Previous Issue
Volume 12, July
 
 

Environments, Volume 12, Issue 8 (August 2025) – 30 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 7249 KiB  
Article
Enhanced Degradation of 4-Nitrophenol via a Two-Stage Co-Catalytic Fenton Packed-Bed Reactor with External Circulation
by Yan Liu, Jingyu Liu, Yongyou Hu, Yueyue Shi, Chaoyang Tang, Jianhua Cheng, Xiaoqiang Zhu, Guobin Wang and Jieyun Xie
Environments 2025, 12(8), 280; https://doi.org/10.3390/environments12080280 - 14 Aug 2025
Abstract
To mitigate the consumption of active sites on co-catalysts by H2O2 and to enhance the efficiency and stability of co-catalytic Fenton reactions, an external circulation two-stage packed-bed reactor (ECTPBR) was developed using DPW (diatomite plate@polydopamine@WC) as a co-catalyst to degrade [...] Read more.
To mitigate the consumption of active sites on co-catalysts by H2O2 and to enhance the efficiency and stability of co-catalytic Fenton reactions, an external circulation two-stage packed-bed reactor (ECTPBR) was developed using DPW (diatomite plate@polydopamine@WC) as a co-catalyst to degrade 4-nitrophenol (4-NP). Under suitable conditions, the ECTPBR could achieve over 91.97% 4-NP degradation, with low iron sludge production (11.97 mg/L) and minimal tungsten leaching (3.6363 mg/L). The two-stage strategy enabled spatial separation of Fe3+ reduction and Fenton reactions, minimizing the loss of active sites on DPW, ensuring long-term system stability, and reducing the toxicity of 4-NPdegradation products. In addition, external circulation enhanced mass transfer and improved resistance to shock loads. These advantages suggest that the ECTPBR may serve as an effective strategy for applying co-catalytic Fenton reactions in the treatment of toxic and refractory organic wastewater. Full article
(This article belongs to the Special Issue Advances in Heavy Metal Remediation Technologies)
Show Figures

Figure 1

18 pages, 629 KiB  
Article
Bridging Nutritional and Environmental Assessment Tools: A One Health Integration Using Zinc Supplementation in Weaned Pigs
by Jinsu Hong, Joel Tallaksen and Pedro E. Urriola
Environments 2025, 12(8), 279; https://doi.org/10.3390/environments12080279 - 12 Aug 2025
Abstract
Zinc is an essential trace mineral for livestock, but excessive use can contribute to ecotoxicity and antimicrobial resistance. The objective of this study was to assess the impact of different zinc oxide (ZnO) levels in diets for weaned pigs on growth performance, mortality, [...] Read more.
Zinc is an essential trace mineral for livestock, but excessive use can contribute to ecotoxicity and antimicrobial resistance. The objective of this study was to assess the impact of different zinc oxide (ZnO) levels in diets for weaned pigs on growth performance, mortality, dietary zinc flow, and environmental impacts. A 6-week feeding trial with 432 weaned pigs assessed three dietary treatments: high ZnO (pharmaceutical levels), intermediate ZnO, and low ZnO (EU recommendation). Growth performance for the growing–finishing period was modeled using the NRC (2012), and dietary Zn intake and fecal Zn excretion were estimated. Environmental impacts were analyzed via life cycle assessment (LCA) using SimaPro LCA software. High ZnO improved growth performance and reduced mortality (p < 0.05), but increased nursery fecal zinc excretion, resulting in a total fecal Zn excretion per pig of 54,125 mg, 59,485 mg, and 106,043 mg for low-, intermediate-, and high-ZnO treatments, respectively. In the nursery phase, high-ZnO treatment had the greatest impact on environmental footprint, increasing freshwater ecotoxicity and marine ecotoxicity indicators by 59.6% and 57.9%, respectively. However, high-ZnO-fed pigs had a greater body weight at the end of the nursery phase and were predicted to achieve a higher growth rate per 130 kg market pig, with fewer days to market and by sparing feed. Therefore, high-ZnO-fed pigs had reduced environmental burdens, including global warming potential, ozone depletion, land use, and mineral resource depletion. These findings demonstrate how livestock nutritionists can apply integrated modeling approaches to link animal performance with environmental outcomes within a One Health framework. Full article
Show Figures

Figure 1

18 pages, 1120 KiB  
Article
Quantification of Acetaminophen, Ibuprofen, and β-Blockers in Wastewater and River Water Bodies During the COVID-19 Pandemic
by Neliswa Mpayipheli, Anele Mpupa, Ntakadzeni Edwin Madala and Philiswa Nosizo Nomngongo
Environments 2025, 12(8), 278; https://doi.org/10.3390/environments12080278 - 12 Aug 2025
Viewed by 46
Abstract
The consumption of pharmaceuticals during the COVID-19 pandemic increased significantly. As such, over-the-counter drugs such as acetaminophen (ACT), ibuprofen (IBU), metoprolol (MET), and propranolol (PRO) were among the pharmaceuticals that were widely used to contain COVID-19 symptoms. Therefore, this study investigated the occurrence [...] Read more.
The consumption of pharmaceuticals during the COVID-19 pandemic increased significantly. As such, over-the-counter drugs such as acetaminophen (ACT), ibuprofen (IBU), metoprolol (MET), and propranolol (PRO) were among the pharmaceuticals that were widely used to contain COVID-19 symptoms. Therefore, this study investigated the occurrence of ACT, IBU, MET, and PRO in wastewater and river water systems, focusing on two provinces in South Africa (Gauteng (GP) and KwaZulu-Natal (KZN)). Generally, WWTP influents had the highest concentrations in both provinces. ACT, MET, and PRO were frequently detected compared to ibuprofen, particularly in KZN, during the second wave of the COVID-19 pandemic. However, a low detection occurred during the fourth wave of the COVID-19 pandemic. The concentrations of ACT, IBU, MET, and PRO in influent wastewater samples ranged from ND-480 µg/L, ND-54.1 µg/L, ND-52.8 µg/L, to ND-13.1 µg/L, respectively. In comparison with influent samples, ACT, IBU, MET, and PRO concentrations of effluent wastewater samples were generally at lower concentration levels: ACT (ND-289 µg/L), IBU (ND-36.1 µg/L), MET (ND-13.9 µg/L), and PRO (ND-5.53 µg/L). The removal efficiencies of the selected pharmaceuticals in KZN WWTPs ranged from 6.1 to 100% and −362.6 to 100% in the GP province. The ecological risk assessment results showed a low to high ecological risk against fish, Daphnia magna, and algae due to the presence of these pharmaceuticals. Full article
Show Figures

