations remains unclear. Objective: This study investigates the relationship between PFAS and metal exposures and CVD risk, focusing on the potential mediating role of diet, operationalized through the Dietary Inflammatory Index (DII). Additionally, this study examines age as an effect modifier in these associations. Methods: Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017–2018 cycle (n = 660), we assessed environmental exposures (lead, cadmium, mercury, perfluorooctanoic acid-PFOA, perfluorooctane sulfonate-PFOS), dietary inflammatory potential (DII), and cardiovascular markers (blood pressure, lipid profile, C-reactive protein). Statistical analyses included linear regression and Bayesian Kernel Machine Regression-Causal Mediation Analysis (BKMR-CMA) to estimate the direct, indirect (through DII), and total effects of exposure on CVD risk biomarkers. Results: Linear regression revealed significant associations between mercury and reduced systolic blood pressure (SBP) (p = 0.017) and cadmium with increased C-reactive protein (CRP) (p = 0.006). Mediation analysis suggested dietary inflammation may play a role, though estimates were imprecise. Conclusions: PFAS and metals may influence CVD risk through inflammatory pathways, with potential age-related differences. Future longitudinal studies are needed to clarify these complex interactions, reduce measurement error, and guide age-specific exposure regulations. Full article
Show Figures

Figure 1

21 pages, 621 KB  
Review
Arsenic in Soil: A Critical and Scoping Review of Exposure Pathways and Health Impacts
by Catherine Irwin, Sajni Gudka, Sofie De Meyer, Martine Dennekamp, Pacian Netherway, Maryam Moslehi, Timothy Chaston, Antti Mikkonen, Jen Martin, Mark Patrick Taylor and Suzanne Mavoa
Environments 2025, 12(5), 161; https://doi.org/10.3390/environments12050161 - 14 May 2025
Viewed by 1066
Abstract
Arsenic (As) in soil, such as mining waste, is a concern for communities with legacy contamination. While the chronic health effects of As exposure through drinking water are well documented, the association between As in soil and population-wide health impacts is [...] Read more.
Arsenic (As) in soil, such as mining waste, is a concern for communities with legacy contamination. While the chronic health effects of As exposure through drinking water are well documented, the association between As in soil and population-wide health impacts is complex, involving factors like soil accessibility, soil properties, and exposure modes. This review summarizes evidence of associations between As in soil and human health, as well as biomarker and bioaccessibility evidence of exposure pathways. Fourteen studies were included in the final analysis. Reviewed studies reported associations between As in soil and birth outcomes, neurological effects, DNA damage, and cancer. Some of these health outcomes are not known to be linked to As in drinking water and were reported over a range of soil concentrations, indicating inconsistencies. Higher soil As concentrations are associated with higher As in human biospecimens, suggesting direct and indirect soil ingestion as primary exposure pathways. The subpopulations more likely to be exposed include younger children and those involved in soil-based activities. Future research should focus on standardized epidemiological studies, longitudinal studies, soil exposure and mitigating factors, combined exposure biomarker studies, the behavior of the different As species, soil dose related to bioavailability/bioaccessibility, and effects with other elements. Full article
Show Figures

Graphical abstract

33 pages, 2298 KB  
Review
Recent Advances in Remote Sensing and Artificial Intelligence for River Water Quality Forecasting: A Review
by Daiwei Pan, Ying Deng, Simon X. Yang and Bahram Gharabaghi
Environments 2025, 12(5), 158; https://doi.org/10.3390/environments12050158 - 10 May 2025
Cited by 4 | Viewed by 3136
Abstract
Rapid population growth and climate change have created challenges for managing water quality. Protecting water sources and devising practical solutions are essential for restoring impaired inland rivers. Traditional water quality monitoring and forecasting methods rely on labor-intensive sampling and analysis, which are often [...] Read more.
Rapid population growth and climate change have created challenges for managing water quality. Protecting water sources and devising practical solutions are essential for restoring impaired inland rivers. Traditional water quality monitoring and forecasting methods rely on labor-intensive sampling and analysis, which are often costly. In recent years, real-time monitoring, remote sensing, and machine learning have significantly improved the accuracy of water quality forecasting. This paper categorizes machine learning approaches into traditional, deep learning, and hybrid models, evaluating their performance in forecasting water quality parameters. In recent years, the long short-term memory (LSTMs), gated recurrent units (GRUs) and LSTM- and GRU-based hybrid models have been widely used in forecasting inland river water quality. Combining remote sensing with a real-time water quality monitoring network has enhanced data collection efficiency by capturing spatial variability within the river network, complementing the high temporal resolution of in situ measurements, and improving the overall robustness of predictive deep learning models. Additionally, leveraging weather prediction models can further enhance the accuracy of water quality forecasting and better decision-making for water resource management. Full article
Show Figures

Figure 1

22 pages, 1837 KB  
Review
Analytical Methods for In-Depth Assessment of Recycled Plastics: A Review
by Joseph Patrick Dzoh Fonkou, Giovanni Beggio, Gabriella Salviulo and Maria Cristina Lavagnolo
Environments 2025, 12(5), 154; https://doi.org/10.3390/environments12050154 - 7 May 2025
Cited by 1 | Viewed by 1935
Abstract
Assessing the detailed characteristics of recycled plastics is essential for evaluating their quality and suitability for high-value applications compared to virgin polymers. This review provides a comprehensive overview of advanced analytical techniques used for characterizing the chemical, structural, morphological, and physical properties of [...] Read more.
Assessing the detailed characteristics of recycled plastics is essential for evaluating their quality and suitability for high-value applications compared to virgin polymers. This review provides a comprehensive overview of advanced analytical techniques used for characterizing the chemical, structural, morphological, and physical properties of recycled polymeric materials. The techniques examined include Fourier Transform Infrared Spectroscopy (FTIR), Micro-Raman spectroscopy, X-ray Fluorescence (XRF), Inductively Coupled Plasma (ICP) techniques, X-ray Powder Diffraction (XRPD), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM). These methods are critically assessed for their effectiveness in detecting polymer degradation, surface and structural alterations, and the presence of contaminants—factors frequently introduced during mechanical recycling processes. For each technique, this review outlines the working principles, sample preparation protocols, and illustrative case studies while discussing their advantages, limitations, and operational challenges. By synthesizing current knowledge and methodological advancements, this review aims to support the development of robust and standardized quality assessment protocols. Enhancing the reliability and precision of recycled plastic characterization will improve their acceptance as high-quality secondary raw materials, thereby facilitating their upcycling and contributing to the broader goals of the circular economy. Full article
Show Figures

Figure 1

20 pages, 3059 KB  
Article
Climatic Changes Shift Macroalgal Assemblages from Cold- to Warm-Adapted Species: The Venice Lagoon as a Study Case
by Adriano Sfriso, Yari Tomio and Andrea Augusto Sfriso
Environments 2025, 12(5), 149; https://doi.org/10.3390/environments12050149 - 2 May 2025
Viewed by 720
Abstract
Temperature increase is one of the main effects of climate change occurring worldwide, with drastic impacts on both terrestrial and aquatic biota. Changes in the dominant macroalgal taxa in the Venice Lagoon have been analyzed in relation to the rise in air temperature [...] Read more.
Temperature increase is one of the main effects of climate change occurring worldwide, with drastic impacts on both terrestrial and aquatic biota. Changes in the dominant macroalgal taxa in the Venice Lagoon have been analyzed in relation to the rise in air temperature recorded since 1973, highlighting the significant decline in cold-adapted species, which have been replaced by taxa more tolerant of higher temperatures. Cold-adapted species such as the native Fucus virsoides, Punctaria latifolia, Scytosiphon lomentaria, and many other Phaeophyceae are in decline, whereas thermophilic species such as the non-indigenous species (NIS) Gracilaria vermiculophylla, Agardhiella subulata, Solieria filiformis, Hypnea cervicornis, Caulacanthus okamurae, and many others have replaced the species that once dominated the lagoon. These changes have been associated with an average air temperature increase of approximately 2.5 °C. The highest increase has mostly been recorded for average minimum temperatures (+2.8 °C), compared to average maximum temperatures (+2.0 °C). As a result, Phaeophyceae have declined, while Rhodophyceae, especially recent NIS introductions, have colonized the lagoon bottoms. Changes in Chlorophyceae, on the other hand, appear to be more linked to the reduction of the lagoon’s trophic conditions, although the currently dominant species is Ulva australis, a NIS that has replaced the native Ulva rigida almost everywhere. Full article
Show Figures

