Monitoring and Assessment of Inorganic and Organic Microcontaminants in Soil, Sediment, Water Systems

A special issue of Environments (ISSN 2076-3298).

Deadline for manuscript submissions: 25 June 2025 | Viewed by 1558

Special Issue Editor


E-Mail Website
Guest Editor
Agro-Environmental Research Center, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
Interests: analytical chemistry, GC-MS; LC-MS; mycotoxin; pesticides; environmental chemistry; monitoring; environmental fate
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Many organic micropollutants (e.g., veterinary and pesticide formulations, mycotoxines, PAHs, etc.) exert an increased load on our environment. After their application, the various active ingredients and formulating agents may enter the soil, reach groundwater levels, and appear in surface waters. The pollutants that appear in our environment can affect various non-target organisms. Possible toxic effects are highly affected by the water solubility and persistence of the chemical compounds and the potential formation of toxic metabolites. Due to their persistence, some chemical compounds remain detectable in environmental samples for extended periods, while others appear in the environmental matrix due to excessive momentary use. Aquatic organisms are outstandingly exposed to water contaminants because their contact with xenobiotics in their aqueous habitat is unavoidable.

Thus, environmental risk assessment is important for aquatic ecosystems because the release and accumulation of pollutants pose an environmental hazard.

The Special Issue of Environments aims to summarise the importance of ecotoxicological and environmental analysis studies providing appropriate data for a complete risk assessment of organic and inorganic micropollutants, including (but not limited to):

  • Monitoring the occurrence of pollutants and their decomposition products in surface water and groundwater;
  • Monitoring the fate of pollutants in the aquatic ecosystem;
  • Novel or inventive methods of chemical analysis in water, including chromatography, immunoassay, molecular biology, sensors, and other means, including novel sample preparation methods;
  • Methods of toxicological or ecotoxicological assessment, including cytotoxicity, genotoxicity, mutagenicity, and endocrine disruption, combined with chemical analysis;
  • Ecotoxicological assessment of organic and inorganic pollutants in aquatic ecosystems through food chains;
  • Modeling the risk of pollutants in aquatic ecosystems;
  • Assessment of remediation possibilities;
  • Risk assessment issues of the aquatic ecosystem.

Dr. Mária Mörtl
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Environments is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquatic ecosystem
  • ecotoxicology
  • environmental risk assessment
  • food chain
  • environmental fate
  • organic and inorganic micropollutants
  • analytical chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 862 KiB  
Article
Evaluation of Standardised (ISO) Leaching Tests for Assessing Leaching and Solid–Solution Partitioning of Perfluoroalkyl Substances (PFAS) in Soils
by Dan B. Kleja, Hugo Campos-Pereira, Johannes Kikuchi-McIntosh, Michael Pettersson, Oksana Golovko and Anja Enell
Environments 2025, 12(6), 179; https://doi.org/10.3390/environments12060179 - 29 May 2025
Viewed by 245
Abstract
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are [...] Read more.
The spread of per- and polyfluoroalkyl substances (PFAS) in the environment poses a severe threat to soil organisms, aquatic life, and human health. Many PFAS compounds are mobile and easily transported from soils to groundwater and further to surface waters. Leaching tests are valuable tools for assessing the site-specific leaching behaviour of contaminants. Here, we report the results of an evaluation of two standardized leaching tests for PFAS-contaminated soil materials: the batch test (ISO 21268-2:2019) using either demineralized water or 1 mM CaCl2 as leachants (liquid-to-solid (L/S) ratio of 10) and the up-flow percolation test (ISO 21268-3:2019) using 1 mM CaCl2 as leachant. One field-contaminated soil and three spiked (12 PFAS compounds) soils (aged 5 months) were included in the study. Desorption kinetics in the batch test were fast and equilibrium was obtained for all PFAS compounds within 24 h, the prescribed equilibration time. The same solubility was obtained for short-chain PFAS (PFBA, PFHxA, PFHpA, PFBS) in demineralized water and 1 mM CaCl2, whereas significantly lower solubility was often observed for long-chain PFAS in CaCl2 than in water, probably due to decreased charge repulsion between soil surfaces and PFAS compounds. In the up-flow percolation test, concentrations of short-chain PFAS in leachates decreased rapidly with increasing L/S, in contrast to long-chain PFAS, where concentrations decreased gradually or remained constant. Solid–solution partitioning coefficients (Kd), calculated from the data of the batch and percolation tests (1 mM CaCl2), were generally in agreement, although differing by more than three orders of magnitude between different PFAS compounds. Uncertainties and pitfalls when calculating Kd values from leaching test data are also explored. Full article
Show Figures

Figure 1

18 pages, 1560 KiB  
Article
Influence of Organic Matter and Growing Conditions on Dissipation Behavior and Mobility of Two Pesticides in Soils
by Rakhi Nandi, Aniruddha Sarker, Md Masud Rana and Ahmed Khairul Hasan
Environments 2025, 12(4), 123; https://doi.org/10.3390/environments12040123 - 16 Apr 2025
Viewed by 387
Abstract
The dissipation pattern and mobility of applied pesticides in the soil represent a crucial process for pesticide safety and subsequent groundwater contamination. In this study, two distinct experiments were conducted to explore the environmental fate, dissipation, and mobility of two pesticides, phorate and [...] Read more.
The dissipation pattern and mobility of applied pesticides in the soil represent a crucial process for pesticide safety and subsequent groundwater contamination. In this study, two distinct experiments were conducted to explore the environmental fate, dissipation, and mobility of two pesticides, phorate and boscalid, in greenhouse conditions and laboratory soil column studies, respectively. The role of organic matter and growing conditions was evaluated during dissipation and mobility studies. In the first study, commercial formulations of phorate (10 G) and boscalid (20% SC) were sprayed in the designated greenhouse for Korean cabbage following the recommended dosage. A sequential collection of plant samples (e.g., 0, 7, 14, 21 days) was performed. On the other hand, three sets of packing columns were prepared (control, biochar-amended, and H2O2 treated). The effect of organic matter addition or removal during the leaching of pesticides was explored. A 14-day interval after the last spray was suggested for safe spraying. After 30 days of leachate collection, no pesticide residue was detected in the leaching water, indicating the immobility of the studied pesticides. However, the metabolic transformation of phorate was evident during this column study, with slight mobility within soil columns. In particular, phorate sulfoxide and sulfone were mostly detected in the top soil layer (vadose zone) of the soil column. In summary, phorate and boscalid were considered immobile pesticides with moderate persistence in the soils. The safe pre-harvest interval should be maintained to reduce the health risk of pesticides. Full article
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 873 KiB  
Review
Mechanisms of Generation and Ecological Impacts of Nano- and Microplastics from Artificial Turf Systems in Sports Facilities
by Akihito Harusato and Masashi Kato
Environments 2025, 12(4), 109; https://doi.org/10.3390/environments12040109 - 2 Apr 2025
Viewed by 530
Abstract
The worldwide adoption of artificial turf in sports facilities and urban landscapes, alongside the systematic transition from natural grass and soil-based grounds, has raised growing concerns about its contribution to the significant source of nano- and microplastics in ecosystems. This review examines current [...] Read more.
The worldwide adoption of artificial turf in sports facilities and urban landscapes, alongside the systematic transition from natural grass and soil-based grounds, has raised growing concerns about its contribution to the significant source of nano- and microplastics in ecosystems. This review examines current knowledge on the mechanisms of nano- and microplastic generation from artificial turf systems and their environmental impacts. Combined mechanical stress, ultra-violet radiation, and weathering processes contribute to the breakdown of synthetic grass fibers and infill materials, generating particles ranging from nanometer to millimeter scales. These nano- and microplastics are detected in drainage systems and surrounding soils near sports facilities. Laboratory studies demonstrate that artificial turf-derived nano- and microplastics can adversely affect soil microbial communities, aquatic organisms, and potentially human health, through various exposure pathways. While current mitigation approaches include hybrid turf, particle retention systems, and improved maintenance protocols, emerging research focuses on developing novel, environmentally friendly materials as alternatives to conventional synthetic turf components. However, field data on emission rates and environmental fate remain limited, and standardized methods for particle characterization and quantification are lacking. This review identifies critical knowledge gaps, underscoring the need for comprehensive research on long-term ecological impacts and highlights the future goal of mitigating nano- and microplastic emissions from artificial turf systems into the ecosystem. Full article
Show Figures

Figure 1

Back to TopTop