Figure 1

12 pages, 234 KiB  
Review
Trifluoroacetic Acid: A Narrative Review on Physico-Chemical Properties, Exposure Pathways, and Toxicological Concerns
by Andrea Moscato, Maria Valentina Longo, Margherita Ferrante and Maria Fiore
Environments 2025, 12(8), 277; https://doi.org/10.3390/environments12080277 - 12 Aug 2025
Viewed by 133
Abstract
Trifluoroacetic acid (TFA) is a persistent degradation product of widely used fluorinated compounds such as hydrofluorocarbons, hydrofluoroolefins, hydrochlorofluorocarbons (HCFCs) and hydrochlorofluoroolefins. Its chemical stability, water solubility, and environmental persistence raise concerns about potential human and ecological risks. To provide an overview of current [...] Read more.
Trifluoroacetic acid (TFA) is a persistent degradation product of widely used fluorinated compounds such as hydrofluorocarbons, hydrofluoroolefins, hydrochlorofluorocarbons (HCFCs) and hydrochlorofluoroolefins. Its chemical stability, water solubility, and environmental persistence raise concerns about potential human and ecological risks. To provide an overview of current knowledge on TFA, we conducted a literature search (PubMed and Scopus, December 2024–January 2025) focusing on its environmental fate, human exposure, toxicokinetic, ecotoxicology, and regulation. A narrative approach was applied, prioritizing recent and high-quality evidence. TFA is ubiquitous in air, water, food, and consumer products. Human exposure occurs mainly through ingestion and inhalation. It is rapidly absorbed and excreted mostly unchanged in urine, with limited metabolic transformation. Though not bioaccumulated in fat, its environmental persistence and ongoing exposure raise concerns about long-term systemic effects. Ecotoxicological data show chronic toxicity in aquatic and terrestrial species, with environmental concentrations often exceeding safety thresholds. Currently, no binding EU limit exists for TFA, although several countries have proposed drinking water guidelines. TFA represents an emerging environmental contaminant with potential human health and ecological impacts. Strengthened monitoring, long-term toxicological studies, and precautionary regulatory action are urgently needed. Full article
17 pages, 3246 KiB  
Article
A Citizen Science Approach for Documenting Mass Coral Bleaching in the Western Indian Ocean
by Anderson B. Mayfield
Environments 2025, 12(8), 276; https://doi.org/10.3390/environments12080276 - 11 Aug 2025
Viewed by 182
Abstract
During rapid-onset environmental catastrophes, scientists may not always have sufficient time to conduct proper environmental surveys in all representative areas. Although coral bleaching events can be predicted to a certain extent in some areas by tracking sea surface temperatures (SSTs), current models from [...] Read more.
During rapid-onset environmental catastrophes, scientists may not always have sufficient time to conduct proper environmental surveys in all representative areas. Although coral bleaching events can be predicted to a certain extent in some areas by tracking sea surface temperatures (SSTs), current models from NOAA’s Coral Reef Watch tend to underestimate severity of bleaching in the Indian Ocean, as was evident in March 2024 when corals began bleaching after only experiencing 1–2 degree-heating weeks. To characterize the impacts of this event, I conducted citizen science-style surveys at 22 sites along a 600-km stretch of the Kenyan coastline. Thereafter, I trained an artificial intelligence (AI) to extract coral abundance and bleaching data from 2300 coral reef images spanning 11–12 hectares of reef area to estimate both coral cover and bleaching prevalence. The AI’s accuracy was >80%, though it was prone to false-positive bleaching classifications. Bleaching severity varied significantly across sites, as well as over time, as seawater continued to warm over the duration of the study period; on average, over 75% of all reef-building scleractinians had bleached. Across the 22 sites, the mean healthy coral cover was only 7–8%, vs. >30% at sites in the same areas in the late 1990s. Whether these corals can recover, and then withstand such heatwaves in the future, will be known all too soon. Full article
Show Figures

Figure 1

47 pages, 10040 KiB  
Article
Analysis of Urban-Level Greenhouse Gas and Aerosol Variability at a Southern Italian WMO/GAW Observation Site: New Insights from Air Mass Aging Indicators Applied to Nine Years of Continuous Measurements
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 275; https://doi.org/10.3390/environments12080275 - 10 Aug 2025
Viewed by 177
Abstract
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NO [...] Read more.
Gaseous pollutants and aerosols resulting from anthropic activities and natural phenomena require adequate source apportionment methodologies to be fully assessed. Furthermore, it is crucial to differentiate between fresh anthropogenic emissions and the atmospheric background. The proximity method based on the O3/NOx (ozone to nitrogen oxides) ratio has been used at the Lamezia Terme (code: LMT) World Meteorological Organization—Global Atmosphere Watch (WMO/GAW) regional station in Italy to determine the variability of CO (carbon monoxide), CO2 (carbon dioxide), CH4 (methane), SO2 (sulfur dioxide), and eBC (equivalent black carbon), thus allowing the differentiation between local and remote sources of emission. Prior to this work, all O3/NOx ratios lower than 10 were grouped under the LOC (local) proximity category, thus including very low ratios (≤1), which are generally attributed by the literature to “urban” air masses, particularly enriched in anthropogenic emissions. This study, aimed at nine continuous years of measurements (2015–2023), introduces the URB category in the assessment of CO, CO2, CH4, SO2, and eBC variability at the LMT site, highlighting patterns and peaks in concentrations that were previously neglected. The daily cycle, which is locally influenced by wind circulation and Planetary Boundary Layer (PBL) dynamics, is particularly susceptible to urban-scale emissions and its analysis has allowed the highlighting of notable peaks in concentrations that were previously neglected. Correlations with wind corridors and speeds indicate that most evaluated parameters are linked to northeastern winds at LMT and wind speeds under 5.5 m/s. Weekly cycle analyses, i.e., differences between weekdays (MON-FRI) and weekends (SAT-SUN), have also highlighted tendencies driven by seasonality and wind corridors. The results highlight the potential of the URB category as a tool necessary to access a given area’s anthropogenic output and its impact on air quality and the environment. Full article
Show Figures

Figure 1

27 pages, 22030 KiB  
Article
Spatiotemporal Dynamics of Urban Air Pollution in Dhaka City (2020–2024) Using Time-Series Sentinel-5P Satellite Images and Google Earth Engine (GEE)
by Md. Mostafizur Rahman, Md. Kamruzzaman, Mst Ilme Faridatul and György Szabó
Environments 2025, 12(8), 274; https://doi.org/10.3390/environments12080274 - 10 Aug 2025
Viewed by 312
Abstract
This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3)—across Dhaka from 2020 to 2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was [...] Read more.
This study investigated the spatiotemporal dynamics of four major air pollutants—carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3)—across Dhaka from 2020 to 2024 using Sentinel-5P TROPOMI satellite data. A 60-month time-series analysis was conducted, integrating spatial mapping, seasonal composites, and Mann–Kendall trend testing. Results indicated clear seasonal variations: CO and NO2 concentrations peaked during winter, with maximum monthly averages of 0.05287 mol/m2 and 0.00035 mol/m2, respectively, while SO2 reached a high of 0.00043 mol/m2 in pre-monsoon months. In contrast, O3 peaked in May (0.13023 mol/m2), following an inverse seasonal trend driven by photochemical activity. Spatial analysis revealed persistent pollution hotspots in central-western zones like Tejgaon and Mirpur for CO and NO2, while SO2 was concentrated in southern industrial zones such as Keraniganj and Jatrabari. The Mann–Kendall test identified moderate to strong increasing trends for CO (τ = 0.8, p = 0.086 in June and September) and SO2 (τ = 0.8, p = 0.086 in April and May), although most trends lacked statistical significance due to the limited temporal window. This study demonstrates the viability of combining satellite remote sensing and cloud-based processing for urban air quality monitoring and provides actionable insights for targeted seasonal interventions and evidence-based policymaking in Dhaka’s evolving urban context. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