Graphical abstract

14 pages, 464 KB  
Article
The Development and Reliability Testing of a Tool to Assess Women’s Perceptions and Avoidance of Endocrine Disruptors in Personal and Household Products
by Adrianna Trifunovski, Nooshin Khobzi Rotondi, Jennifer Abbass-Dick, Rola Al Ghali and Caroline Barakat
Environments 2025, 12(5), 138; https://doi.org/10.3390/environments12050138 - 25 Apr 2025
Cited by 1 | Viewed by 1358
Abstract
Personal care and household products (PCHPs) often contain endocrine-disrupting chemicals (EDCs) that pose health risks, especially for women. Women, frequent users of PCHPs, are exposed to approximately 168 chemicals daily. However, there are gaps in understanding women’s knowledge, risk perceptions, and beliefs regarding [...] Read more.
Personal care and household products (PCHPs) often contain endocrine-disrupting chemicals (EDCs) that pose health risks, especially for women. Women, frequent users of PCHPs, are exposed to approximately 168 chemicals daily. However, there are gaps in understanding women’s knowledge, risk perceptions, and beliefs regarding these chemicals, as well as how these constructs influence their avoidance behavior. Existing questionnaires on EDCs in PCHPs lack reliability and comprehensiveness. Guided by the Health Belief Model, this study developed a self-administered questionnaire targeting four key constructs: knowledge, health risk perceptions, beliefs, and avoidance behaviors related to six EDCs commonly found in PCHPs (lead, parabens, Bisphenol A, phthalates, triclosan, and perchloroethylene). The questionnaire was distributed to 200 women at in-person events and online. The internal consistency of the constructs was tested using Cronbach’s alpha. The questionnaire included six items assessing knowledge, seven items on risk perceptions, five items on beliefs, and six items on avoidance behavior for each endocrine-disrupting chemical. Cronbach’s alpha values indicated strong reliability across all constructs. This newly developed questionnaire offers a reliable tool for assessing women’s knowledge, risk perceptions, beliefs, and behaviors toward EDCs in PCHPs. These findings could inform public health research and intervention strategies aimed at reducing women’s exposure to EDCs. Full article
(This article belongs to the Special Issue Environmental Pollution Risk Assessment)
Show Figures

Figure 1

25 pages, 1010 KB  
Article
Solutions for Modelling the Marine Oil Spill Drift
by Catalin Popa, Dinu Atodiresei, Alecu Toma, Vasile Dobref and Jenel Vatamanu
Environments 2025, 12(4), 132; https://doi.org/10.3390/environments12040132 - 21 Apr 2025
Viewed by 928
Abstract
Oil spills represent a critical environmental hazard with far-reaching ecological and economic consequences, necessitating the development of sophisticated modelling approaches to predict, monitor, and mitigate their impacts. This study presents a computationally efficient and physically grounded modelling framework for simulating oil spill drift [...] Read more.
Oil spills represent a critical environmental hazard with far-reaching ecological and economic consequences, necessitating the development of sophisticated modelling approaches to predict, monitor, and mitigate their impacts. This study presents a computationally efficient and physically grounded modelling framework for simulating oil spill drift in marine environments, developed using Python coding. The proposed model integrates core physical processes—advection, diffusion, and degradation—within a simplified partial differential equation system, employing an integrator for numerical simulation. Building on recent advances in marine pollution modelling, the study incorporates real-time oceanographic data, satellite-based remote sensing, and subsurface dispersion dynamics into an enriched version of the simulation. The research is structured in two phases: (1) the development of a minimalist Python model to validate fundamental oil transport behaviours, and (2) the implementation of a comprehensive, multi-layered simulation that includes NOAA ocean currents, 3D vertical mixing, and support for inland and chemical spill modelling. The results confirm the model’s ability to reproduce realistic oil spill trajectories, diffusion patterns, and biodegradation effects under variable environmental conditions. The proposed framework demonstrates strong potential for real-time decision support in oil spill response, coastal protection, and environmental policy-making. This paperwork contributes to the field by bridging theoretical modelling with practical response needs, offering a scalable and adaptable tool for marine pollution forecasting. Future extensions may incorporate deep learning algorithms and high-resolution sensor data to further enhance predictive accuracy and operational readiness. Full article
Show Figures

Figure 1

19 pages, 3613 KB  
Article
Ecofriendly Degradation of PET via Neutral Hydrolysis: Degradation Mechanism and Green Chemistry Metrics
by Adhithiya Venkatachalapati Thulasiraman, Arun Krishna Vuppaladadiyam, Ibrahim Gbolahan Hakeem, Kamrun Nahar, Manoj Kumar Jena and Kalpit Shah
Environments 2025, 12(4), 127; https://doi.org/10.3390/environments12040127 - 18 Apr 2025
Viewed by 1878
Abstract
Waste polyethylene terephthalate (PET) bottles represent 12% of global plastic waste; however, only 9% are recycled. Hydrothermal processing presents the opportunity to upcycle waste PET into its monomers, particularly, terephthalic acid (TPA). In this study, post-consumer PET sparkling water bottles were neutrally hydrolysed [...] Read more.
Waste polyethylene terephthalate (PET) bottles represent 12% of global plastic waste; however, only 9% are recycled. Hydrothermal processing presents the opportunity to upcycle waste PET into its monomers, particularly, terephthalic acid (TPA). In this study, post-consumer PET sparkling water bottles were neutrally hydrolysed via a hydrothermal process operating within a temperature range of 220–270 °C, a residence time of 30–90 min, and autogenous pressure of 25–90 bar. Under these conditions, the TPA yield varied between 7.34 and 81.05%, and the maximum TPA yield was obtained at 250 °C, 90 min, and 40 bar. The process temperature had a more profound impact on the PET conversion and TPA yield than the residence time. The values of the environmental factor (EF) were found to be 0.017–0.106, which were comparable to those of bulk chemicals (EF < 1). With the chosen operating conditions, the environmental energy impact (EEI) of TPA production was estimated to be 5.29 × 104 °C min. The findings demonstrate that neutral hydrolysis is a feasible approach for converting PET polymers into monomers under mild environmental conditions. In addition, a GCMS analysis of the aqueous-phase product revealed a notable increase in the secondary degradation products of TPA, such as benzoic acid, rising from 66.4% to 75.7% as the process temperature increased from 220 °C to 270 °C. The degradation mechanisms of PET were found to be decarboxylation, dehydration, and oxidation. The dominant mechanism was found to be a decarboxylation reaction. Full article
Show Figures

Graphical abstract

16 pages, 20746 KB  
Article
Pretreatment Methods for Recovering Active Cathode Material from Spent Lithium-Ion Batteries
by Federica Barontini, Flavio Francalanci, Eleonora Stefanelli and Monica Puccini
Environments 2025, 12(4), 119; https://doi.org/10.3390/environments12040119 - 12 Apr 2025
Viewed by 858
Abstract
The development of environmentally friendly pretreatment processes for spent lithium-ion batteries (LIBs) is crucial for optimizing direct recycling methods. This study explores alternative approaches for recovering active cathode materials from end-of-life LIBs, focusing on environmentally safer options compared to the usually employed toxic [...] Read more.
The development of environmentally friendly pretreatment processes for spent lithium-ion batteries (LIBs) is crucial for optimizing direct recycling methods. This study explores alternative approaches for recovering active cathode materials from end-of-life LIBs, focusing on environmentally safer options compared to the usually employed toxic solvent N-methyl-pyrrolidone (NMP), using disassembled batteries as test subjects. Various pretreatment methods, including thermal treatment, selective aluminum foil dissolution with a NaOH solution, and the use of eco-friendly solvents such as triethyl phosphate (TEP), are examined on the cathode sheets. The results show that thermal pretreatment combined with TEP provides the most effective approach, achieving a recovery efficiency of 95% while maintaining the morphology and purity of the recovered materials, making them suitable for direct recycling. These methods are further tested on complete battery cells, simulating industrial-scale operations. The TEP treatment proves particularly promising, ensuring high recovery efficiency and preserving the structural integrity of the materials, with a mean particle diameter of approximately 8 µm. Additionally, when applied to cycled batteries, this pretreatment successfully recovers active materials without contamination. This study provides valuable insights into various pretreatment strategies, contributing to the development of a greener, more efficient direct recycling pretreatment process for spent LIBs. Full article
Show Figures