34 pages, 23162 KiB  
Article
Analysis and Evaluation of Sulfur Dioxide and Equivalent Black Carbon at a Southern Italian WMO/GAW Station Using the Ozone to Nitrogen Oxides Ratio Methodology as Proximity Indicator
by Francesco D’Amico, Luana Malacaria, Giorgia De Benedetto, Salvatore Sinopoli, Teresa Lo Feudo, Daniel Gullì, Ivano Ammoscato and Claudia Roberta Calidonna
Environments 2025, 12(8), 273; https://doi.org/10.3390/environments12080273 - 9 Aug 2025
Viewed by 195
Abstract
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) [...] Read more.
The measurement and evaluation of the atmospheric background levels of greenhouse gases (GHGs) and aerosols are useful to determine long-term tendencies and variabilities, and pinpoint peaks attributable to anthropogenic emissions and exceptional natural emissions such as volcanoes. At the Lamezia Terme (code: LMT) World Meteorological Organization–Global Atmosphere Watch (WMO/GAW) observation site located in the south Italian region of Calabria, the “Proximity” methodology based on photochemical processes, i.e., the ratio of tropospheric ozone (O3) to nitrogen oxides (NOx) has been used to discriminate the local and remote atmospheric concentrations of GHGs. Local air masses are heavily affected by anthropogenic emissions while remote air masses are more representative of atmospheric background conditions. This study applies, to eight continuous years of measurements (2016–2023), the Proximity methodology to sulfur dioxide (SO2) for the first time, and also extends it to equivalent black carbon (eBC) to assess whether the methodology can be applied to aerosols. The results indicate that SO2 follows a peculiar pattern, with LOC (local) and BKG (background) levels being generally lower than their N–SRC (near source) and R–SRC (remote source), thus corroborating previous hypotheses on SO2 variability at LMT by which the Aeolian Arc of volcanoes and maritime traffic could be responsible for these concentration levels. The anomalous behavior of SO2 was assessed using the Proximity Progression Factor (PPF) introduced in this study, which provides a value representative of changes from local to background concentrations. This finding, combined with an evaluation of known sources on a regional scale, has been used to provide an estimate on the spatial resolution of proximity categories, which is one of the known limitations of this methodology. Furthermore, the results confirm the potential of using the Proximity methodology for aerosols, as eBC shows a pattern consistent with local sources of emissions, such as wildfires and other forms of biomass burning, being responsible for the observed peaks. Full article
Show Figures

Figure 1

35 pages, 1831 KiB  
Review
Pesticide Degradation: Impacts on Soil Fertility and Nutrient Cycling
by Muhammad Yasir, Abul Hossain and Anubhav Pratap-Singh
Environments 2025, 12(8), 272; https://doi.org/10.3390/environments12080272 - 7 Aug 2025
Viewed by 556
Abstract
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both [...] Read more.
The widespread use of pesticides in modern agriculture has significantly enhanced food production by managing pests and diseases; however, their degradation in soil can lead to unintended consequences for soil fertility and nutrient cycling. This review explores the mechanisms of pesticide degradation, both abiotic and biotic, and the soil factors influencing these processes. It critically examines how degradation products impact soil microbial communities, organic matter decomposition, and key nutrient cycles, including nitrogen, phosphorus, potassium, and micronutrients. This review highlights emerging evidence linking pesticide residues with altered enzymatic activity, disrupted microbial populations, and reduced nutrient bioavailability, potentially compromising soil structure, water retention, and long-term productivity. Additionally, it discusses the broader environmental and agricultural implications, including decreased crop yields, biodiversity loss, and groundwater contamination. Sustainable management strategies such as bioremediation, the use of biochar, eco-friendly pesticides, and integrated pest management (IPM) are evaluated for mitigating these adverse effects. Finally, this review outlines future research directions emphasizing long-term studies, biotechnology innovations, and predictive modeling to support resilient agroecosystems. Understanding the intricate relationship between pesticide degradation and soil health is crucial to ensuring sustainable agriculture and food security. Full article
(This article belongs to the Special Issue Coping with Climate Change: Fate of Nutrients and Pollutants in Soil)
Show Figures

Figure 1

27 pages, 7041 KiB  
Article
Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data
by Mikhaïl Jean De Dieu Dotou Padonou, Antoine Denis, Yvon-Carmen H. Hountondji, Bernard Tychon and Gérard Nounagnon Gouwakinnou
Environments 2025, 12(8), 271; https://doi.org/10.3390/environments12080271 - 6 Aug 2025
Viewed by 477
Abstract
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This [...] Read more.
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This study aims to develop a multi-criteria assessment method of the negative environmental externalities of rural landscapes in the northern Benin agricultural basin, based on satellite-derived data. Starting from a 12-class land cover map produced through satellite image classification, the evaluation was conducted in three steps. First, the 12 land cover classes were reclassified into Human Disturbance Coefficients (HDCs) via a weighted sum model multi-criteria analysis based on nine criteria related to the negative environmental externalities of anthropogenic activities. Second, the HDC classes were spatially aggregated using a regular grid of 1 km2 landscape cells to produce the Landscape Environmental Sustainability Index (LESI). Finally, various discretization methods were applied to the LESI for cartographic representation, enhancing spatial interpretation. Results indicate that most areas exhibit moderate environmental externalities (HDC and LESI values between 2.5 and 3.5), covering 63–75% (HDC) and 83–94% (LESI) of the respective sites. Areas of low environmental externalities (values between 1.5 and 2.5) account for 20–24% (HDC) and 5–13% (LESI). The LESI, derived from accessible and cost-effective satellite data, offers a scalable, reproducible, and spatially explicit tool for monitoring landscape sustainability. It holds potential for guiding territorial governance and supporting transitions towards more sustainable land management practices. Future improvements may include, among others, refining the evaluation criteria and introducing variable criteria weighting schemes depending on land cover or region. Full article
Show Figures