Figure 1

25 pages, 3676 KB  
Article
Fishponds Are Hotspots of Algal Biodiversity—Organic Carp Farming Reveals Unexpected High Taxa Richness
by Michael Schagerl, Chun-Chieh Yen, Christian Bauer, Luka Gaspar and Johann Waringer
Environments 2025, 12(3), 92; https://doi.org/10.3390/environments12030092 - 15 Mar 2025
Viewed by 1325
Abstract
Fishponds are regarded as hypertrophic systems accompanied by low biodiversity. We focused on the phytoplankton diversity of 15 fishponds located in Austria. Of the 15 fishponds, 12 waterbodies are aquaculture ponds stocked with common carp, which converted to organic farming some years ago [...] Read more.
Fishponds are regarded as hypertrophic systems accompanied by low biodiversity. We focused on the phytoplankton diversity of 15 fishponds located in Austria. Of the 15 fishponds, 12 waterbodies are aquaculture ponds stocked with common carp, which converted to organic farming some years ago with grain as supplementary feed, and 3 ponds are used for recreational fishing. The trophic state index increased from 59 to 71 in spring to 80 to 93 in autumn and classified the ponds as mid-eutrophic to hypertrophic. The taxa number was surprisingly high (taxa richness up to 100 taxa per pond). The phytoplankton resource use efficiency was in the upper range of eutrophicated waters and did not show seasonal differences (median Chlorophyll-a/total phosphorus = 1.94, Chlorophyll-a/total nitrogen = 0.12). Linking environmental data with the algal community resulted in a distinct temporal community pattern with a significant seasonal shift from the cooler season dominated by Ochrophyta taxa to green algae as the most abundant group in summer and autumn. Our findings challenge general assumptions regarding low phytoplankton diversity with long-lasting Cyanobacteria blooms and conform to the algal dynamics described in the plankton ecology group (PEG) model for temperate shallow lakes. These man-made systems are an ecological asset, highly connected to terrestrial habitats in their vicinity and significantly contributing to the ecological health and long-term sustainability of the region. Full article
Show Figures

Figure 1

27 pages, 2139 KB  
Review
Nanobiopesticides: Sustainability Aspects and Safety Concerns
by Giuliana Vinci, Marco Savastano, Donatella Restuccia and Marco Ruggeri
Environments 2025, 12(3), 74; https://doi.org/10.3390/environments12030074 - 1 Mar 2025
Viewed by 1413
Abstract
The use of chemical pesticides has significantly improved crop yields and global food security but poses risks to environment and human health. To address this, nanobiopesticides, combining nanomaterials and biopesticide, have emerged as a potential alternative. Therefore, this article evaluates their sustainability and [...] Read more.
The use of chemical pesticides has significantly improved crop yields and global food security but poses risks to environment and human health. To address this, nanobiopesticides, combining nanomaterials and biopesticide, have emerged as a potential alternative. Therefore, this article evaluates their sustainability and safety through a literature review using Scopus. The results indicate that nanobiopesticides offer advantages over conventional pesticides, including greater precision, controlled release, and reduced dosage requirements. An illustrative Life Cycle Assessment conducted in this study confirmed that they potentially offer more sustainability than commercial pesticides, showing reductions in environmental impacts from −6% to −99%. However, several gaps remain related to the effect of nanoparticles on non-target organisms and biodiversity, bioaccumulation, and environmental persistence in ecosystems, and their ecotoxicological safety. Additionally, regulatory frameworks in major agricultural markets are complex and fragmented, potentially hindering large-scale adoption. Currently, nanobiopesticides are commercially available in countries such as the U.S., India, and Brazil, primarily for pest control in crops like rice, maize, and vegetables. Their market presence is growing, yet widespread implementation will depend on clearer regulations and further research on long-term environmental impacts. Full article
Show Figures

Figure 1

13 pages, 524 KB  
Review
E-Cigarette and Environment
by Ancuta-Alina Constantin and Florin-Dumitru Mihălțan
Environments 2025, 12(3), 72; https://doi.org/10.3390/environments12030072 - 27 Feb 2025
Viewed by 4659
Abstract
Environmental exposure to e-cigarettes is a significant yet often overlooked issue in the medical field. In this review, we examine various aspects of exposure mechanisms, including the risks of secondhand and thirdhand vaping. Our findings highlight numerous environmental concerns related to the fabrication, [...] Read more.
Environmental exposure to e-cigarettes is a significant yet often overlooked issue in the medical field. In this review, we examine various aspects of exposure mechanisms, including the risks of secondhand and thirdhand vaping. Our findings highlight numerous environmental concerns related to the fabrication, consumption, and waste management of e-cigarettes. Additionally, we address the pressing issue of plastic pollution linked to vaping products. We also explore methods to protect passive vapers and propose strategies aimed at mitigating the environmental impact of e-cigarettes as well as safeguarding innocent bystanders. Full article
Show Figures

Figure 1

22 pages, 1127 KB  
Article
Evaluating GHG Emissions and Renewable Energy Use in the Italian Energy Sector: Monitoring, Reporting, and Objectives
by Stefano Castelluccio, Silvia Fiore and Claudio Comoglio
Environments 2025, 12(2), 55; https://doi.org/10.3390/environments12020055 - 6 Feb 2025
Cited by 1 | Viewed by 1159
Abstract
This study investigates the greenhouse gas (GHG) and renewable energy use reporting practices among thermal power plants (TPPs), waste incinerators (WIs), and hydropower plants (HPPs) in Italy, as reflected in their EMAS environmental statements. The analysis focuses on GHG emissions (Scope 1, 2, [...] Read more.
This study investigates the greenhouse gas (GHG) and renewable energy use reporting practices among thermal power plants (TPPs), waste incinerators (WIs), and hydropower plants (HPPs) in Italy, as reflected in their EMAS environmental statements. The analysis focuses on GHG emissions (Scope 1, 2, and 3) and renewable energy utilization reporting, and on the objectives set by the companies for reducing emissions and fossil fuels use. TPPs and WIs reported positive Scope 1 emissions extensively but reporting on Scope 2 and Scope 3 resulted inconsistent for all facilities. Negative emissions reporting was generally lacking, except for HPPs. Renewable energy use reporting was also limited, especially in TPPs and WIs, despite some facilities producing energy from renewable sources. The study also evaluated the objectives set by the companies on GHG reduction and renewable energy use increase, finding that GHG reduction was prioritized over renewable energy use. However, both were often a secondary goal integrated into planned operational improvements. The findings highlight that, to ensure transparency of sustainability data and the possibility of performances benchmarking in the energy production sector, there is the need for defining stronger reporting guidelines on GHG emissions, especially regarding Scope 3 emissions, and to prioritize increasing the share of renewable energy among strategic objectives. Future research should investigate factors affecting reporting behavior and the barriers to renewable energy adoption in fossil fuel-reliant sectors. Full article
(This article belongs to the Special Issue Greenhouse Gas Emission Reduction and Green Energy Utilization)
Show Figures

Figure 1

13 pages, 1362 KB  
Article
The Distribution and Seasonality of Per- and Polyfluoroalkyl Substances (PFAS) in the Vertical Water Column of a Stratified Eutrophic Freshwater Lake
by Patrick R. Gorski
Environments 2025, 12(2), 48; https://doi.org/10.3390/environments12020048 - 4 Feb 2025
Viewed by 1269
Abstract
The vertical distribution and potential variability of Per- and Polyfluoroalkyl substances (PFAS) in the water column of lacustrine systems is important to know for sampling and monitoring purposes, but could also relate to details of their fate, transport, and distribution. In this study, [...] Read more.
The vertical distribution and potential variability of Per- and Polyfluoroalkyl substances (PFAS) in the water column of lacustrine systems is important to know for sampling and monitoring purposes, but could also relate to details of their fate, transport, and distribution. In this study, the water column of a eutrophic freshwater lake (Lake Monona, Madison, WI, USA) was sampled vertically for PFAS during summer stratification at several depths (surface microlayer to 1 m from the bottom) and then monitored at four dates and three depths the following year to assess seasonality. PFAS concentration did not exhibit vertical stratification or large variability in the water column. However, seasonal variation in PFAS concentration was detected, as well as an increase in PFAS concentration related to drought conditions. This study suggests that a surface water grab sample may be a sufficient representative of the water column for the basic monitoring of PFAS. But a single sample during the year may not provide a complete understanding of the lake, and multiple samples should be taken to capture and understand important seasonal events. Full article
Show Figures