Figure 1

19 pages, 1495 KiB  
Review
Computer Vision for Low-Level Nuclear Waste Sorting: A Review
by Tianshuo Li, Danielle E. Winckler and Zhong Li
Environments 2025, 12(8), 270; https://doi.org/10.3390/environments12080270 - 5 Aug 2025
Viewed by 360
Abstract
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises [...] Read more.
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises materials contaminated during routine clean-up, such as mop heads, paper towels, and floor sweepings. While LLW is less radioactive compared to HLW and ILW, the management of LLW poses significant challenges due to the large volume that requires processing and disposal. The volume of LLW can be significantly reduced through sorting, which is typically performed manually in a labour-intensive way. Smart management techniques, such as computer vision (CV) and machine learning (ML), have great potential to help reduce the workload and human errors during LLW sorting. This paper provides a comprehensive review of previous research related to LLW sorting and a summative review of existing applications of CV in solid waste management. It also discusses state-of-the-art CV and ML algorithms and their potential for automating LLW sorting. This review lays a foundation for and helps facilitate the applications of CV and ML techniques in LLW sorting, paving the way for automated LLW sorting and sustainable LLW management. Full article
Show Figures

Figure 1

11 pages, 1083 KiB  
Article
Assessment of 137Cs and 40K Transfer Factors in Croatian Agricultural Systems and Implications for Food Safety
by Tomislav Bituh, Branko Petrinec, Dragutin Hasenay and Sanja Stipičević
Environments 2025, 12(8), 269; https://doi.org/10.3390/environments12080269 - 2 Aug 2025
Viewed by 470
Abstract
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural [...] Read more.
Croatian agricultural legislation acknowledges the significance of radionuclides as pollutants in agricultural lands; however, it lacks specific thresholds or reference values for contamination levels, in contrast to other contaminants. This absence highlights the necessity for a comprehensive assessment of radionuclides across various agricultural systems in Croatia. This study investigates the transfer of radionuclides 137Cs and 40K from soil to agricultural crops throughout Croatia and estimates the consequent annual ingestion dose for the population. The samples collected comprised food crops and animal feed, with corresponding soil samples analyzed to calculate transfer factors. Activity concentrations of 137Cs exhibited regional and crop-type variability, reflecting the uneven distribution of fallout and differing soil properties. Transfer factors were found to range from 0.003 to 0.06 for 137Cs and from 0.15 to 3.1 for 40K, with the highest uptake occurring in kidney beans. The total estimated annual effective ingestion dose was calculated to be a maximum of 0.748 mSv/year for children aged 2–7, predominantly attributable to 40K. Given the homeostatic regulation of potassium in the human body, the dose associated with 137Cs poses a more significant radiological concern. These findings underscore the need for radionuclide-specific agricultural legislation in Croatia and offer a baseline for recommending reference values and informing future regulations regarding agricultural soil contamination. Full article
Show Figures

Figure 1

5 pages, 164 KiB  
Editorial
Sustainable Water Resource Management: Challenges and Opportunities
by Pengxiao Zhou, Qianqian Zhang, Fei Zhang and Zoe Li
Environments 2025, 12(8), 268; https://doi.org/10.3390/environments12080268 - 1 Aug 2025
Viewed by 538
Abstract
Water is a basic human necessity, and the amount of water on Earth remains fairly constant [...] Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
22 pages, 1556 KiB  
Article
Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air
by John H. Zimmerman, Brian Schumacher, Christopher C. Lutes, Brian Cosky and Heidi Hayes
Environments 2025, 12(8), 267; https://doi.org/10.3390/environments12080267 - 31 Jul 2025
Viewed by 551
Abstract
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive [...] Read more.
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive samplers (e.g., Radiello® 130 passive samplers with white diffusive bodies) over exposure periods ranging from 1 week to 1 year in a test house with known vapor intrusion (VI). Chloroform %Bias values exceeded the ±30% acceptance criterion after 4 weeks exposure. Benzene, hexane, and trichloroethylene (TCE) concentrations were within the acceptance criterion for up to three months. Toluene and tetrachloroethylene (PCE), the two least volatile compounds, demonstrated uniform uptake rates over one year. In the second phase of this study, testing of the longer exposure times of 6 months and 1 year were evaluated with three additional passive samplers: Waterloo Membrane SamplerTM (WMSTM), SKC 575 with secondary diffusive cover, and Radiello® 130 passive samplers with yellow diffusive bodies. The SKC 575 and Radiello® 130 passive samplers produced acceptable results (%Bias ≤ 30%) over the 6-month exposure period, while the WMSTM sampler results favored petroleum hydrocarbon more than chlorinated solvent uptake. After the 1-year exposure period, the passive sampler performances were acceptable under specific conditions of this study. The results suggest that all three samplers can produce acceptable results over exposure time periods beyond 30 days and up to a year for some compounds. Full article
Show Figures

Figure 1

14 pages, 3668 KiB  
Article
Infrasound-Altered Pollination in a Common Western North American Plant: Evidence from Wind Turbines and Railways
by Lusha M. Tronstad, Madison Mazur, Lauren Thelen-Wade, Delina Dority, Alexis Lester, Michelle Weschler and Michael E. Dillon
Environments 2025, 12(8), 266; https://doi.org/10.3390/environments12080266 - 31 Jul 2025
Viewed by 495
Abstract
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and [...] Read more.
Anthropogenic noise can have diverse effects on natural ecosystems, but less is known about the degree to which noise can alter organisms in comparison to other disturbances. A variety of frequencies are produced by man-made objects, ranging from high to low frequencies, and we studied infrasound (<20 Hz) produced by wind turbines and trains. We estimated the number, mass and viability of seeds produced by flowers of Plains pricklypear (Opuntia polyacantha Haw.) that were left open to pollinators, hand-pollinated or bagged to exclude pollinators. Each pollination treatment was applied to plants at varying distances from wind turbines and railways (≤25 km). Self-pollinated Opuntia polyacantha and plants within the wind facility produced ≥1.6 times more seeds in the bagged treatments compared to more distant sites. Seed mass and the percent of viable seeds decreased with distance from infrasound. Viability of seeds was >70% for most treatments and sites. If wind facilities, railways and other man-made structures produce infrasound that increases self-pollination, crops and native plants near sources may produce heavier seeds with higher viability in the absence of pollinators, but genetic diversity of plants may decline due to decreased cross-pollination. Full article
Show Figures

Figure 1

15 pages, 860 KiB  
Article
Classification of Agricultural Soils in Manica and Sussundenga (Mozambique)
by Mário J. S. L. Pereira, João M. M. Leitão and Joaquim Esteves da Silva
Environments 2025, 12(8), 265; https://doi.org/10.3390/environments12080265 - 31 Jul 2025
Viewed by 479
Abstract
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine [...] Read more.
Mozambique soils are known for having an unbalanced agronomic and environmental composition that results in poor agricultural production yields. However, agriculture is the main economic activity of Mozambique, and soils must be characterised for their elemental deficiencies and/or excesses. This paper sampled nine farms from the Manica and Sussundenga districts (Manica province) in three campaigns in 2021/2022, 2022/2023, and 2023/2024 (before and after the rainy seasons). They were subjected to a physical–chemical analysis to assess their quality from the fertility and environmental contamination point of view. Attending to the physical–chemical properties analysed, and for all the soils and sampling campaigns, a low concentration below the limit of detection for B of <0.2 mg/Kg for the majority of soils and a low concentration of Al < 0.025 mg/Kg for all the soils were obtained. Also, higher concentrations for the majority of soils for the Ca between 270 and 1634 mg/Kg, for the Mg between 41 and 601 mg/Kg, for the K between 17 and 406 mg/Kg, for the Mn between 13.6 and 522 mg/Kg, for the Fe between 66.3 and 243 mg/Kg, and for the P between <20 and 132 mg/Kg were estimated. In terms of texture and for the sand, a high percentage between 6.1 and 79% was found. In terms of metal concentrations and for all the soils of the Sussundenga district and sampling campaigns, a concentration above the reference value concentration for the Cr (76–1400 mg/Kg) and a concentration below the reference value concentration for the Pb (5–19 mg/Kg), Ba (13–120 mg/Kg) and for the Zn (10–61 mg/Kg) were evaluated. A multivariate data analysis methodology was used based on cluster and discriminant analysis. The analysis of twenty-three physical–chemical variables of the soils suggested four clusters of soils characterised by deficiencies and excess elements that must be corrected to improve the yield and quality of agricultural production. Moreover, the multivariate analysis of the metal composition of soil samples from the second and third campaigns, before and after the rainy season, suggested five clusters with a pristine composition and different metal pollutant compositions and concentrations. The information obtained in this study allows for the scientific comprehension of agricultural soil quality, which is crucial for designing agronomic and environmental corrective measures to improve food quality and quantity in the Manica and Sussundenga districts and ensure environmental, social, and economic sustainability. Full article
Show Figures

Figure 1

17 pages, 1110 KiB  
Article
Environmental Behavior of Novel “Smart” Anti-Corrosion Nanomaterials in a Global Change Scenario
by Mariana Bruni, Joana Figueiredo, Fernando C. Perina, Denis M. S. Abessa and Roberto Martins
Environments 2025, 12(8), 264; https://doi.org/10.3390/environments12080264 - 31 Jul 2025
Viewed by 790
Abstract
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of [...] Read more.
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of these nanomaterials remains largely unknown, particularly in the context of global changes. The present study aims to assess the environmental behavior of four anti-corrosion nanomaterials in an ocean acidification scenario (IPCC SSP3-7.0). Three different concentrations of the nanostructured CIs (1.23, 11.11, and 100 mg L−1) were prepared and maintained at 20 °C and 30 °C in artificial salt water (ASW) at two pH values, with and without the presence of organic matter. The nanomaterials’ particle size and the release profiles of Al3+, Zn2+, and anions were monitored over time. In all conditions, the hydrodynamic size of the dispersed nanomaterials confirmed that the high ionic strength favors their aggregation/agglomeration. In the presence of organic matter, dissolved Al3+ increased, while Zn2+ decreased, and increased in the ocean acidification scenario at both temperatures. CIs were more released in the presence of humic acid. These findings demonstrate the influence of the tested parameters in the nanomaterials’ environmental behavior, leading to the release of metals and CIs. Full article
Show Figures

Figure 1

18 pages, 2238 KiB  
Article
Dispersal Patterns of Euphydryas aurinia provincialis (Lepidoptera: Nymphalidae) in the Colfiorito Highlands, Central Italy
by Andrea Brusaferro, Silvia Marinsalti, Federico Maria Tardella, Emilio Insom and Antonietta La Terza
Environments 2025, 12(8), 263; https://doi.org/10.3390/environments12080263 - 30 Jul 2025
Viewed by 409
Abstract
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, [...] Read more.
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, where reproductive sites, despite their spatial proximity, can act as either source or sink habitats depending on environmental conditions. We conducted fieldwork in six nesting patches inside a single node, capturing, marking, and recapturing individuals to assess their spatial distribution and movement tendencies at a large landscape scale. We found a high degree of site fidelity among individuals, with many recaptures occurring within the original marking site, but also a sex-based difference in movement patterns; females dispersed farther than males, likely driven by reproductive strategies, while males remained more localized, prioritizing mate-searching. Our findings suggest a complex dynamic in habitat connectivity: pastures and abandoned fields, despite being open, seem to act like sink areas, while breeding sites with shrub and tree cover act as source habitats, offering optimal conditions for reproduction. Individuals, especially females, from these source areas were later compelled to disperse into open habitats, highlighting a nuanced interaction between landscape structure and population dynamics. These results highlight the importance of maintaining habitat corridors to support metapopulation dynamics and prevent genetic isolation; the abandonment of traditional grazing practices is leading to the rapid closure of these source habitats, posing a severe risk of local extinction. Conservation efforts should prioritize the preservation of these source habitats to ensure the long-term viability of E. a. provincialis populations in fragmented landscapes. Full article
Show Figures

Figure 1

20 pages, 1509 KiB  
Article
Using Community-Based Social Marketing to Promote Pro-Environmental Behavior in Municipal Solid Waste Management: Evidence from Norte de Santander, Colombia
by Myriam Carmenza Sierra Puentes, Elkin Manuel Puerto-Rojas, Sharon Naomi Correa-Galindo and Jose Alejandro Aristizábal Cuellar
Environments 2025, 12(8), 262; https://doi.org/10.3390/environments12080262 - 30 Jul 2025
Viewed by 625
Abstract
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South [...] Read more.
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South context, with conditions of socioeconomic vulnerability, community participation in the sustainable management of MSW remains limited, highlighting the need to generate context-specific interventions. MSW includes items such as household appliances, batteries, and electronic devices, which require specialized handling due to their size, hazardous components, or material complexity. This study implemented a Community-Based Social Marketing approach during the research and design phases of an intervention focused on promoting source separation and management of hard-to-manage MSW in five municipalities within the administrative region of Norte de Santander (Colombia), which borders Venezuela. Using a mixed-methods approach, we collected data from 1775 individuals (63.83% women; M age = 33.48 years; SD = 17.25), employing social mapping, focus groups, semi-structured interviews, participant observation, and a survey questionnaire. The results show that the source separation and delivery of hard-to-manage MSW to collection systems are limited by a set of psychosocial, structural, and institutional barriers that interact with each other, affecting communities’ willingness and capacity for action. Furthermore, a prediction model of willingness to engage in separation and delivery behaviors showed a good fit (R2 = 0.83). The strongest predictors were awareness of the negative consequences of non-participation and perceived environmental benefits, with subjective norms contributing to a lesser extent. Based on these results, we designed a context-specific intervention focused on reducing these barriers and promoting community engagement in the sustainable management of hard-to-manage MSW. Full article
Show Figures