Figure 1

27 pages, 2018 KB  
Review
Advances in Graphene-Based Materials for Metal Ion Sensing and Wastewater Treatment: A Review
by Akram Khalajiolyaie and Cuiying Jian
Environments 2025, 12(2), 43; https://doi.org/10.3390/environments12020043 - 2 Feb 2025
Cited by 6 | Viewed by 2744
Abstract
Graphene-based materials, including graphene oxide (GO) and functionalized derivatives, have demonstrated exceptional potential in addressing environmental challenges related to heavy metal detection and wastewater treatment. This review presents the latest advancements in graphene-based electrochemical and fluorescence sensors, emphasizing their superior sensitivity and selectivity [...] Read more.
Graphene-based materials, including graphene oxide (GO) and functionalized derivatives, have demonstrated exceptional potential in addressing environmental challenges related to heavy metal detection and wastewater treatment. This review presents the latest advancements in graphene-based electrochemical and fluorescence sensors, emphasizing their superior sensitivity and selectivity in detecting metal ions, such as Pb2⁺, Cd2⁺, and Hg2⁺, even in complex matrices. The key focus of this review is on the use of molecular dynamics (MD) simulations to understand and predict ion transport through graphene membranes, offering insights into their mechanisms and efficiency in removing contaminants. Particularly, this article reviews the effects of external conditions, pore radius, functionalization, and multilayers on water purification to provide comprehensive insights into filtration membrane design. Functionalized graphene membranes exhibit enhanced ion rejection through tailored electrostatic interactions and size exclusion effects, achieving up to 100% rejection rates for selected heavy metals. Multilayered and hybrid graphene composites further improve filtration performance and structural stability, enabling sustainable, large-scale water purification. However, challenges related to fabrication scalability, environmental impact, and cost remain. This review also highlights the importance of computational approaches and innovative material designs in overcoming these barriers, paving the way for future breakthroughs in graphene-based filtration technologies. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

46 pages, 1183 KB  
Review
Chemicals in European Residences—Part II: A Review of Emissions, Concentrations, and Health Effects of Semi-Volatile Organic Compounds (SVOCs)
by Charlotte Landeg-Cox, Alice Middleton, Christos Halios, Tim Marczylo and Sani Dimitroulopoulou
Environments 2025, 12(2), 40; https://doi.org/10.3390/environments12020040 - 30 Jan 2025
Cited by 1 | Viewed by 1858
Abstract
This comprehensive review reports on concentrations, sources, emissions, and potential health effects from Semi-Volatile Organic Compounds (SVOCs) identified in the internal home environment in European residences. A total of 84 studies were identified, and concentrations were collated for inhalation exposure from dust, air [...] Read more.
This comprehensive review reports on concentrations, sources, emissions, and potential health effects from Semi-Volatile Organic Compounds (SVOCs) identified in the internal home environment in European residences. A total of 84 studies were identified, and concentrations were collated for inhalation exposure from dust, air and aerosol. A total of 298 individual SVOCs were identified and 67 compounds belonging to eight chemical classes: phthalates, flame retardants, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), per- and polyfluorinated alkyl substances (PFAS), biocides, bisphenols and musks were prioritised. Phthalates are the most abundant SVOCs with DEHP being the most abundant in both the dust and aerosol phases (WAGMs 426.4 μg g−1 and 52.2 ng m−3, respectively) followed by DBP for dust (WAGMs are 95.9 μg g−1). In the air, the most abundant SVOCs are DiBP (284.1 ng m−3), DBP (179.5 ng m−3), DEHP (106.2 ng m−3) and DMP (27.79 ng m−3). Chemicals from all SVOC categories are emitted from building and construction materials, furnishings and consumer products, especially phthalates. Both legacy chemicals and their alternatives were detected. Complexities of reporting on SVOCs included differing sampling methodologies, multiple standards in their definition, lack of industry data, and toxicological data focused primarily on ingestion not inhalation exposures. Further research is recommended to develop the evidence base for potential health effects including via inhalation, reporting of emission rates and undertaking future monitoring studies. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

30 pages, 2183 KB  
Review
Biobased Strategies for E-Waste Metal Recovery: A Critical Overview of Recent Advances
by Diogo A. Ferreira-Filipe, Armando C. Duarte, Andrew S. Hursthouse, Teresa Rocha-Santos and Ana L. Patrício Silva
Environments 2025, 12(1), 26; https://doi.org/10.3390/environments12010026 - 16 Jan 2025
Cited by 2 | Viewed by 3385
Abstract
The increasing e-waste volumes represent a great challenge in the current waste management landscape, primarily due to the massive production and turnover of electronic devices and the complexity of their components and constituents. Traditional strategies for e-waste treatment focus on metal recovery through [...] Read more.
The increasing e-waste volumes represent a great challenge in the current waste management landscape, primarily due to the massive production and turnover of electronic devices and the complexity of their components and constituents. Traditional strategies for e-waste treatment focus on metal recovery through costly, energetically intensive, and environmentally hazardous processes, such as pyrometallurgical and hydrometallurgical approaches, often neglecting other e-waste constituents. As efforts are directed towards creating a more sustainable and circular economic model, biobased alternative approaches to these traditional techniques have been increasingly investigated. This critical review focuses on recent advances towards sustainable e-waste treatment, exclusively considering studies using e-waste sources. It addresses, from a critical perspective, approaches using inactive biomass, live biomass, and biogenic compounds, showcasing the diversity of strategies and discussing reaction parameters, advantages and disadvantages, challenges, and potential for valorization of generated by-products. While ongoing research focuses on optimizing operational times and metal recovery efficiencies, bioprocessing approaches still offer significant potential for metal recovery from e-waste. These approaches include lower environmental impact by reducing energy consumption and effluent treatments and the ability to recover metals from complex e-waste streams, paving the way for a more circular economy in the electronics industry. Full article
(This article belongs to the Special Issue Deployment of Green Technologies for Sustainable Environment III)
Show Figures

Figure 1

10 pages, 455 KB  
Article
Energy Use and Environmental Impact of Three Lithium-Ion Battery Factories with a Total Annual Capacity of 100 GWh
by Ákos Kuki, Csilla Lakatos, Lajos Nagy, Tibor Nagy and Sándor Kéki
Environments 2025, 12(1), 24; https://doi.org/10.3390/environments12010024 - 14 Jan 2025
Cited by 3 | Viewed by 5377
Abstract
The rapid evolution of Li-ion battery technologies and manufacturing processes demands a continual update of environmental impact data. The general objective of this paper is to publish up-to-date primary data on battery manufacturing, which is of great importance to the scientific community and [...] Read more.
The rapid evolution of Li-ion battery technologies and manufacturing processes demands a continual update of environmental impact data. The general objective of this paper is to publish up-to-date primary data on battery manufacturing, which is of great importance to the scientific community and decision-makers. The environmental impacts have been calculated and estimated based on publicly available data disclosed under Hungarian government regulations and official decrees. The gate-to-gate energy use, greenhouse gas (GHG) emissions, water consumption, and N-methyl-2-pyrrolidone (NMP) consumption are estimated for three battery factories in Hungary, with a total annual capacity of approximately 100 GWh. The factories use around 30–35 kWh energy per kWh of battery capacity and the associated GHG emissions are around 10 kgCO2eq per kWh of cell production. The water consumption varies considerably among factories, with one plant using 28 L per kWh and the other two using 56 and 67 L per kWh. The specific consumption of NMP was calculated for two factories, resulting in close values of 0.51–0.56 kg per kWh of cell production. As a new approach, we distinguish between global and local GHG emissions related to battery production. The main component of the latter is carbon dioxide from the combustion of natural gas, but the local transport related to the battery factories is also a source of emissions. Our estimations include not only the consumptions required directly for the manufacturing technology, but also those for social purposes (e.g., heating offices), giving a more complete picture of the factory’s environmental impact. We believe that up-to-date primary data are crucial for ensuring transparency and holds significant value for both the scientific community and decision-makers. Full article
Show Figures

Figure 1

21 pages, 929 KB  
Review
Genotoxicity of Microplastics on Living Organisms: Effects on Chromosomes, DNA and Gene Expression
by Kuok Ho Daniel Tang
Environments 2025, 12(1), 10; https://doi.org/10.3390/environments12010010 - 3 Jan 2025
Cited by 13 | Viewed by 5685
Abstract
Microplastic exposure has become unavoidable, leading to their presence in living organisms. One area of particular concern is the genotoxicity of microplastics, which has implications for reproductive health and cancer development. This review aims to highlight the genotoxic effects of microplastics on different [...] Read more.
Microplastic exposure has become unavoidable, leading to their presence in living organisms. One area of particular concern is the genotoxicity of microplastics, which has implications for reproductive health and cancer development. This review aims to highlight the genotoxic effects of microplastics on different organisms, focusing on their impacts on chromosomes, DNA, and gene expression. More than 85 papers, primarily published in the last five years, have been reviewed. This review indicates that microplastics can cause clastogenesis and aneugenesis at the chromosome level. Clastogenesis results in chromosome damage, while aneugenesis leads to failures in chromosome segregation without causing direct damage. Additionally, microplastics can fracture and damage DNA. These effects arise from (1) the direct genotoxicity of microplastics through interactions with chromosomes, DNA, and associated proteins; and (2) their indirect genotoxicity due to the production of reactive oxygen species (ROS) by oxidative stress induced by microplastics. Microplastics can trigger the activation of genes related to oxidative stress and the inflammatory response, leading to increased ROS production. Furthermore, they may alter gene expression in other biological processes. The genotoxicity linked to microplastics can stem from the particles themselves and their associated chemicals, and it appears to be both size- and dose-dependent. Full article
Show Figures