Figure 1

40 pages, 910 KiB  
Review
Impact of Indoor Air Quality, Including Thermal Conditions, in Educational Buildings on Health, Wellbeing, and Performance: A Scoping Review
by Duncan Grassie, Kaja Milczewska, Stijn Renneboog, Francesco Scuderi and Sani Dimitroulopoulou
Environments 2025, 12(8), 261; https://doi.org/10.3390/environments12080261 - 30 Jul 2025
Viewed by 876
Abstract
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences [...] Read more.
Educational buildings, including schools, nurseries and universities, face stricter regulation and design control on indoor air quality (IAQ) and thermal conditions than other built environments, as these may affect children’s health and wellbeing. In this scoping review, wide-ranging health, performance, and absenteeism consequences of poor—and benefits of good—IAQ and thermal conditions are evaluated, focusing on source control, ventilation and air purification interventions. Economic impacts of interventions in educational buildings have been evaluated to enable the assessment of tangible building-related costs and savings, alongside less easily quantifiable improvements in educational attainment and reduced healthcare. Key recommendations are provided to assist decision makers in pathways to provide clean air, at an optimal temperature for students’ learning and health outcomes. Although the role of educational buildings can be challenging to isolate from other socio-economic confounders, secondary short- and long-term impacts on attainment and absenteeism have been demonstrated from the health effects associated with various pollutants. Sometimes overlooked, source control and repairing existing damage can be important cost-effective methods in minimising generation and preventing ingress of pollutants. Existing ventilation standards are often not met, even when mechanical and hybrid ventilation systems are already in place, but can often be achieved with a fraction of a typical school budget through operational and maintenance improvements, and small-scale air-cleaning and ventilation technologies, where necessary. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Graphical abstract

16 pages, 2462 KiB  
Article
Allometric Equations for Aboveground Biomass Estimation in Wet Miombo Forests of the Democratic Republic of the Congo Using Terrestrial LiDAR
by Jonathan Ilunga Muledi, Stéphane Takoudjou Momo, Pierre Ploton, Augustin Lamulamu Kamukenge, Wilfred Kombe Ibey, Blaise Mupari Pamavesi, Benoît Amisi Mushabaa, Mylor Ngoy Shutcha, David Nkulu Mwenze, Bonaventure Sonké, Urbain Mumba Tshanika, Benjamin Toirambe Bamuninga, Cléto Ndikumagenge and Nicolas Barbier
Environments 2025, 12(8), 260; https://doi.org/10.3390/environments12080260 - 29 Jul 2025
Viewed by 696
Abstract
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been [...] Read more.
Accurate assessments of aboveground biomass (AGB) stocks and their changes in extensive Miombo forests are challenging due to the lack of site-specific allometric equations (AEs). Terrestrial Laser Scanning (TLS) is a non-destructive method that enables the calibration of AEs and has recently been validated by the IPCC guidelines for carbon accounting within the REDD+ framework. TLS surveys were carried out in five non-contiguous 1-ha plots in two study sites in the wet Miombo forest of Katanga, in the Democratic Republic Congo. Local wood densities (WD) were determined from wood cores taken from 619 trees on the sites. After a careful checking of Quantitative Structure Models (QSMs) output, the individual volumes of 213 trees derived from TLS data processing were converted to AGB using WD. Four AEs were calibrated using different predictors, and all presented strong performance metrics (e.g., R2 ranging from 90 to 93%), low relative bias and relative individual mean error (11.73 to 16.34%). Multivariate analyses performed on plot floristic and structural data showed a strong contrast in terms of composition and structure between sites and between plots within sites. Even though the whole variability of the biome has not been sampled, we were thus able to confirm the transposability of results within the wet Miombo forests through two cross-validation approaches. The AGB predictions obtained with our best AE were also compared with AEs found in the literature. Overall, an underestimation of tree AGB varying from −35.04 to −19.97% was observed when AEs from the literature were used for predicting AGB in the Miombo of Katanga. Full article
Show Figures

Figure 1

37 pages, 1037 KiB  
Review
Machine Learning for Flood Resiliency—Current Status and Unexplored Directions
by Venkatesh Uddameri and E. Annette Hernandez
Environments 2025, 12(8), 259; https://doi.org/10.3390/environments12080259 - 28 Jul 2025
Viewed by 1111
Abstract
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural [...] Read more.
A systems-oriented review of machine learning (ML) over the entire flood management spectrum, encompassing fluvial flood control, pluvial flood management, and resiliency-risk characterization was undertaken. Deep learners like long short-term memory (LSTM) networks perform well in predicting reservoir inflows and outflows. Convolution neural networks (CNNs) and other object identification algorithms are being explored in assessing levee and flood wall failures. The use of ML methods in pump station operations is limited due to lack of public-domain datasets. Reinforcement learning (RL) has shown promise in controlling low-impact development (LID) systems for pluvial flood management. Resiliency is defined in terms of the vulnerability of a community to floods. Multi-criteria decision making (MCDM) and unsupervised ML methods are used to capture vulnerability. Supervised learning is used to model flooding hazards. Conventional approaches perform better than deep learners and ensemble methods for modeling flood hazards due to paucity of data and large inter-model predictive variability. Advances in satellite-based, drone-facilitated data collection and Internet of Things (IoT)-based low-cost sensors offer new research avenues to explore. Transfer learning at ungauged basins holds promise but is largely unexplored. Explainable artificial intelligence (XAI) is seeing increased use and helps the transition of ML models from black-box forecasters to knowledge-enhancing predictors. Full article
(This article belongs to the Special Issue Hydrological Modeling and Sustainable Water Resources Management)
Show Figures