Figure 1

22 pages, 11685 KB  
Article
Monitoring Aquatic Debris in a Water Environment Using a Remotely Operated Vehicle (ROV): A Comparative Study with Implications of Algal Detection in Lake Como (Northern Italy)
by Jassica Lawrence, Nicola Castelnuovo and Roberta Bettinetti
Environments 2025, 12(1), 3; https://doi.org/10.3390/environments12010003 - 27 Dec 2024
Viewed by 1521
Abstract
This study investigates underwater debris in a freshwater lake using remotely operated vehicles (ROVs) during two distinct survey periods: 2019 and 2024. The primary objective was to count and document visible debris (metal and plastic) on the lakebed based on ROV video recordings. [...] Read more.
This study investigates underwater debris in a freshwater lake using remotely operated vehicles (ROVs) during two distinct survey periods: 2019 and 2024. The primary objective was to count and document visible debris (metal and plastic) on the lakebed based on ROV video recordings. A total of 356 debris items were observed in 2019, while only 39 items were recorded in 2024. The notable decrease in debris visibility in 2024 is likely attributed to dense algal growth during the survey months, which hindered the visual identification of objects on the lakebed. The study highlights the challenges of monitoring underwater debris in freshwater systems, particularly during periods of high algal activity, which can significantly impact visibility and detection efforts. While ROVs have proven effective in identifying submerged debris in clear water, this research underscores their limitations under reduced visibility conditions caused by algal blooms, turbidity diminishing the video quality. The results provide valuable insights into the temporal variation in debris visibility and contribute to ongoing efforts to improve freshwater debris monitoring techniques. Full article
(This article belongs to the Special Issue Environments: 10 Years of Science Together)
Show Figures

Graphical abstract

25 pages, 428 KB  
Review
Can Phthalates Be Considered as Microplastic Tracers in the Mediterranean Marine Environment?
by Giuseppa Di Bella, Ambrogina Albergamo, Federica Litrenta, Vincenzo Lo Turco and Angela Giorgia Potortì
Environments 2024, 11(12), 267; https://doi.org/10.3390/environments11120267 - 22 Nov 2024
Cited by 4 | Viewed by 1955
Abstract
Plastics are a major environmental concern, not only because of their uncontrolled dispersion in the environment, but also because of their release of chemical additives, such as phthalates (PAEs), particularly in water bodies. Key land–water interfaces, such as coastal zones, has always represented [...] Read more.
Plastics are a major environmental concern, not only because of their uncontrolled dispersion in the environment, but also because of their release of chemical additives, such as phthalates (PAEs), particularly in water bodies. Key land–water interfaces, such as coastal zones, has always represented a complex and dynamic nexus for plastic pollution, as they are sites often densely populated, with major pollution sources. The Mediterranean basin, for example, is known to be a global hotspot of plastic waste, with a microplastic concentration approximately four times greater than the North Pacific Ocean. However, differently from the overviewed issue of plastic litter and microplastics, the occurrence, distribution, and impact of PAEs on the abiotic and biotic compartment of marine ecosystems of the Mediterranean area have still not been reviewed. Hence, this review provides an introductory section on the plastic pollution issue and its close relationship, not only with microplastics, but also with the leaching of toxic PAEs. To follow, the most relevant analytical approaches for reliably assessing PAEs in abiotic and biotic marine matrices are discussed. The analysis of the main anthropogenic sources of PAEs, their occurrence and spatiotemporal trends in the Mediterranean Sea is conducted. Finally, the potential correlation between PAE pollution and the abundance of microplastics are critically examined to evaluate their effectiveness as tracers of microplastic pollution. Full article
(This article belongs to the Special Issue Plastics Pollution in Aquatic Environments, 2nd Edition)
24 pages, 1325 KB  
Review
From Cradle to Grave: Microplastics—A Dangerous Legacy for Future Generations
by Tamara Lang, Filip Jelić and Christian Wechselberger
Environments 2024, 11(12), 263; https://doi.org/10.3390/environments11120263 - 22 Nov 2024
Cited by 4 | Viewed by 2596
Abstract
Microplastics have become a ubiquitous pollutant that permeates every aspect of our environment—from the oceans to the soil to the elementary foundations of human life. New findings demonstrate that microplastic particles not only pose a latent threat to adult populations, but also play [...] Read more.
Microplastics have become a ubiquitous pollutant that permeates every aspect of our environment—from the oceans to the soil to the elementary foundations of human life. New findings demonstrate that microplastic particles not only pose a latent threat to adult populations, but also play a serious role even before birth during the fetal stages of human development. Exposure to microplastics during the early childhood stages is another source of risk that is almost impossible to prevent. This comprehensive review examines the multiple aspects associated with microplastics during early human development, detailing the mechanisms by which these particles enter the adult body, their bioaccumulation in tissues throughout life and the inevitable re-entry of these particles into different ecosystems after death. Full article
Show Figures

Graphical abstract

31 pages, 1849 KB  
Review
Reviewing Digestate Thermal Valorization: Focusing on the Energy Demand and the Treatment of Process Water
by Ebtihal Abdelfatah-Aldayyat, Silvia González-Rojo and Xiomar Gómez
Environments 2024, 11(11), 239; https://doi.org/10.3390/environments11110239 - 29 Oct 2024
Cited by 5 | Viewed by 2603
Abstract
Anaerobic digestion is a feasible solution for the treatment of organic wastes. The process can reduce the amount of biowaste by stabilizing the organic material and producing biogas susceptible to energetic valorization. However, the digestate needs further valorization when land application is considered [...] Read more.
Anaerobic digestion is a feasible solution for the treatment of organic wastes. The process can reduce the amount of biowaste by stabilizing the organic material and producing biogas susceptible to energetic valorization. However, the digestate needs further valorization when land application is considered unfeasible. Thermal treatments, such as gasification, pyrolysis, and hydrothermal carbonization, are alternatives capable of transforming this material into valuable syngas, obtaining, in many cases, a carbonized stream known as biochar. The feasibility of the process depends on the energy demand for the drying stage and the treatments available for removing contaminants from the syngas, attaining high-quality products, and treating the process-derived water. In the present manuscript, these critical aspects were reviewed considering the characteristics of digestates based on their origin, the modifications of this material during anaerobic digestion, and the way digestate structure affects the final thermal valorization outcome. Emphasis was placed on the energy demand of the global approach and byproduct treatments. Full article
Show Figures

Figure 1

14 pages, 5639 KB  
Article
Evaluating Indoor Air Quality in Residential Environments: A Study of PM2.5 and CO2 Dynamics Using Low-Cost Sensors
by Kabir Bahadur Shah, Dylan Kim, Sai Deepak Pinakana, Mkhitar Hobosyan, Armando Montes and Amit U. Raysoni
Environments 2024, 11(11), 237; https://doi.org/10.3390/environments11110237 - 28 Oct 2024
Cited by 5 | Viewed by 4432
Abstract
Indoor air quality (IAQ) poses a significant public health concern, and exposures to high levels of fine particulate matter (PM2.5) and carbon dioxide (CO2) could have detrimental health impacts. This study focused on assessing the indoor air pollutants in [...] Read more.
Indoor air quality (IAQ) poses a significant public health concern, and exposures to high levels of fine particulate matter (PM2.5) and carbon dioxide (CO2) could have detrimental health impacts. This study focused on assessing the indoor air pollutants in a residential house located in the town of Mission, Hidalgo County, South Texas, USA. The PM2.5 and CO2 were monitored indoors: the kitchen and the bedroom. This investigation also aimed to elucidate the effects of household activities such as cooking and human occupancy on these pollutants. Low-cost sensors (LCSs) from TSI AirAssure™ were used in this study. They were deployed within the breathing zone at approximately 1.5 m above the ground. Calibration of the low-cost sensors against Federal Equivalent Method (FEM) instruments was undertaken using a multiple linear regression method (MLR) model to improve the data accuracy. The indoor PM2.5 levels were significantly influenced by cooking activities, with the peak PM2.5 concentrations reaching up to 118.45 μg/m3. The CO2 levels in the bedroom increased during the occupant’s sleeping period, reaching as high as 1149.73 ppm. The health risk assessment was assessed through toxicity potential (TP) calculations for the PM2.5 concentrations. TP values of 0.21 and 0.20 were obtained in the kitchen and bedroom, respectively. The TP values were below the health hazard threshold (i.e., TP < 1). These low TP values could be attributed to the use of electric stoves and efficient ventilation systems. This research highlights the effectiveness of low-cost sensors for continuous IAQ monitoring and helps promote better awareness of and necessary interventions for salubrious indoor microenvironments. Full article
(This article belongs to the Special Issue Air Quality, Health and Climate)
Show Figures