Figure 1

23 pages, 414 KiB  
Review
Environmental Detection of Coccidioides: Challenges and Opportunities
by Tanzir Hossain, Gabriel Ibarra-Mejia, Adriana L. Romero-Olivares and Thomas E. Gill
Environments 2025, 12(8), 258; https://doi.org/10.3390/environments12080258 - 28 Jul 2025
Viewed by 880
Abstract
Valley fever (coccidioidomycosis) is an infection posing a significant human health risk, resulting from the soil-dwelling fungi Coccidioides. Although incidence and mortality from coccidioidomycosis are underreported in the United States, and this underreporting may impact public health policy in numerous jurisdictions, its [...] Read more.
Valley fever (coccidioidomycosis) is an infection posing a significant human health risk, resulting from the soil-dwelling fungi Coccidioides. Although incidence and mortality from coccidioidomycosis are underreported in the United States, and this underreporting may impact public health policy in numerous jurisdictions, its incidence is rising. Underreporting may stem from diagnostic and testing difficulties, insufficient environmental sampling for pathogen detection to determine endemicity, and a shortage of data on Coccidioides dispersion. As climate change creates increasingly arid locations in the US favorable for Coccidioides proliferation, determining its total endemicity becomes more difficult. This literature review examining published research from 2000 to 2025 revealed a paucity of publications examining the endemicity of Coccidioides and research gaps in detection methods, including limited studies on the reliability of sampling for geographical and temporal variations, challenges in assessing various sample materials, poorly defined storage conditions, and the lack of precise, less restrictive, cost-effective laboratory procedures. Addressing these challenges requires interdisciplinary collaboration among Coccidioides researchers, wildlife experts, atmospheric and climate scientists, and policymakers. If these obstacles are solved, standardized approaches for identifying Coccidioides, classified by climate zones and ecoregions, could be developed, saving financial resources, labor, and time for future researchers studying the environmental drivers of coccidioidomycosis. Full article
22 pages, 1882 KiB  
Article
Assessing Pharmaceuticals in Bivalves and Microbial Sewage Contamination in Hout Bay, Cape Town: Identifying Impact Zones in Coastal and Riverine Environments
by Cecilia Y. Ojemaye, Amy Beukes, Justin Moser, Faith Gara, Jo Barnes, Lesley Petrik and Lesley Green
Environments 2025, 12(8), 257; https://doi.org/10.3390/environments12080257 - 28 Jul 2025
Viewed by 1576
Abstract
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms [...] Read more.
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms such as mussels, as well as microbial indicators of faecal contamination in river water and seawater, for estimating the extent of impact zones in the coastal environment of Hout Bay. This research investigated the persistent pharmaceuticals found in marine outfall wastewater effluent samples in Hout Bay, examining whether these substances were also detectable in marine biota, specifically focusing on Mytilus galloprovincialis mussels. The findings reveal significant levels of sewage-related pollutants in the sampled environments, with concentrations ranging from 32.74 to 43.02 ng/g dry weight (dw) for acetaminophen, up to 384.96 ng/g for bezafibrate, and as high as 338.56 ng/g for triclosan. These results highlight persistent PPCP contamination in marine organisms, with increasing concentrations observed over time, suggesting a rise in population and pharmaceutical use. Additionally, microbial analysis revealed high levels of E. coli in the Hout Bay River, particularly near stormwater from the Imizamo Yethu settlement, with counts exceeding 8.3 million cfu/100 mL. These findings underscore the significant impact of untreated sewage on the environment. This study concludes that current sewage treatment is insufficient to mitigate pollution, urging the implementation of more effective wastewater management practices and long-term monitoring of pharmaceutical levels in marine biota to protect both the environment and public health. Full article
Show Figures

Figure 1

20 pages, 2063 KiB  
Article
Chemometric Evaluation of 16 Priority PAHs in Soil and Roots of Syringa vulgaris and Ficus carica from the Bor Region (Serbia): An Insight into the Natural Plant Potential for Soil Phytomonitoring and Phytoremediation
by Aleksandra D. Papludis, Slađana Č. Alagić, Snežana M. Milić, Jelena S. Nikolić, Snežana Č. Jevtović, Vesna P. Stankov Jovanović and Gordana S. Stojanović
Environments 2025, 12(8), 256; https://doi.org/10.3390/environments12080256 - 28 Jul 2025
Viewed by 387
Abstract
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location [...] Read more.
The soil phytomonitoring and phytostabilization potential of Syringa vulgaris and Ficus carica was evaluated regarding 16 priority polycyclic aromatic hydrocarbons (PAHs) using a chemometric approach and the calculation of bioconcentration factors (BCFs) for each individual PAH in plants’ roots from each selected location in the Bor region. PAHs in roots and the corresponding soils were analyzed using the QuEChERS (Quick, Effective, Cheap, Easy, Rugged, Safe) method with some new modifications, gas chromatography/mass spectrometry, Pearson’s correlation study, hierarchical cluster analysis, and BCFs. Several central conclusions are as follows: Each plant species developed its own specific capability for PAH management, and root concentrations ranged from not detected (for several compounds) to 5592 μg/kg (for fluorene in S. vulgaris). In some cases, especially regarding benzo(a)pyrene and chrysene, both plants had a similar tactic—the total avoidance of assimilation (probably due to their high toxicity). Both plants retained significant quantities of different PAHs in their roots (many calculated BCFs were higher than 1 or were even extremely high), which recommends them for PAH phytostabilization (especially fluorene, benzo(b)fluoranthene, and benzo(k)fluoranthene). In soil monitoring, neither of the plants are helpful because their roots do not reflect the actual situation found in soil. Finally, the analysis of the corresponding soils provided useful monitoring information. Full article
Show Figures

Graphical abstract

22 pages, 2003 KiB  
Article
Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization
by Hannah Götze, Julian Brokötter, Jonas Frößl, Alexander Kelsch, Sina Kukowski and Andreas Siegfried Pacholski
Environments 2025, 12(8), 255; https://doi.org/10.3390/environments12080255 - 28 Jul 2025
Viewed by 432
Abstract
Ammonia (NH3) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH3 emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific [...] Read more.
Ammonia (NH3) emissions affect the environment, climate and human health and originate mainly from agricultural sources like synthetic nitrogen fertilizers. Accurate and replicable measurements of NH3 emissions are crucial for research, inventories and evaluation of mitigation measures. There exist specific application limitations of NH3 emission measurement techniques and a high variability in method performance between studies, in particular from small plots. Therefore, the aim of this study was the assessment of measurement methods for ammonia emissions from replicated small plots. Methods were evaluated in 18 trials on six sites in Germany (2021–2022). Urea was applied to winter wheat as an emission source. Two small-plot methods were employed: inverse dispersion modelling (IDM) with atmospheric concentrations obtained from Alpha samplers and the dynamic chamber Dräger tube method (DTM). Cumulative NH3 losses assessed by each method were compared to the results of the integrated horizontal flux (IHF) method using Alpha samplers (Alpha IHF) as a micrometeorological reference method applied in parallel large-plot trials. For validation, Alpha IHF was also compared to IHF/ZINST with Leuning passive samplers. Cumulative NH3 emissions assessed using Alpha IHF and DTM showed good agreement, with a relative root mean square error (rRMSE) of 11%. Cumulative emissions assessed by Leuning IHF/ZINST deviated from Alpha IHF, with an rRMSE of 21%. For low-wind-speed and high-temperature conditions, NH3 losses detected with Alpha IDM had to be corrected to give acceptable agreement (rRMSE 20%, MBE +2 kg N ha−1). The study shows that quantification of NH3 emissions from small plots is feasible. Since DTM is constrained to specific conditions, we recommend Alpha IDM, but the approach needs further development. Full article
Show Figures