Graphical abstract

14 pages, 542 KB  
Review
A Review of Chitosan as a Coagulant of Health-Related Microorganisms in Water and Wastewater
by Collin Knox Coleman, Hemali H. Oza, Emily S. Bailey and Mark D. Sobsey
Environments 2024, 11(10), 211; https://doi.org/10.3390/environments11100211 - 24 Sep 2024
Cited by 4 | Viewed by 5339
Abstract
The coagulation and flocculation properties of chitosan, an organic biopolymer derived from chitin, have been researched as an alternative to synthetic polymers and inorganic metal salt coagulants currently used in water and wastewater treatment. In an effort to encourage further research into the [...] Read more.
The coagulation and flocculation properties of chitosan, an organic biopolymer derived from chitin, have been researched as an alternative to synthetic polymers and inorganic metal salt coagulants currently used in water and wastewater treatment. In an effort to encourage further research into the practical uses of chitosan as green chemistry in water and wastewater treatment and to promote the efficacious removal of microbial contaminants in drinking and wastewater, we have summarized the current state of research pertaining to the treatment of microorganisms in water and wastewater. A search of PubMed revealed 720 possible titles and abstracts, of which 44 full-text articles were identified as matching the eligibility criteria for inclusion in this systematic review. Results are presented based on the type of water matrix treated (i.e., drinking water, wastewater, and recreational waters) and a summary table providing details on the types and forms of chitosan utilized and the treatment mechanisms and processes described in the study. We find chitosan to be an effective coagulant, flocculant, and adsorbent for removing microbes from water and wastewater; some modified forms of chitosan can inactivate microbes and achieve disinfection, such as those containing metals like silver and antimicrobial chemicals like quaternary ammonium compounds or other strong oxidants, and use with filtration or electrochemical processes can achieve extensive reductions in microbes to meet performance targets of the World Health Organization. Full article
(This article belongs to the Special Issue Advanced Technologies of Water and Wastewater Treatment (2nd Edition))
Show Figures

Figure 1

18 pages, 2820 KB  
Review
Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review
by Xingqiang Song, Malin Montelius and Christel Carlsson
Environments 2024, 11(9), 203; https://doi.org/10.3390/environments11090203 - 17 Sep 2024
Cited by 5 | Viewed by 5618
Abstract
The remediation of environments contaminated with per- and polyfluoroalkyl substances (PFAS) has become a growing priority due to the persistent, bioaccumulative, and toxic characteristics of these compounds. To promote green and sustainable remediation practices, it is crucial to assess and minimize the environmental [...] Read more.
The remediation of environments contaminated with per- and polyfluoroalkyl substances (PFAS) has become a growing priority due to the persistent, bioaccumulative, and toxic characteristics of these compounds. To promote green and sustainable remediation practices, it is crucial to assess and minimize the environmental impacts of PFAS remediation projects through life cycle assessment (LCA) at the early stages of planning. So far, no systematic literature review has been published to assess the current state of the art or identify the challenges associated with applying LCA to PFAS remediation. This article provides a review of the recent literature on LCAs of PFAS remediation, following the ISO 14040 and 14044 standards. The results indicate that the application of LCA to PFAS remediation remains in its infancy and is highly fragmented. Significant methodological variations, including differences in system boundaries and data quality, hinder the comparability and benchmarking of LCA results across studies. To enhance the use of LCA as a decision support tool for environmental assessment, there is a pressing need for methodological harmonization and improved practices. Key areas for improvement include enhancing data quality, reducing uncertainties, and increasing the robustness of PFAS LCAs, thereby enabling more informed and sustainable decision-making in PFAS remediation efforts. Full article
Show Figures

Figure 1

32 pages, 6632 KB  
Article
Ecosystem Services of the Baltic Sea—State and Changes during the Last 150 Years
by Gerald Schernewski, Thomas Neumann, Martynas Bučas and Miriam von Thenen
Environments 2024, 11(9), 200; https://doi.org/10.3390/environments11090200 - 14 Sep 2024
Cited by 5 | Viewed by 1947
Abstract
We assess the ecosystem services across the entire Baltic Sea using ecosystem model simulations and historical socio-economic data. Our approach covers 150 years, aggregated for the years around 1880, 1960, and 2010. The ecosystem services assessed include commercially usable wild fish biomass and [...] Read more.
We assess the ecosystem services across the entire Baltic Sea using ecosystem model simulations and historical socio-economic data. Our approach covers 150 years, aggregated for the years around 1880, 1960, and 2010. The ecosystem services assessed include commercially usable wild fish biomass and wild plant biomass, water quality regulation (nitrogen and phosphorus retention), carbon storage, biodiversity and habitats, as well as active recreation and landscape aesthetics. In 2010, the commercially usable fish biomass in the entire Baltic Sea was 9.24 million tons. The total retention of nitrogen in the Baltic Sea was 884,135 t/a, phosphorus retention was 32,058 t/a, and carbon storage was 3,668,100 t/a. Between 1880 and 2010, the Baltic Sea-wide average biodiversity index decreased from 73 to 60, the active recreational quality index decreased from 76 to 69, and the observational recreation index declined from 91 to 78. In 2010, the most monetarily significant single ecosystem service in the Baltic Sea was nitrogen retention with EUR 26,822 million/a, followed by cultural ecosystem services. Other relevant services were fish catches (EUR 277 million/a), phosphorus retention (EUR 3854 million/a), and carbon storage (202 million/a). The latter recently showed a steep increase due to rising prices for CO2 certificates. Full article
Show Figures

Figure 1

28 pages, 719 KB  
Review
A Review of the Adverse Effects of Neonicotinoids on the Environment
by Zyanya L. Mota, Itzel A. Díaz, Adriana E. Martínez-Ávila, M. Otero-Olvera, Dania Leyva-Ruíz, L. S. Aponte-Pineda, S. G. Rangel-Duarte, J. R. Pacheco-Aguilar, Aldo Amaro-Reyes, J. Campos-Guillén, L. A. Montes-Flores and M. A. Ramos-López
Environments 2024, 11(9), 196; https://doi.org/10.3390/environments11090196 - 10 Sep 2024
Cited by 4 | Viewed by 3459
Abstract
Neonicotinoids are a group of insecticides developed in the 1980s, reaching extensive use in agriculture in the 1990s due to their effectiveness against pests in various types of crops. In 2014, their use reached 25% of the global market. In the last decade, [...] Read more.
Neonicotinoids are a group of insecticides developed in the 1980s, reaching extensive use in agriculture in the 1990s due to their effectiveness against pests in various types of crops. In 2014, their use reached 25% of the global market. In the last decade, studies on their possible effects have been conducted, leading to bans and regulations in several European Union countries. Their persistence in soil and water can result in chronic exposure in aquatic and terrestrial organisms, including pollinator species. The accumulation of these compounds in the environment can disrupt ecosystems and affect the health of humans, plants, and animals. This review presents current knowledge on neonicotinoids, their mechanisms of action, and their transport in ecological spheres. Their presence in water and soil is evidenced, with specific concentrations reported in various regions. Their effects on non-target organisms, including aquatic animals and humans, can be negative, causing direct and indirect neurological and renal problems after exposure. More research is needed on the long-term effects on health and non-target organisms to fully understand the implications of these insecticides. Full article
Show Figures

Figure 1

20 pages, 786 KB  
Review
Impacts of PFAS Exposure on Neurodevelopment: A Comprehensive Literature Review
by Seth D. Currie, Jia-Sheng Wang and Lili Tang
Environments 2024, 11(9), 188; https://doi.org/10.3390/environments11090188 - 1 Sep 2024
Cited by 3 | Viewed by 6643
Abstract
Neurodevelopmental disorders (NDDs) encompass a range of conditions that begin during the developmental stage and cause deficits that lead to disruptions in normal functioning. One class of chemicals that is of increasing concern for neurodevelopmental disorders is made up of per- and polyfluoroalkyl [...] Read more.
Neurodevelopmental disorders (NDDs) encompass a range of conditions that begin during the developmental stage and cause deficits that lead to disruptions in normal functioning. One class of chemicals that is of increasing concern for neurodevelopmental disorders is made up of per- and polyfluoroalkyl substances (PFAS). In this comprehensive literature review, we investigated data from epidemiological studies to understand the connection between PFAS exposure and neurodevelopmental endpoints such as cognitive function, intelligence (IQ), and memory, along with behavioral changes like Attention-Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD). When we reviewed the findings from individual studies that analyzed PFAS levels in biological samples and their association with NDD, we concluded that there was a correlation between PFAS and neurodevelopmental disorders. The findings suggest that children exposed to higher PFAS levels could potentially have an increased risk of ASD and ADHD along with an inhibitory effect on IQ. While the results vary from one study to another, there is increasing association between PFAS exposure and neurodevelopmental disorders. Importantly, the findings provide valuable insights into the adverse effects associated with PFAS exposure and neurodevelopment. Full article
Show Figures

Figure 1

15 pages, 1352 KB  
Review
Nickel and Soil Fertility: Review of Benefits to Environment and Food Security
by Alon Rabinovich, Rong Di, Sean Lindert and Joseph Heckman
Environments 2024, 11(8), 177; https://doi.org/10.3390/environments11080177 - 20 Aug 2024
Cited by 6 | Viewed by 5078
Abstract
Nickel (Ni) is an essential micronutrient for plants, responsible for metabolizing urea nitrogen (urea-N) by urease and mitigating abiotic and oxidative stresses through the glyoxalase (Gly) and glutathione (GSH) cycles. However, excess Ni is toxic to flora at >100 mg kg−1, [...] Read more.
Nickel (Ni) is an essential micronutrient for plants, responsible for metabolizing urea nitrogen (urea-N) by urease and mitigating abiotic and oxidative stresses through the glyoxalase (Gly) and glutathione (GSH) cycles. However, excess Ni is toxic to flora at >100 mg kg−1, except for hyperaccumulators that tolerate >1000 mg kg−1 Ni. This review discusses the benefits of Ni nutrient management for soil fertility, improving food security, and minimizing adverse environmental impacts from urea overapplication. Many farming soils are Ni deficient, suggesting that applying 0.05–5 kg ha−1 of Ni improves yield and urea-N use efficiency. Applied foliar and soil Ni fertilizers decrease biotic stresses primarily by control of fungal diseases. The bioavailability of Ni is the limiting factor for urease synthesis in plants, animal guts, and the soil microbiome. Improved urease activity in plants and subsequently through feed in livestock guts reduces the release of nitrous oxide and nitrite pollutants. Fertilizer Ni applied to crops is dispersed in vegetative tissue since Ni is highly mobile in plants and is not accumulated in fruit or leafy tissues to cause health concerns for consumers. New methods for micronutrient delivery, including rhizophagy, recycled struvite, and nanoparticle fertilizers, can improve Ni bioavailability in farming systems. Full article
Show Figures

Figure 1

14 pages, 2641 KB  
Article
From Waste to Resource: Evaluating Biomass Residues as Ozone-Catalyst Precursors for the Removal of Recalcitrant Water Pollutants
by Cátia A. L. Graça and Olívia Salomé Gonçalves Pinto Soares
Environments 2024, 11(8), 172; https://doi.org/10.3390/environments11080172 - 12 Aug 2024
Cited by 4 | Viewed by 1919
Abstract
Five different biomass wastes—orange peel, coffee grounds, cork, almond shell, and peanut shell—were transformed into biochars (BCs) or activated carbons (ACs) to serve as adsorbents and/or ozone catalysts for the removal of recalcitrant water treatment products. Oxalic acid (OXL) was used as a [...] Read more.
Five different biomass wastes—orange peel, coffee grounds, cork, almond shell, and peanut shell—were transformed into biochars (BCs) or activated carbons (ACs) to serve as adsorbents and/or ozone catalysts for the removal of recalcitrant water treatment products. Oxalic acid (OXL) was used as a model pollutant due to its known refractory character towards ozone. The obtained materials were characterized by different techniques, namely thermogravimetric analysis, specific surface area measurement by nitrogen adsorption, and elemental analysis. In adsorption experiments, BCs generally outperformed ACs, except for cork-derived materials. Orange peel BC revealed the highest adsorption capacity (Qe = 40 mg g−1), while almond shell BC showed the best cost–benefit ratio at €0.0096 per mg of OXL adsorbed. In terms of catalytic ozonation, only ACs made from cork and coffee grounds presented significant catalytic activity, achieving pollutant removal rates of 72 and 64%, respectively. Among these materials, ACs made from coffee grounds reveal the best cost/benefit ratio with €0.02 per mg of OXL degraded. Despite the cost analysis showing that these materials are not the cheapest options, other aspects rather than the price alone must be considered in the decision-making process for implementation. This study highlights the promising role of biomass wastes as precursors for efficient and eco-friendly water treatment processes, whether as adsorbents following ozone water treatment or as catalysts in the ozonation reaction itself. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water)
Show Figures

Graphical abstract

22 pages, 944 KB  
Review
The Impact of Air Pollution from Industrial Fires in Urban Settings: Monitoring, Modelling, Health, and Environmental Justice Perspectives
by Michael E. Deary and Simon D. Griffiths
Environments 2024, 11(7), 157; https://doi.org/10.3390/environments11070157 - 21 Jul 2024
Cited by 5 | Viewed by 5920
Abstract
Industrial fires at facilities including waste management sites, warehouses, factories, chemical works, and fuel storage depots are relatively frequent occurrences. Often, these fires occur adjacent to urban communities and result in ground-level airborne pollutant concentrations that are well above guideline values. Land, water, [...] Read more.
Industrial fires at facilities including waste management sites, warehouses, factories, chemical works, and fuel storage depots are relatively frequent occurrences. Often, these fires occur adjacent to urban communities and result in ground-level airborne pollutant concentrations that are well above guideline values. Land, water, livestock, and crops may also be contaminated by the emissions and by firefighting activities. Moreover, impacted communities tend to have a higher proportion of minority ethnic populations as well as individuals with underlying health vulnerabilities and those of lower socio-economic status. Nevertheless, this is an aspect of air quality that is under-researched, and so this review aims to highlight the public health hazards associated with industrial fires and the need for an effective, coordinated, public health response. We also review the range of monitoring techniques that have been utilised in such fires and highlight the role of dispersion modelling in predicting plume trajectories and in estimating population exposure. We recommend establishing 1 h guideline values for particulate matter to facilitate timely public health interventions, and we highlight the need to review regulatory and technical controls for sites prone to fires, particularly in the waste sector. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas II)
Show Figures

Figure 1

16 pages, 4827 KB  
Article
Influence of Hydrothermal Carbonization (HTC) Temperature on Hydrochar and Process Liquid for Poultry, Swine, and Dairy Manure
by Bilash Devnath, Sami Khanal, Ajay Shah and Toufiq Reza
Environments 2024, 11(7), 150; https://doi.org/10.3390/environments11070150 - 14 Jul 2024
Cited by 8 | Viewed by 3598
Abstract
Hydrothermal carbonization (HTC) is a promising technology for wet manure treatment by converting animal manure into valuable fuels, materials, and chemicals. Among other HTC process parameters, the temperature influences HTC products the most. As various animal manures have different compositions, it is not [...] Read more.
Hydrothermal carbonization (HTC) is a promising technology for wet manure treatment by converting animal manure into valuable fuels, materials, and chemicals. Among other HTC process parameters, the temperature influences HTC products the most. As various animal manures have different compositions, it is not certain how the HTC temperature influences the hydrochar and HTC process liquid. To evaluate the temperature’s effect on HTC, three different manures (poultry, swine, and dairy) were hydrothermally carbonized at three different temperatures (180, 220, and 260 °C), and solid and liquid products were characterized for their morphology, elemental compositions, and ions. The carbon contents of the hydrochar reached as high as 38.98 ± 0.36% and 40.05 ± 0.57% for poultry and swine manure, respectively, when these manures were treated at 260 °C. Ammonium showed an around 30% increase in poultry manure hydrochar with the increase in the HTC temperature. In contrast, in swine manure, it decreased by around 80%, and in dairy manure, the HTC temperature did not have any remarkable effect on the ammonium content. The process liquids from HTC of dairy manure at 220 °C showed the most balanced distribution of different ions, with 4970 ± 673 ppm of sodium, 4354 ± 437 ppm of ammonium, 2766 ± 417 ppm of potassium, 978 ± 82 ppm of magnesium, 953 ± 143 ppm of calcium, 3607 ± 16 ppm of chloride, and 39 ± 7 ppm of phosphate. These results emphasize the manure-specific effects of the HTC temperature on both solid and liquid products, indicating the need for optimized strategies to enhance HTC processes for various types of animal manures. Full article
(This article belongs to the Special Issue Thermochemical Treatments of Biomass)
Show Figures

Figure 1

30 pages, 2848 KB  
Review
Life Cycle Assessment in Renewable Energy: Solar and Wind Perspectives
by Francisco Portillo, Alfredo Alcayde, Rosa Maria Garcia, Manuel Fernandez-Ros, Jose Antonio Gazquez and Nuria Novas
Environments 2024, 11(7), 147; https://doi.org/10.3390/environments11070147 - 12 Jul 2024
Cited by 18 | Viewed by 11684
Abstract
The growing urgency for sustainable energy solutions necessitates a deeper understanding of the environmental impacts of renewable technologies. This article aims to synthesize and analyze Life Cycle Assessments (LCA) in this domain, providing a comprehensive perspective. We systematically categorized 2923 articles into four [...] Read more.
The growing urgency for sustainable energy solutions necessitates a deeper understanding of the environmental impacts of renewable technologies. This article aims to synthesize and analyze Life Cycle Assessments (LCA) in this domain, providing a comprehensive perspective. We systematically categorized 2923 articles into four sectors: (1) photovoltaic systems, (2) wind energy systems, (3) solar thermal systems, and (4) materials for auxiliary industry supporting these systems. A comparative analysis was conducted to identify methodological consistencies and disparities across these sectors. The findings reveal diverse methodological approaches and a range of environmental impacts, highlighting the complexities in assessing renewable energy systems. The article underscores the significance of material selection in photovoltaic, solar, and wind systems, providing a critical overview of the current state of LCA research in renewable energy and stressing the need for standardized methodologies. It also identifies gaps in recent research, offering insights for future studies focused on integrating environmental, economic, and social considerations in renewable energy assessments. Integrating environmental assessments provides a robust framework for making informed decisions on sustainable technologies. The findings are critical for projects that balance technological needs with sustainability goals. Full article
(This article belongs to the Special Issue Balancing Energy and Environment: A Life Cycle Assessment Perspective)
Show Figures

Figure 1

24 pages, 4558 KB  
Review
Air-Polluting Emissions from Pyrolysis Plants: A Systematic Mapping
by Alberto Pivato, Hamad Gohar, Diogenes L. Antille, Andrea Schievano, Giovanni Beggio, Philipp Reichardt, Francesco Di Maria, Wei Peng, Stefano Castegnaro and Maria Cristina Lavagnolo
Environments 2024, 11(7), 149; https://doi.org/10.3390/environments11070149 - 12 Jul 2024
Cited by 12 | Viewed by 4966
Abstract
There is a growing interest in the use of pyrolysis plants for the conversion of solid waste into useful products (e.g., oil, gas, and char) and the analysis of air-polluting emissions associated with such a process is an emerging research field. This study [...] Read more.
There is a growing interest in the use of pyrolysis plants for the conversion of solid waste into useful products (e.g., oil, gas, and char) and the analysis of air-polluting emissions associated with such a process is an emerging research field. This study applied a systematic mapping approach to collating, describing, and cataloging available evidence related to the type and level of air pollutants emitted from pyrolysis plants, the factors affecting emissions, and available mitigation strategies that can be adopted to reduce air pollution. The scientific literature indexed in Scopus and Google Scholar, as well as available industry reports, was interrogated to document the evidence. A database comprising 63 studies was synthesized and cataloged from which 25 air pollutants from pyrolysis plants were considered, including volatile organic compounds and persistent organic pollutants. Air pollutant levels varied depending on the scale of the pyrolysis plants, their operating conditions, and the feedstock used. Various technologies, such as wet scrubbers, electrostatic precipitators, and baghouse filters, are available and have been utilized to reduce emissions and comply with the existing EU regulations for waste incineration (2010/75/EU). The systematic mapping identified several knowledge gaps that need to be addressed to inform relevant environmental policymaking, technology development, and the adoption of best practices for the mitigation of emissions from pyrolysis plants. Full article
(This article belongs to the Special Issue Thermochemical Treatments of Biomass)
Show Figures

Graphical abstract

26 pages, 2828 KB  
Article
Svalbard Fjord Sediments as a Hotspot of Functional Diversity and a Reservoir of Antibiotic Resistance
by Gabriella Caruso, Alessandro Ciro Rappazzo, Giovanna Maimone, Giuseppe Zappalà, Alessandro Cosenza, Marta Szubska and Agata Zaborska
Environments 2024, 11(7), 148; https://doi.org/10.3390/environments11070148 - 12 Jul 2024
Cited by 4 | Viewed by 2326
Abstract
The sea bottom acts as a key natural archive where the memory of long-term timescale environmental changes is recorded. This study discusses some ecological and chemical features of fjord sediments that were explored during the AREX cruise carried out in the Svalbard archipelago [...] Read more.
The sea bottom acts as a key natural archive where the memory of long-term timescale environmental changes is recorded. This study discusses some ecological and chemical features of fjord sediments that were explored during the AREX cruise carried out in the Svalbard archipelago in the summer of 2021. The activity rates of the enzymes leucine aminopeptidase (LAP), beta-glucosidase (GLU), and alkaline phosphatase (AP) and community-level physiological profiles (CLPPs) were studied with the aim of determining the functional diversity of the benthic microbial community, while bacterial isolates were screened for their susceptibility to antibiotics in order to explore the role of these extreme environments as potential reservoirs of antibiotic resistance. Enzyme activity rates were obtained using fluorogenic substrates, and CLPPs were obtained using Biolog Ecoplates; antibiotic susceptibility assays were performed through the standard disk diffusion method. Spatial trends observed in the functional profiles of the microbial community suggested variability in the microbial community’s composition, presumably related to the patchy distribution of organic substrates. Complex carbon sources, carbohydrates, and amino acids were the organic polymers preferentially metabolized by the microbial community. Multi-resistance to enrofloxacin and tetracycline was detected in all of the examined samples, stressing the role of sediments as a potential reservoir of chemical wastes ascribable to antibiotic residuals. This study provides new insights on the health status of fjord sediments of West Spitsbergen, applying a dual ecological and biochemical approach. Microbial communities in the fjord sediments showed globally a good functional diversity, suggesting their versatility to rapidly react to changing conditions. The lack of significant diversification among the three studied areas suggests that microbial variables alone cannot be suitable descriptors of sediment health, and that additional measures (i.e., physical–chemical characteristics) should be taken to better define environmental status. Full article
Show Figures

Figure 1

16 pages, 2755 KB  
Article
Microplastics in the Mississippi River System during Flash Drought Conditions
by Kendall Wontor, Boluwatife S. Olubusoye and James V. Cizdziel
Environments 2024, 11(7), 141; https://doi.org/10.3390/environments11070141 - 3 Jul 2024
Cited by 5 | Viewed by 2189
Abstract
The Mississippi River System is of great ecological and economic importance, making it crucial to monitor contaminants within it. While nutrient pollution is well studied, there are little data on microplastics (MPs) in the Mississippi River System (MSRS), especially during drought conditions. Herein, [...] Read more.
The Mississippi River System is of great ecological and economic importance, making it crucial to monitor contaminants within it. While nutrient pollution is well studied, there are little data on microplastics (MPs) in the Mississippi River System (MSRS), especially during drought conditions. Herein, we characterize MP pollution from seven sites across the MSRS during both flash drought and non-drought periods using FTIR microspectroscopy (µ-FTIR). Additionally, we evaluate the impact of multiple water level conditions on MP polymer composition across five time points at a single sampling site. Of all MPs identified, polyethylene terephthalate (PET, 22%), resin (17%), and polyethylene (PE, 10%) were the most abundant polymers. Average concentrations ranged from 16 to 381 MPs/L across seven sites, with no significant difference in concentration between conditions. Irregular particles were the most common morphology, with most MPs falling in the lowest size range measured (30–100 μm). Drought condition had a significant (p < 0.001) impact on polymer composition, and polymers most strongly correlated with flash drought were mostly fluoropolymers. For the single sampling site, concentrations differed, but not significantly, across the five timepoints. These results demonstrate the complex relationship between MP concentration and drought condition, and also highlight the importance of fully characterizing MPs in environmental studies. Full article
Show Figures

Figure 1

Back to TopTop