Figure 1

19 pages, 3672 KiB  
Article
Assessing Microplastic Contamination and Depuration Effectiveness in Farmed Pacific Oysters (Crassostrea gigas)
by Cláudia Moura, Diogo M. Silva, Francisca Espincho, Sabrina M. Rodrigues, Rúben Pereira, C. Marisa R. Almeida, Sandra Ramos and Vânia Freitas
Environments 2025, 12(8), 254; https://doi.org/10.3390/environments12080254 - 25 Jul 2025
Viewed by 509
Abstract
This study assessed the presence, abundance, and characteristics of microplastics (MPs) in farmed Pacific oysters (Crassostrea gigas) and evaluated the efficacy of depuration in reducing MPs under laboratory-controlled and commercial conditions. Oysters cultivated in the Lima estuary (NW Portugal) were sampled [...] Read more.
This study assessed the presence, abundance, and characteristics of microplastics (MPs) in farmed Pacific oysters (Crassostrea gigas) and evaluated the efficacy of depuration in reducing MPs under laboratory-controlled and commercial conditions. Oysters cultivated in the Lima estuary (NW Portugal) were sampled in autumn and winter, along with adjacent surface water and sediment, to investigate potential contamination sources. MP concentrations in oysters varied temporally, with higher levels in October 2023 (0.48 ± 0.34 MPs g−1 ww) than in February 2024 (0.09 ± 0.07 MPs g−1 ww), while the environmental levels remained stable across dates. All MPs were fibres, predominantly transparent, followed by blue and black. Fourier-Transform Infrared Spectroscopy (FTIR) confirmed cellulose and polyethylene terephthalate (PET) as dominant polymers in oysters and environmental samples. No clear correlation was found between MPs in oysters and surrounding compartments. Laboratory depuration reduced MPs by 78% within 48 h, highlighting its potential as a mitigation strategy. However, depuration was less effective under commercial conditions, possibly due to lower initial contamination levels. These findings suggest that oysters may act as a vector for human exposure to MPs via seafood consumption. While depuration shows promise in reducing contamination, further research is needed to optimise commercial protocols and enhance the safety of aquaculture products. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Plastic Contamination)
Show Figures

Figure 1

17 pages, 4705 KiB  
Article
Impact of Teachers’ Decisions and Other Factors on Air Quality in Classrooms: A Case Study Using Low-Cost Air Quality Sensors
by Zhong-Min Wang, Wenhao Chen, David Putney, Jeff Wagner and Kazukiyo Kumagai
Environments 2025, 12(8), 253; https://doi.org/10.3390/environments12080253 - 24 Jul 2025
Viewed by 763
Abstract
This study investigates the impact of teacher decisions and other contextual factors on indoor air quality (IAQ) in mechanically ventilated elementary school classrooms using low-cost air quality sensors. Four classrooms at a K–8 school in San Jose, California, were monitored for airborne particulate [...] Read more.
This study investigates the impact of teacher decisions and other contextual factors on indoor air quality (IAQ) in mechanically ventilated elementary school classrooms using low-cost air quality sensors. Four classrooms at a K–8 school in San Jose, California, were monitored for airborne particulate matter (PM), carbon dioxide (CO2), temperature, and humidity over seven weeks. Each classroom was equipped with an HVAC system and a portable air cleaner (PAC), with teachers having full autonomy over PAC usage and ventilation practices. Results revealed that teacher behaviors, such as the frequency of door/window opening and PAC operation, significantly influenced both PM and CO2 levels. Classrooms with more active ventilation had lower CO2 but occasionally higher PM2.5 due to outdoor air exchange, while classrooms with minimal ventilation showed the opposite pattern. An analysis of PAC filter material and PM morphology indicated distinct differences between indoor and outdoor particle sources, with indoor air showing higher fiber content from clothing and carpets. This study highlights the critical role of teacher behavior in shaping IAQ, even in mechanically ventilated environments, and underscores the potential of low-cost sensors to support informed decision-making for healthier classroom environments. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

16 pages, 6542 KiB  
Article
Effects of Dietary Exposure to Polystyrene Microplastics on the Thyroid Gland in Xenopus laevis
by María Victoria Pablos, María de los Ángeles Jiménez, Eulalia María Beltrán, Pilar García-Hortigüela, María Luisa de Saint-Germain and Miguel González-Doncel
Environments 2025, 12(8), 252; https://doi.org/10.3390/environments12080252 - 22 Jul 2025
Viewed by 460
Abstract
Plastic manufacturing involves using compounds that could be considered endocrine disruptors. Consequently, concern about the effect of these particles on the hormonal regulation of various systems, including the hypothalamic–pituitary–thyroid axis, has been increasing. By applying the Amphibian Metamorphosis Assay (AMA), the effects of [...] Read more.
Plastic manufacturing involves using compounds that could be considered endocrine disruptors. Consequently, concern about the effect of these particles on the hormonal regulation of various systems, including the hypothalamic–pituitary–thyroid axis, has been increasing. By applying the Amphibian Metamorphosis Assay (AMA), the effects of irregular polystyrene microplastics (PS) MPs on the thyroid gland of Xenopus laevis were investigated. The histological effects on other organs of tadpoles were also studied. Tadpoles were exposed to 500 and 50 µg of virgin PS MP particles, (200 µm range)/L, administered by diet for 21 days. PS dietary exposure revealed statistically significant effects for the snout to vent length and the whole body length apical endpoints on day 21. The histological survey of both treatment groups revealed no noteworthy effects on the thyroid gland, digestive tract, or kidneys, but slight modifications to the liver. Mild ultrastructural modifications were detected in tadpoles’ enterocytes and hepatocytes in both treatment groups, but were likely to be reversible. Overall, our results contrast with previous research results in which effects were observed, but using different types, concentrations, and numbers of MPs. All this suggests the need for standardized methods for the environmental risk assessment of MPs/NPs (nanoplastics). Concern about the risk of NPs seems to be greater, and more studies with NP particles should be conducted. Full article
(This article belongs to the Special Issue Ecotoxicity of Microplastics)
Show Figures

Figure 1

26 pages, 1894 KiB  
Article
Illegal Waste Dumps and Water Quality: Environmental and Logistical Challenges for Sustainable Development—A Case Study of the Ružín Reservoir (Slovakia)
by Oľga Glova Végsöová and Martin Straka
Environments 2025, 12(8), 251; https://doi.org/10.3390/environments12080251 - 22 Jul 2025
Viewed by 756
Abstract
The aim of the article is to highlight the increasing environmental burden on aquatic ecosystems in Slovakia due to continuous pollution from municipal, industrial and agricultural sources. Laboratory analyses have shown alarming exceedance of the limit values of contaminants, with nitrate nitrogen (NO [...] Read more.
The aim of the article is to highlight the increasing environmental burden on aquatic ecosystems in Slovakia due to continuous pollution from municipal, industrial and agricultural sources. Laboratory analyses have shown alarming exceedance of the limit values of contaminants, with nitrate nitrogen (NO3) reaching 5.8 mg/L compared to the set limit of 2.5 mg/L and phosphorus concentrations exceeding the permissible values by a factor of five, thereby escalating the risk of eutrophication and loss of ecological stability of the aquatic ecosystem. The accumulation of heavy metals is also a problem—lead (Pb) concentrations reach up to 9.7 μg/L, which exceeds the safe limit by a factor of ten. Despite the measures implemented, such as scum barriers, there is continuous contamination of the aquatic environment, with illegal waste dumps and uncontrolled runoff of agrochemicals playing a significant role. The research results underline the critical need for a more effective environmental policy and more rigorous monitoring of toxic substances in real time. These findings highlight not only the urgency of more effective environmental policy and stricter real-time monitoring of toxic substances, but also the necessity of integrating environmental logistics into the design of sustainable solutions. Logistical approaches including the optimization of waste collection, coordination of stakeholders and creation of infrastructural conditions can significantly contribute to reducing environmental burdens and ensure the continuity of environmental management in ecologically sensitive areas. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop