A Review of the Adverse Effects of Neonicotinoids on the Environment
Abstract
:1. Introduction
2. Application of Neonicotinoids
2.1. Imidacloprid (IMI)
2.2. Acetamiprid (ACE)
2.3. Clothianidin (CLO)
2.4. Thiamethoxam (THIAM)
2.5. Thiacloprid (THIAC)
2.6. Nitenpyram (NIT)
2.7. Dinotefuran (DIN)
Generation | Characteristics | Neonicotinoid | References |
---|---|---|---|
First |
| Imidacloprid Acetamiprid | [31] |
Second |
| Thiamethoxam Clothianidin Thiacloprid * Nitenpyram * | [41,48,52,57] |
Third |
| Dinotefuran | [64] |
Neonicotinoid | Crop | Mode of Application | Target Insect | References |
---|---|---|---|---|
Imidacloprid | Vitis vinifera L. (Vitaceae) | Soil spraying | Erythroneura variabilis (Hemiptera: Cicadellidae) | [71] |
Solanum melongena L. (Solanaceae) | Soil spraying | Aphis gossypii (Hemiptera: Aphididae) Myzus persicae (Hemiptera: Aphididae) | [72] | |
Nicotiana tabacum L. (Solanaceae) | Foliar spraying | Myzus spp. (Hemiptera) Bemisia tabaci (Hemiptera: Aleyrodidae) | [73] | |
Solanum tuberoso L. (Solanaceae) | Soil spraying | M. persicae Paratrioza cockerelli (Hemiptera: Triozidae) | ||
Solanum lycopersicum L. (Solanaceae) | Spraying | A. gossypii Frankliniella occidentalis (Thysanoptera: Thripidae) | ||
Acetamiprid | Gossypium hirsutum L. (Malvaceae) | Spraying | A. gossypii | [40] |
Capsicum frutescens L. (Solanaceae) | Foliar spraying | F. occidentalis | [74] | |
Bemisia argentifolii (Hemiptera: Aleyrodidae) | ||||
Bactericera cockerell (Hemiptera: Triozidae) | ||||
Rosa spp. (Rosaceae) | Foliar spraying | Macrosiphum rosae (Hemiptera: Aphididae) | [75] | |
Clothianidin | Oryza sativa L. (Poaceae) | Spraying | B. tabaci Nilaparvata lugens (Hemiptera: Delphacidae) | [76] |
Saccharum officinarum (Poaceae) | Soil drench | Odontotermes obesus (Balttodea: Termitidae) Microtermes obesi (Isoptera: Termitidae) | [77] | |
Thiamethoxam | S. lycopersicum L. | Spraying | A. gossypii B. tabaci Thrips tabaci (Thysanoptera: Thripidae) | [78] |
Glycine max L. (Fabaceae) | Seed treatment | Ceratoma trifurcata (Coleoptera: Chrysomelidae) | [79] | |
Thiacloprid | Brassica napus L. (Brassicaceae) | Foliar spraying | Meligethes aeneus (Coleoptera: Nitidulidae) | [80] |
Camelia sinensis L. (Theaceae) | Spraying | Aphidoidea Aleurocanthus spiniferus (Hemiptera: Aleyrodidae) | [81] | |
G. hirsutum L. (Malvaceae) | Seed treatment | A. gossypii B. tabaci | [82] | |
Nitenpyram | O. sativa L. | Spraying | Sogatella furcifera (Hemiptera: Delphacidae) | [57] |
Malus spp. (Rosaceae) | Spraying | Apolygus lucorum (Hemiptera: Miridae) | [83] | |
Other uses: (Felis catus L. and Canis familiaris L.) | Oral | Ctenocephalides felis (Siphonaptera: Pulicidae) | [59,84] | |
Dinotefuran | Lycium barbarum L. (Solanaceae) | Spraying | Eriophyidae Psylla spp. (Hemiptera: Psyllidae) Aphidoidea | [85] |
Apium graveolens L. (Apiaceae) | Drenching | Agromyzidae | [62] |
3. Effect on the Environment
3.1. NNI Transport Mechanisms and Analysis Techniques
3.2. Effect on Water
Country | Neonicotinoid | Region | Type of Water | Transport Mechanism | Concentration (ng L−1) | Reference |
---|---|---|---|---|---|---|
Korea | DIN | Nakdong River in South Korea | Drinking water | Precipitation leaching | 23.5 | [27] |
China | NIT DIN | Yangtzen River Basin | Surface water | Agricultural runoff and atmospheric deposition | 90.7 63.2 | [112] |
Canada | CLO | Alvena, Saskatchewan | Surface water Melwater | Meltwater runoff | 137 487 | [50] |
China | IMI | Northeast, north, northwest, east, south and southwest |
Tap water Drinking water Well water | Runoff and infiltration |
4.18 1.76 1.48 | [113] |
USA | CLO IMI | University of Iowa and Iowa City | Tap water | Runoff and infiltration |
3.89–57.3 1.22–39.5 | [114] |
Switzerland | THIAM THIAC | Swiss plateau | Surface water | Atmospheric deposition and runoff |
65 47 | [115] |
China | IMI THIAM | Paerl River, Guangdong | Surface water and effluents from WWTPs | Runoff | 24.0–322 (in total) | [116] |
China | ACE CLO | Guanzhou | Surface water | Adhered to sediments and runoffs |
73.1 375 | [117] |
3.3. Negative Effects on Aquatic Organisms
3.4. Effect on Soil
Neonicotinoid | Mean Concentration (mg kg−1) | Agricultural Soil or Product | Insolation Country | Reference |
---|---|---|---|---|
Acetamiprid | 0.000002 | Soil of Pisum sativum (Fabaceae) | Luzon, Philippines | [132] |
1.00–13.73 | Leaves of Chrysanthemums morifolium (Asteraceae) | Huangshan, China | [133] | |
17.43 | Soil of Brassica oleracea var. cabitata (Brassicaceae) | Karbala, Iraq | [134] | |
0.059 | Capsicum annuum var. Jalapeño (Solanaceae) | Sinaloa, Mexico | [135] | |
0.000414 | Solanum lycopersicum (Solanaceae) | Tianjin, China | [136] | |
0.585 | Malus pumila Mill. Gala (Rosaceae) | Jiangsu, China | [20] | |
0.000000414 | Soil of Parks | Beijing, China | [20] | |
Clothianidin | 0.022–0.236 | Soil of Pisum sativum (Fabaceae) | Luzon, Philippines | [132] |
1.430–126.31 | Soil of Musa paradisiaca. (Musaceae) | Mindanao, Philippines | [132] | |
1.73 | Chrysanthemum morifolium growing soil (Asteráceas) | Huangshan, China | [133] | |
0.00000016 | Soil of Parks | Beijing, China | [20] | |
0.01 | Growing of Saccharum officinarum (Poaceae) | Guangxi, China | [142] | |
0.09 | Growing of Oryza sativa (Poaceae) | Inner, Mongolia | [141] | |
2.7 | Sub-surface soil of Zea mays (Poaceae) | Zongganqu, Mongolia | [142] | |
Imidacloprid | 0.758–39.56 | Soil of Pisum sativum (Fabaceae) | Luzon, Philippines | [132] |
0.013–0.028 | Soil of Oryza sativa (Poaceae) | Marinduque, Philippines | [132] | |
1.048–903.31 | Soil of Musa paradisiaca. (Musaceae) | Mindanao, Philippines | [132] | |
0.99–8.64 | Chrysanthemum morifolium growing soil (Asteraceae) | Huangshan, China | [133] | |
0.847 | Malus pumila Mill. Gala (Rosaceae) | Jiangsu, China | [20] | |
0.00952 | Soil of Parks | Beijing, China | [20] | |
2897.5 | Sub-surface soil of Zea mays (Gramíneas) | Zongganqu, Mongolia | [142] | |
4.509 | Capsicum annuum var. Jalapeño (Solanaceae) | Sinaloa, Mexico | [135] | |
0.0087 | Brassica oleracea var. Itálica (Brassicaceae) | Puebla and Guanajuato, Mexico | [145] | |
Thiamethoxam | 0.005–0.050 | Soil of Pisum sativum (Fabaceae) | Luzon, Philippines | [140] |
0.05–0.011 | Soil of Oryza sativa (Poaceae) | Marinduque, Philippines | [140] | |
0.278–267.87 | Soil of Musa paradisiaca (Musaceae) | Mindanao, Philippines | [140] | |
0.18–0.43 | Chrysanthemum morifolium growing soil (Asteraceae) | Huangshan, China | [133] | |
0.890 | Malus pumila Mill. Gala (Rosaceae) | Jiangsu, China | [20] | |
0.00000058 | Soil of Parks | Beijing, China | [137] | |
62.4 | Sub-surface soil of Zea mays (Poaceae) | Zongganqu, Mongolia | [142] | |
0.896 | Capsicum annuum var. Jalapeño (Solanaceae) | Sinaloa, Mexico | [135] | |
0.0045 | Brassica oleracea var. Itálica (Brassicaceae) | Puebla and Guanajuato, Mexico | [145] | |
0.00401 | Solanum lycopersicum (Solanaceae) | Tianjin, China | [147] | |
Thiacloprid | 3988.7 | Zea mays (Poaceae) | Zongganqu, Mongolia | [142] |
0.059 | Capsicum annuum var. Jalapeño (Solanaceae) | Sinaloa, Mexico | [135] | |
0.01 | Solanum melongena var. China (Solanaceae) | La Vega, República Dominicana | [150] | |
Dinotefuran | 0.01 | Oryza sativa (Poaceae) | Tamil Nadu, India | [152] |
0.384 | Malus pumila Mill. Gala (Rosaceae) | Jiangsu, China | [20] | |
0.300 | Lactuca sativa (Asteráceas) | Pyeongtaek, Korea | [62] | |
0.580 | Apium graveolens (Apiaceae) | Pyeongtaek, Korea | [62] | |
0.00000027 | Soil of Parks | Beijing, China | [138] | |
0.00502 | Solanum lycopersicum (Solanaceae) | Tianjin, China | [147] | |
Nitenpyram * | 0.01–0.54 | Actinidia deliciosa (Actinidiaceae) | Sichuan, China | [153] |
0.01–0.45 | Actinidia deliciosa (Actinidiaceae) | Zhejiang, China | [153] | |
0.01–033 | Actinidia deliciosa (Actinidiaceae) | Jiangsu, China | [153] |
3.5. Negative Effects on Terrestrial Organisms and Insect Pollinators
Organism | Neonicotinoid | LC50 | LD50 | Reference |
---|---|---|---|---|
Rattus norvegicus (Rodentia: Muridae) | IMI | No data | Oral 450 mg kg−1 | [164] |
ACE | No data | Oral 182 mg kg−1 | ||
THIAC | No data | Oral 640 mg kg−1 | ||
Mus musculus (Rodentia: Muridae) | IMI | No data | 130–170 mg kg−1 | [165] |
DIN | No data | >2000 mg kg−1 | ||
Lepomis macrochirus (Perciformes: Centrarchidae) | IMI | No data | 241 mg L−1 | [166] |
CLO | No data | >93.6 mg L−1 | ||
Osmia lignaria (Hymenoptera: Megachilidae) | IMI, CLO, and THIAM | No data | 5.51 to 32.86 ng bee−1 | [160] |
Rhinella arenarum (Anura: Bufonidae) | IMI and THIAM | 11.28 and >71.2 mg L−1 | No data | [90] |
Labeo rohita (Cypriniformes: Cyprinidae) | IMI | 550 mg L−1 | No data | [125] |
Apis mellifera (Hymenoptera: Apidae) | IMI | No data | 118.74 ng bee−1 | [167] |
Perdix perdix (Galliformes: Phasianidae) | IMI | 283 mg kg−1 | 15–41 mg kg−1 | [166] |
CLO | >752 mg kg−1 | 430 mg kg−1 |
4. Some Effects on Humans
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eskenazi, B.; Bradman, A.; Castorina, R. Exposures of Children to Organophosphate Pesticides and Their Potential Adverse Health Effects. Environ. Health Perspect. 1999, 107, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Seifert, J. Neonicotinoids. Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 477–482. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the Status and Global Strategy for Neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Dong, F.; Mei, X.; Ning, J.; She, D. Distribution, Dissipation, and Metabolism of Neonicotinoid Insecticides in the Cotton Ecosystem under Foliar Spray and Root Irrigation. J. Agric. Food Chem. 2019, 67, 12374–12381. [Google Scholar] [CrossRef] [PubMed]
- Li, A.J.; Martinez-Moral, M.P.; Kannan, K. Variability in Urinary Neonicotinoid Concentrations in Single-Spot and First-Morning Void and Its Association with Oxidative Stress Markers. Environ. Int. 2020, 135, 105415. [Google Scholar] [CrossRef]
- Frank, S.D.; Tooker, J.F. Neonicotinoids Pose Undocumented Threats to Food Webs. Proc. Natl. Acad. Sci. USA 2020, 117, 22609–22613. [Google Scholar] [CrossRef]
- Bass, C.; Denholm, I.; Williamson, M.S.; Nauen, R. The Global Status of Insect Resistance to Neonicotinoid Insecticides. Pestic. Biochem. Physiol. 2015, 121, 78–87. [Google Scholar] [CrossRef]
- Thompson, D.A.; Lehmler, H.J.; Kolpin, D.W.; Hladik, M.L.; Vargo, J.D.; Schilling, K.E.; Lefevre, G.H.; Peeples, T.L.; Poch, M.C.; Laduca, L.E.; et al. A Critical Review on the Potential Impacts of Neonicotinoid Insecticide Use: Current Knowledge of Environmental Fate, Toxicity, and Implications for Human Health. Environ. Sci. Process. Impacts. 2020, 22, 1315–1346. [Google Scholar] [CrossRef]
- Légifrance LOI N° 2016-1087 Du 8 Août 2016 Pour La Reconquête de La Biodiversité, de La Nature et Des Paysages (1)—Légifrance. Available online: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000033016237?init=true&page=1&query=LOI+n%C2%B0+2016-1087+du+8+ao%C3%BBt+2016+pour+la+reconqu%C3%AAte+de+la+biodiversit%C3%A9%2C+de+la+nature+et+des+paysages+%281%29&searchField=ALL&tab_selection=all (accessed on 28 February 2024).
- Zhang, D.; Lu, S. Human Exposure to Neonicotinoids and the Associated Health Risks: A Review. Environ. Int. 2022, 163, 107201. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority) Neonicotinoids: Risks to Bees Confirmed|EFSA. Available online: https://www.efsa.europa.eu/en/press/news/180228 (accessed on 13 February 2024).
- Wood, T.J.; Goulson, D. The Environmental Risks of Neonicotinoid Pesticides: A Review of the Evidence Post 2013. Environ. Sci. Pollut Res Int. 2017, 24, 17285–17325. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, X.; Zhang, T.; Song, S.; Zhu, H.; Lu, S.; Kannan, K.; Sun, H. Neonicotinoid Insecticides and Their Metabolites Can Pass through the Human Placenta Unimpeded. Environ. Sci. Technol. 2022, 56, 17143–17152. [Google Scholar] [CrossRef]
- Cimino, A.M.; Boyles, A.L.; Thayer, K.A.; Perry, M.J. Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review. Environ. Health Perspect. 2017, 125, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Sy, N.D.; Yu, C.; Gan, J. Removal of Neonicotinoid Insecticides in a Large-Scale Constructed Wetland System. Environ. Pollut. 2024, 344, 123303. [Google Scholar] [CrossRef] [PubMed]
- Sadaria, A.M.; Supowit, S.D.; Halden, R.U. Mass Balance Assessment for Six Neonicotinoid Insecticides during Conventional Wastewater and Wetland Treatment: Nationwide Reconnaissance in United States Wastewater. Environ. Sci. Technol 2016, 50, 6199–6206. [Google Scholar] [CrossRef] [PubMed]
- Łukaszewicz, P.; Stepnowski, P.; Haliński, Ł.P. The First Fully Optimized and Validated SPE-LC-MS/MS Method for Determination of the New-Generation Neonicotinoids in Surface Water Samples. Chemosphere 2023, 310, 136868. [Google Scholar] [CrossRef] [PubMed]
- Aseperi, A.K.; Busquets, R.; Hooda, P.S.; Cheung, P.C.W.; Barker, J. Behaviour of Neonicotinoids in Contrasting Soils. J. Environ. Manag. 2020, 276, 111329. [Google Scholar] [CrossRef]
- Wu, R.L.; He, W.; Li, Y.L.; Li, Y.Y.; Qin, Y.F.; Meng, F.Q.; Wang, L.G.; Xu, F.L. Residual Concentrations and Ecological Risks of Neonicotinoid Insecticides in the Soils of Tomato and Cucumber Greenhouses in Shouguang, Shandong Province, East China. Sci. Total Environ. 2020, 738, 140248. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, X.; Yu, B.; Wang, D.; Zhao, C.; Yang, Q.; Zhang, Q.; Tan, Y.; Wang, X.; Guo, J. Comparison of Neonicotinoid Residues in Soils of Different Land Use Types. Sci. Total Environ. 2021, 782, 146803. [Google Scholar] [CrossRef]
- Ewere, E.E.; Powell, D.; Rudd, D.; Reichelt-Brushett, A.; Mouatt, P.; Voelcker, N.H.; Benkendorff, K. Uptake, Depuration and Sublethal Effects of the Neonicotinoid, Imidacloprid, Exposure in Sydney Rock Oysters. Chemosphere 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Bishop, C.A.; Woundneh, M.B.; Maisonneuve, F.; Common, J.; Elliott, J.E.; Moran, A.J. Determination of Neonicotinoids and Butenolide Residues in Avian and Insect Pollinators and Their Ambient Environment in Western Canada (2017, 2018). Sci. Total Environ. 2020, 737, 139386. [Google Scholar] [CrossRef]
- Heller, S.; Fine, J.; Phan, N.T.; Rajotte, E.G.; Biddinger, D.J.; Joshi, N.K. Toxicity of Formulated Systemic Insecticides Used in Apple Orchard Pest Management Programs to the Honey Bee (Apis mellifera (L.)). Environments 2022, 9, 90. [Google Scholar] [CrossRef]
- Schläppi, D.; Kettler, N.; Straub, L.; Glauser, G.; Neumann, P. Long-Term Effects of Neonicotinoid Insecticides on Ants. Commun. Biol. 2020, 3, 335. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, H.; He, M.; Dong, F.; Xu, J.; Wu, X.; Sun, T.; Ouyang, X.; Zheng, Y.; Liu, X. Toxicity of Neonicotinoid Insecticides on Key Non-Target Natural Predator the Larvae of Coccinella septempunctata in Environmental. Environ. Technol. Innov. 2021, 23, 101523. [Google Scholar] [CrossRef]
- Tackenberg, M.C.; Giannoni-Guzmán, M.A.; Sanchez-Perez, E.; Doll, C.A.; Agosto-Rivera, J.L.; Broadie, K.; Moore, D.; McMahon, D.G. Neonicotinoids Disrupt Circadian Rhythms and Sleep in Honey Bees. Sci. Rep. 2020, 10, 17929. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Wang, W.; Lee, S.; Park, J.H.; Oh, J.E. Concentrations and Distributions of Neonicotinoids in Drinking Water Treatment Plants in South Korea. Environ. Pollut. 2021, 288, 117767. [Google Scholar] [CrossRef] [PubMed]
- Pearsons, K.A.; Rowen, E.K.; Elkin, K.R.; Wickings, K.; Smith, R.G.; Tooker, J.F. Small-Grain Cover Crops Have Limited Effect on Neonicotinoid Contamination from Seed Coatings. Environ. Sci. Technol. 2021, 55, 4679–4687. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Tu, C.; Long, T.; Bu, Y.; Wang, H.; Jeyakumar, P.; Jiang, J.; Deng, S. Remediation Technologies for Neonicotinoids in Contaminated Environments: Current State and Future Prospects. Environ. Int. 2023, 178, 108044. [Google Scholar] [CrossRef]
- Alsafran, M.; Rizwan, M.; Usman, K.; Saleem, M.H.; Jabri, H.A. Neonicotinoid Insecticides in the Environment: A Critical Review of Their Distribution, Transport, Fate, and Toxic Effects. J. Environ. Chem. Eng. 2022, 10, 108485. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, J.; Ren, J.; Hou, Y.; Han, Z.; Xiao, J.; Li, Y. Exposure Level of Neonicotinoid Insecticides in the Food Chain and the Evaluation of Their Human Health Impact and Environmental Risk: An Overview. Sustainability 2020, 12, 7523. [Google Scholar] [CrossRef]
- DrugBank Imidacloprid: Uses, Interactions, Mechanism of Action|DrugBank Online. Available online: https://go.drugbank.com/drugs/DB11421 (accessed on 13 April 2024).
- Al-Hawadi, J.S.; Al-Sayaydeh, R.S.; Al-Rawashdeh, Z.B.; Ayad, J.Y. Monitoring of Imidacloprid Residues in Fresh Fruits and Vegetables from the Central Parts of Jordan. Heliyon 2023, 9, e22136. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Zhang, J.; Yang, N.; Yang, D.; Zou, K.; Xi, Y.; Chen, G.; Zhang, X. The Inappropriate Application of Imidacloprid Destroys the Ability of Predatory Natural Enemies to Control Pests in the Food Chain: A Case Study of the Feeding Behavior of Orius similis on Frankliniella occidentalis. Ecotoxicol. Environ. Saf. 2024, 272, 116040. [Google Scholar] [CrossRef]
- Mörtl, M.; Vehovszky, Á.; Klátyik, S.; Takács, E.; Győri, J.; Székács, A. Neonicotinoids: Spreading, Translocation and Aquatic Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 2006. [Google Scholar] [CrossRef] [PubMed]
- Elango, D.; Siddharthan, N.; Alaqeel, S.I.; Subash, V.; Manikandan, V.; Almansour, A.I.; Kayalvizhi, N.; Jayanthi, P. Biodegradation of Neonicotinoid Insecticide Acetamiprid by Earthworm Gut Bacteria Brucella intermedium PDB13 and Its Ecotoxicity. Microbiol. Res. 2023, 268, 127278. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.R. Acetamiprid. Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 30–32. ISBN 9780123864550. [Google Scholar] [CrossRef]
- Guo, L.; Yang, W.; Cheng, X.; Fan, Z.; Chen, X.; Ge, F.; Dai, Y. Degradation of Neonicotinoid Insecticide Acetamiprid by Two Different Nitrile Hydratases of Pseudaminobacter salicylatoxidans CGMCC 1.17248. Int. Biodeterior. Biodegrad. 2021, 157, 105141. [Google Scholar] [CrossRef]
- Kerner, M.; Flach, H.; Dietmann, P.; Kühl, M.; Kühl, S.J. The Impact of the Insecticide Acetamiprid on the Embryogenesis of the Aquatic Model Organism Xenopus laevis. Environ. Toxicol. Pharmacol. 2023, 103, 104278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lv, H.; Li, X.; Wan, H.; He, S.; Li, J.; Ma, K. Sublethal Effects of Acetamiprid and Afidopyropen on Harmonia axyridis: Insights from Transcriptomics Analysis. Ecotoxicol. Environ. Saf. 2023, 262, 115203. [Google Scholar] [CrossRef]
- Sales-Alba, A.; Cruz-Alcalde, A.; López-Vinent, N.; Cruz, L.; Sans, C. Removal of Neonicotinoid Insecticide Clothianidin from Water by Ozone-Based Oxidation: Kinetics and Transformation Products. Sep. Purif. Technol. 2023, 316, 123735. [Google Scholar] [CrossRef]
- Uneme, H. Chemistry of Clothianidin and Related Compounds. J. Agric. Food. Chem. 2010, 59, 2932–2937. [Google Scholar] [CrossRef]
- Li, Y.; Su, P.; Li, Y.; Wen, K.; Bi, G.; Cox, M. Adsorption-Desorption and Degradation of Insecticides Clothianidin and Thiamethoxam in Agricultural Soils. Chemosphere 2018, 207, 708–714. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhang, H.; Gu, Y.; Li, X.; He, M.; Tan, H. Application of the Combination Index (CI)-Isobologram Equation to Research the Toxicological Interactions of Clothianidin, Thiamethoxam, and Dinotefuran in Honeybee, Apis mellifera. Chemosphere 2017, 184, 806–811. [Google Scholar] [CrossRef]
- Dagg, K.; Irish, S.; Wiegand, R.E.; Shililu, J.; Yewhalaw, D.; Messenger, L.A. Evaluation of Toxicity of Clothianidin (Neonicotinoid) and Chlorfenapyr (Pyrrole) Insecticides and Cross-Resistance to Other Public Health Insecticides in Anopheles arabiensis from Ethiopia. Malar. J. 2019, 18, 49. [Google Scholar] [CrossRef]
- Main, A.R.; Michel, N.L.; Cavallaro, M.C.; Headley, J.V.; Peru, K.M.; Morrissey, C.A. Snowmelt Transport of Neonicotinoid Insecticides to Canadian Prairie Wetlands. Agric. Ecosyst. Environ. 2016, 215, 76–84. [Google Scholar] [CrossRef]
- Zhang, C.; Li, F.; Wen, R.; Zhang, H.; Elumalai, P.; Zheng, Q.; Chen, H.; Yang, Y.; Huang, M.; Ying, G. Heterogeneous Electro–Fenton Using Three–Dimension NZVI–BC Electrodes for Degradation of Neonicotinoid Wastewater. Water Res. 2020, 182, 115975. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, J.; Wang, X. Exploring the Multilevel Hazards of Thiamethoxam Using Drosophila melanogaster. J. Hazard. Mater. 2020, 384, 121419. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.B.; Raut-Jadhav, S.; Pandit, A.B. Effect of Intensifying Additives on the Degradation of Thiamethoxam Using Ultrasound Cavitation. Ultrason. Sonochem. 2021, 70, 105310. [Google Scholar] [CrossRef]
- Yao, Y.; Huang, C.; Yang, Y.; Li, M.; Ren, B. Electrochemical Removal of Thiamethoxam Using Three-Dimensional Porous PbO2-CeO2 Composite Electrode: Electrode Characterization, Operational Parameters Optimization and Degradation Pathways. Chem. Eng. J. 2018, 350, 960–970. [Google Scholar] [CrossRef]
- Obregon, D.; Pederson, G.; Taylor, A.; Poveda, K. The Pest Control and Pollinator Protection Dilemma: The Case of Thiamethoxam Prophylactic Applications in Squash Crops. PLoS ONE 2022, 17, e0267984. [Google Scholar] [CrossRef]
- Mancuso, A.; Navarra, W.; Sacco, O.; Pragliola, S.; Vaiano, V.; Venditto, V. Photocatalytic Degradation of Thiacloprid Using Tri-Doped TiO2 Photocatalysts: A Preliminary Comparative Study. Catalysts 2021, 11, 927. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, N.; Gui, W.; Ma, Q. Nitrogen-Doped Graphene Quantum Dots-Based Fluorescence Molecularly Imprinted Sensor for Thiacloprid Detection. Talanta 2018, 183, 339–344. [Google Scholar] [CrossRef]
- Mörtl, M.; Takács, E.; Klátyik, S.; Székács, A. Appearance of Thiacloprid in the Guttation Liquid of Coated Maize Seeds. Int. J. Environ. Res. Public Health 2020, 17, 3290. [Google Scholar] [CrossRef]
- Willow, J.; Silva, A.; Veromann, E.; Smagghe, G. Acute Effect of Low-Dose Thiacloprid Exposure Synergised by Tebuconazole in a Parasitoid Wasp. PLoS ONE 2019, 14, e0212456. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Qureshi, J.A. Demographic Analysis of Fenpyroximate and Thiacloprid Exposed Predatory Mite Amblyseius swirskii (Acari: Phytoseiidae). PLoS ONE 2018, 13, e0206030. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Chen, H.; Wu, S.; Xia, F.; He, M.; Yang, L.; Li, R.; Liao, X.; Li, M. Sublethal Effects of Nitenpyram on the Biological Traits and Metabolic Enzymes of the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Crop Prot. 2022, 155, 105931. [Google Scholar] [CrossRef]
- Pang, S.; Lin, Z.; Zhang, W.; Mishra, S.; Bhatt, P.; Chen, S. Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids. Front. Microbiol. 2020, 11, 526444. [Google Scholar] [CrossRef] [PubMed]
- Schenker, R.; Tinembart, O.; Humbert-Droz, E.; Cavaliero, T.; Yerly, B. Comparative Speed of Kill between Nitenpyram, Fipronil, Imidacloprid, Selamectin and Cythioate against Adult Ctenocephalides felis (Bouché) on Cats and Dogs. Vet. Parasitol. 2003, 112, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Papich, M.G. Nitenpyram. In Papich Handbook of Veterinary Drugs, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 654–655. [Google Scholar] [CrossRef]
- Ahmed, M.A.I.; Vogel, C.F.A.; Malafaia, G. Short Exposure to Nitenpyram Pesticide Induces Effects on Reproduction, Development and Metabolic Gene Expression Profiles in Drosophila melanogaster (Diptera: Drosophilidae). Sci. Total Environ. 2022, 804, 150254. [Google Scholar] [CrossRef]
- Ham, H.J.; Choi, J.Y.; Jo, Y.J.; Sardar, S.W.; Ishag, A.E.S.A.; Abdelbagi, A.O.; Hur, J.H. Residues and Uptake of Soil-Applied Dinotefuran by Lettuce (Lactuca sativa L.) and Celery (Apium graveolens L.). Agriculture 2022, 12, 1443. [Google Scholar] [CrossRef]
- Li, W.; Shen, S.; Chen, H.; Guo, Q. Dissipation Study and Dietary Risk Assessment of Dinotefuran, DN, and UF in Wolfberry. Int. J. Environ. An. Ch. 2020, 100, 1524–1535. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Li, Y.; Yu, X.; Nie, J. Effect of Neonicotinoid Dinotefuran on Root Exudates of Brassica rapa Var. Chinensis. Chemosphere 2021, 266, 129020. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Yang, B.; Tu, M.; Zhang, Q.; Li, H. Impurity Profiling of Dinotefuran by High Resolution Mass Spectrometry and SIRIUS Tool. Molecules 2022, 27, 5251. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Wang, X.; Chen, D.; Li, Y.; Wang, F. Comparative Toxicity and Bioaccumulation of Two Dinotefuran Metabolites, UF and DN, in Earthworms (Eisenia fetida). Environ. Pollut. 2018, 234, 988–996. [Google Scholar] [CrossRef]
- Thany, S.H. Neonicotinoid Insecticides Historical Evolution and Resistance Mechanisms. Adv. Exp. Med. Biol. 2010, 683, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic Insecticides (Neonicotinoids and Fipronil): Trends, Uses, Mode of Action and Metabolites. Environ. Sci. Pollut. Res. Int. 2015, 22, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Anadón, A.; Ares, I.; Martínez, M.; Martínez-Larrañaga, M.R.; Martínez, M.A. Neurotoxicity of Neonicotinoids. Adv. Neurotoxicol. 2020, 4, 167–207. [Google Scholar] [CrossRef]
- Selvam, V.; Srinivasan, S. Neonicotinoid Poisoning and Management. Indian J. Crit. Care Med. 2019, 23, S260–S262. [Google Scholar] [CrossRef]
- Deore, P.; Ahammed Shabeer, T.P.; Upadhyay, A.; Kumar Sharma, A.; Devarumath, R.; Kale, R. Non-Target Impact of Imidacloprid Residues on Wine Aroma Characteristics Assessed by GCxGC-TOF/MS Analysis and Its Residual Transformation in Vinification by UHPLC-Orbitrap-MS Analysis. Microchem. J. 2024, 197, 109834. [Google Scholar] [CrossRef]
- Sangamesh, V.; Pallavi, M.S.; Saraswati, M.; Pavankumar, K.; Hosamani, A.; Bheemanna, M.; Prabhuraj, A.; Paramasivam, M. Determination of Imidacloprid in Brinjal and Okra Fruits, Decontamination and Its Dietary Risk Assessment. Heliyon 2023, 9, e16537. [Google Scholar] [CrossRef]
- Bayer CONFIDOR®. México. 2020. Available online: https://www.micultivo.bayer.com.mx/es-mx/productos/product-details.html/insecticides/confidor.html (accessed on 1 April 2024).
- Ong, P.; Yeh, C.W.; Tsai, I.L.; Lee, W.J.; Wang, Y.J.; Chuang, Y.K. Evaluation of Convolutional Neural Network for Non-Destructive Detection of Imidacloprid and Acetamiprid Residues in Chili Pepper (Capsicum frutescens L.) Based on Visible near-Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 303, 123214. [Google Scholar] [CrossRef]
- Globe Chemicals GLOPRID®. 2020. Available online: https://www.globe-chemicals.com.mx/gc/wp-content/uploads/agro/AGRO_Prod/INSECTICIDAS/Acetamiprid/GLOPRID%20200%20PS/FT%20GLOPRID%20200%20PS.pdf (accessed on 1 April 2024).
- Zhang, Z.Y.; Zheng, Z.T.; Zhu, G.Y.; Yu, X.Y.; Wang, D.L.; Liu, X.J. Validation of Analytical Method and Evaluation of Clothianidin Residues in Rice in a Typical Chinese Field Ecosystem. J. Agric. Sci. 2017, 155, 1371–1380. [Google Scholar] [CrossRef]
- Ramasubramanian, T. Clothianidin in the Tropical Sugarcane Ecosystem: Soil Persistence and Environmental Risk Assessment Under Different Organic Manuring. Bull. Environ. Contam. Toxicol. 2021, 106, 892–898. [Google Scholar] [CrossRef]
- Mei, J.; Ge, Q.; Han, L.; Zhang, H.; Long, Z.; Cui, Y.; Hua, R.; Yu, Y.; Fang, H. Deposition, Distribution, Metabolism, and Reduced Application Dose of Thiamethoxam in a Pepper-Planted Ecosystem. J. Agric. Food Chem. 2019, 67, 11848–11859. [Google Scholar] [CrossRef]
- Zhang, L.; Greenberg, S.M.; Zhang, Y.; Liu, T.X. Effectiveness of Thiamethoxam and Imidacloprid Seed Treatments against Bemisia tabaci (Hemiptera: Aleyrodidae) on Cotton. Pest Manag. Sci. 2011, 67, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.; Jensen, K.M.V.; Nauen, R.; Kristensen, M. Susceptibility of Danish Pollen Beetle Populations against λ-Cyhalothrin and Thiacloprid. J. Pest. Sci. 2017, 91, 447–458. [Google Scholar] [CrossRef]
- Sharma, N.; Banerjee, H.; Pal, S.; Sharma, K.K. Persistence of Thiacloprid and Deltamethrin Residues in Tea Grown at Different Locations of North-East India. Food Chem. 2018, 253, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Kohl, K.L.; Harrell, L.K.; Mudge, J.F.; Subbiah, S.; Kasumba, J.; Osma, E.; Barman, A.K.; Anderson, T.A. Tracking Neonicotinoids Following Their Use as Cotton Seed Treatments. PeerJ 2019, 7, e6805. [Google Scholar] [CrossRef]
- Wang, X.; Su, H.; Wang, J.; Li, G.; Feng, H.; Zhang, J. Monitoring of Insecticide Resistance for Apolygus lucorum Populations in the Apple Orchard in China. Crop Prot. 2023, 170, 106279. [Google Scholar] [CrossRef]
- McCoy, C.; Broce, A.B.; Dryden, M.W. Flea Blood Feeding Patterns in Cats Treated with Oral Nitenpyram and the Topical Insecticides Imidacloprid, Fipronil and Selamectin. Vet. Parasitol. 2008, 156, 293–301. [Google Scholar] [CrossRef]
- Xiao, O.; Li, M.; Liu, X.; Chen, J.; Wang, R.; Dai, X.; Kong, Z. Residue Behaviors and Dietary Risk Assessment of Dinotefuran and Its Metabolites in Lycium barbarum from Farm to Fork. Food Sci. Hum. Wellness 2022, 14, 1–19. [Google Scholar] [CrossRef]
- Cavallaro, M.C.; Hladik, M.L.; Hittson, S.; Middleton, G.; Hoback, W.W. Comparative Toxicity of Two Neonicotinoid Insecticides at Environmentally Relevant Concentrations to Telecoprid Dung Beetles. Sci. Rep. 2023, 13, 1–10. [Google Scholar] [CrossRef]
- Katić, A.; Kašuba, V.; Kopjar, N.; Lovaković, B.T.; Marjanović Čermak, A.M.; Mendaš, G.; Micek, V.; Milić, M.; Pavičić, I.; Pizent, A.; et al. Effects of Low-Level Imidacloprid Oral Exposure on Cholinesterase Activity, Oxidative Stress Responses, and Primary DNA Damage in the Blood and Brain of Male Wistar Rats. Chem. Biol. Interact. 2021, 338, 109287. [Google Scholar] [CrossRef]
- Humann-Guilleminot, S.; Andreo, L.; Blatti, E.; Glauser, G.; Helfenstein, F.; Desprat, J. Experimental Evidence for Clothianidin Deposition in Feathers of House Sparrows after Ingestion of Sublethal Doses Treated Seeds. Chemosphere 2023, 315, 137724. [Google Scholar] [CrossRef]
- El-Garawani, I.M.; Khallaf, E.A.; Alne-na-ei, A.A.; Elgendy, R.G.; Sobhy, H.M.; Khairallah, A.; Hathout, H.M.R.; Malhat, F.; Nofal, A.E. The Effect of Neonicotinoids Exposure on Oreochromis niloticus Histopathological Alterations and Genotoxicity. Bull. Environ. Contam. Toxicol. 2022, 109, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Peña, S.V.D.; Natale, G.S.; Brodeur, J.C. Toxicity of the Neonicotinoid Insecticides Thiamethoxam and Imidacloprid to Tadpoles of Three Species of South American Amphibians and Effects of Thiamethoxam on the Metamorphosis of Rhinella arenarum. J. Toxicol. Environ. Health A 2022, 85, 1019–1039. [Google Scholar] [CrossRef]
- Shinya, S.; Nishibe, F.; Yohannes, Y.B.; Ishizuka, M.; Nakayama, S.M.; Ikenaka, Y. Characteristics of Tissue Distribution, Metabolism, Effects on Brain Catecholamines, and Environmental Exposure of Frogs to Neonicotinoid Insecticides. Aquat. Toxicol. 2023, 257, 106437. [Google Scholar] [CrossRef] [PubMed]
- Rohlman, D.S.; Olson, J.R.; Ismail, A.A.; Bonner, M.R.; Abdel Rasoul, G.; Hendy, O. Identifying and Preventing the Neurotoxic Effects of Pesticides. Adv. Neurotoxicol. 2022, 7, 203–255. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I.; Shabbir, R.; Ikram, K.; Saqlain Zaheer, M.; Faheem, M.; Haider Ali, H.; Iqbal, J. Seed Coating Technology: An Innovative and Sustainable Approach for Improving Seed Quality and Crop Performance. J. Saudi Soc. Agric. Sci. 2022, 21, 536–545. [Google Scholar] [CrossRef]
- Forero, L.G.; Limay-Rios, V.; Xue, Y.; Schaafsma, A. Concentration and Movement of Neonicotinoids as Particulate Matter Downwind during Agricultural Practices Using Air Samplers in Southwestern Ontario, Canada. Chemosphere 2017, 188, 130–138. [Google Scholar] [CrossRef]
- Gruyters, W.; Foqué, D.; Devarrewaere, W.; Nuyttens, D.; Jones, N.; Chapple, A.C.; Jene, B.; Nicolai, B.; Sornin, B.; Verboven, P. Dust Drift during Sowing of Sugar Beet: Part 2-Predictive Modelling of the Fate of Dust Particles Using CFD. Asp. Appl. Biol. 2020, 144, 247–254. [Google Scholar]
- Ferrari, L.; Speltini, A. Neonicotinoids: An Overview of the Newest Sample Preparation Procedures of Environmental, Biological and Food Matrices. Adv. Sample Prep. 2023, 8, 100094. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, J.; Wang, Z.; Zhang, B.; Sun, Z.; Yun, X.; Zhang, J. Levels and Inhalation Health Risk of Neonicotinoid Insecticides in Fine Particulate Matter (PM2.5) in Urban and Rural Areas of China. Environ. Int. 2020, 142, 105822. [Google Scholar] [CrossRef]
- Niu, Y.H.; Li, X.; Wang, H.X.; Liu, Y.J.; Shi, Z.H.; Wang, L. Soil Erosion-Related Transport of Neonicotinoids in New Citrus Orchards. Agric. Ecosyst. Environ. 2020, 290, 106776. [Google Scholar] [CrossRef]
- Imran, M. Neonicotinoid Insecticides: A Threat to Pollinators. In Trends in Integrated Insect Pest Management; IntechOpen: Rijeka, Croatia, 2020; ISBN 978-1-78984-485-6. [Google Scholar] [CrossRef]
- Casillas, A.; De la Torre, A.; Navarro, I.; Sanz, P.; De-los-Ángeles-Martínez, M. Environmental risk assessment of neonicotinoids in surface water. Sci. Total Environ. 2022, 809, 151161. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Han, Q.; Wang, Y.; He, Z. Five degradates of imidacloprid in source water, treated water, and tap water in Wuhan, central China. Sci. Total Environ. 2020, 741, 140227. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Kolpin, D.W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ. Chem. 2016, 13, 12. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, C.; Liu, H.; Wu, R.; Tian, D.; Ruan, J.; Zhang, T.; Huang, M.; Ying, G. Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China. Environ. Pollut. 2019, 251, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Smit, C.E.; Posthuma-Doodeman, C.J.A.M.; van Vlaardingen, P.L.A.; de Jong, F.M.W. Ecotoxicity of Imidacloprid to Aquatic Organisms: Derivation of Water Quality Standards for Peak and Long-Term Exposure. Hum. Ecol. Risk Assess. 2015, 21, 1608–1630. [Google Scholar] [CrossRef]
- Pietrzak, D.; Kania, J.; Kmiecik, E.; Malina, G.; Wątor, K. Fate of Selected Neonicotinoid Insecticides in Soil–Water Systems: Current State of the Art and Knowledge Gaps. Chemosphere 2020, 255, 126981. [Google Scholar] [CrossRef]
- Kurwadkar, S.T.; Dewinne, D.; Wheat, R.; McGahan, D.G.; Mitchell, F.L. Time Dependent Sorption Behavior of Dinotefuran, Imidacloprid and Thiamethoxam. J. Environ. Sci. Health B 2013, 48, 237–242. [Google Scholar] [CrossRef]
- Wan, Y.; Tran, T.M.; Nguyen, V.T.; Wang, A.; Wang, J.; Kannan, K. Neonicotinoids, Fipronil, Chlorpyrifos, Carbendazim, Chlorotriazines, Chlorophenoxy Herbicides, Bentazon, and Selected Pesticide Transformation Products in Surface Water and Drinking Water from Northern Vietnam. Sci. Total Environ. 2021, 750, 141507. [Google Scholar] [CrossRef]
- Craddock, H.A.; Huang, D.; Turner, P.C.; Quirós-Alcalá, L.; Payne-Sturges, D.C. Trends in Neonicotinoid Pesticide Residues in Food and Water in the United States, 1999–2015. Environ. Health 2019, 18, 7. [Google Scholar] [CrossRef]
- Barbieri, M.V.; Monllor-Alcaraz, L.S.; Postigo, C.; López de Alda, M. Improved Fully Automated Method for the Determination of Medium to Highly Polar Pesticides in Surface and Groundwater and Application in Two Distinct Agriculture-Impacted Areas. Sci. Total Environ. 2020, 745, 140650. [Google Scholar] [CrossRef]
- Postigo, C.; Ginebreda, A.; Barbieri, M.V.; Barceló, D.; Martín-Alonso, J.; de la Cal, A.; Boleda, M.R.; Otero, N.; Carrey, R.; Solà, V.; et al. Investigative Monitoring of Pesticide and Nitrogen Pollution Sources in a Complex Multi-Stressed Catchment: The Lower Llobregat River Basin Case Study (Barcelona, Spain). Sci. Total Environ. 2021, 755, 142377. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Kolpin, D.W.; Kuivila, K.M. Widespread Occurrence of Neonicotinoid Insecticides in Streams in a High Corn and Soybean Producing Region, USA. Environ. Pollut. 2014, 193, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Tsegay, G.; Lartey-Young, G.; Mariye, M.; Gao, Y.; Meng, X.Z. Assessing Neonicotinoid Accumulation and Ecological Risks in the Aquatic Environment of Yangtze River Basin, China. Chemosphere 2024, 351, 141254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yi, X.; Xie, L.; Liu, H.; Tian, D.; Yan, B.; Li, D.; Li, H.; Huang, M.; Ying, G.G. Contamination of Drinking Water by Neonicotinoid Insecticides in China: Human Exposure Potential through Drinking Water Consumption and Percutaneous Penetration. Environ. Int. 2021, 156, 106650. [Google Scholar] [CrossRef]
- Klarich, K.L.; Pflug, N.C.; DeWald, E.M.; Hladik, M.L.; Kolpin, D.W.; Cwiertny, D.M.; LeFevre, G.H. Occurrence of Neonicotinoid Insecticides in Finished Drinking Water and Fate during Drinking Water Treatment. Environ. Sci. Technol. Lett. 2017, 4, 168–173. [Google Scholar] [CrossRef]
- Moschet, C.; Wittmer, I.; Simovic, J.; Junghans, M.; Piazzoli, A.; Singer, H.; Stamm, C.; Leu, C.; Hollender, J. How a Complete Pesticide Screening Changes the Assessment of Surface Water Quality. Environ. Sci. Technol. 2014, 48, 5423–5432. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, D.; Yi, X.H.; Zhang, T.; Ruan, J.; Wu, R.; Chen, C.; Huang, M.; Ying, G.G. Occurrence, Distribution and Seasonal Variation of Five Neonicotinoid Insecticides in Surface Water and Sediment of the Pearl Rivers, South China. Chemosphere 2019, 217, 437–446. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Z.; Ma, X.; Li, H.; You, J. Occurrence and Risk of Neonicotinoid Insecticides in Surface Water in a Rapidly Developing Region: Application of Polar Organic Chemical Integrative Samplers. Sci. Total Environ. 2019, 648, 1305–1312. [Google Scholar] [CrossRef]
- Merga, L.B.; Van den Brink, P.J. Ecological Effects of Imidacloprid on a Tropical Freshwater Ecosystem and Subsequent Recovery Dynamics. Sci. Total Environ. 2021, 784, 147167. [Google Scholar] [CrossRef]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid Contamination of Global Surface Waters and Associated Risk to Aquatic Invertebrates: A Review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; van den Brink, N.W.; Buijse, L.; Roessink, I.; van den Brink, P.J. The Toxicity and Toxicokinetics of Imidacloprid and a Bioactive Metabolite to Two Aquatic Arthropod Species. Aquat. Toxicol. 2021, 235, 105837. [Google Scholar] [CrossRef]
- Rackliffe, D.R.; Hoverman, J.T. Exposure to Clothianidin and Predators Increases Mortality for Heptageniidae. Aquat. Toxicol. 2022, 246, 106146. [Google Scholar] [CrossRef] [PubMed]
- Duchet, C.; Hou, F.; Sinclair, C.A.; Tian, Z.; Kraft, A.; Kolar, V.; Kolodziej, E.P.; McIntyre, J.K.; Stark, J.D. Neonicotinoid Mixture Alters Trophic Interactions in a Freshwater Aquatic Invertebrate Community. Sci. Total Environ. 2023, 897, 165419. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Roessink, I.; van den Brink, N.W.; van den Brink, P.J. Size- and Sex-Related Sensitivity Differences of Aquatic Crustaceans to Imidacloprid. Ecotoxicol. Environ. Saf. 2022, 242, 113917. [Google Scholar] [CrossRef] [PubMed]
- Qadir, S.; Latif, A.; Ali, M.; Iqbal, F. Effects of Imidacloprid on the Hematological and Serum Biochemical Profile of Labeo Rohita. Pak. J. Zool. 2014, 46, 1085–1090. [Google Scholar]
- Guedegba, N.L.; Imorou Toko, I.; Agbohessi, P.T.; Zoumenou, B.; Douny, C.; Mandiki, S.N.M.; Schiffers, B.; Scippo, M.L.; Kestemont, P. Comparative Acute Toxicity of Two Phytosanitary Molecules, Lambda-Cyhalothrin and Acetamiprid, on Nile Tilapia (Oreochromis niloticus) Juveniles. J. Environ. Sci. Health B 2019, 54, 580–589. [Google Scholar] [CrossRef]
- Cheghib, Y.; Chouahda, S.; Soltani, N. Side-Effects of a Neonicotinoid Insecticide (Actara®) on a Non-Target Larvivorous Fish Gambusia affinis: Growth and Biomarker Responses. Egypt J. Aquat. Res. 2020, 46, 167–172. [Google Scholar] [CrossRef]
- Ji, S.; Cheng, H.; Rinklebe, J.; Liu, X.; Zhu, T.; Wang, M.; Xu, H.; Wang, S. Remediation of Neonicotinoid-Contaminated Soils Using Peanut Shell Biochar and Composted Chicken Manure: Transformation Mechanisms of Geochemical Fractions. J. Hazard Mater. 2024, 466, 133619. [Google Scholar] [CrossRef]
- Hernandez Jerez, A.; Adriaanse, P.; Berny, P.; Coja, T.; Duquesne, S.; Focks, A.; Marinovich, M.; Millet, M.; Pelkonen, O.; Pieper, S.; et al. Statement on the Active Substance Acetamiprid. EFSA J. 2022, 20, e07031. [Google Scholar] [CrossRef]
- FAO; WHO. Pesticide Detail: Acetamiprid. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/es/?p_id=246 (accessed on 6 March 2024).
- EU Comission Regulation (EU) 2017/626. Official Journal of the European Union 2019. Available online: https://eur-lex.europa.eu/eli/reg/2019/88/oj (accessed on 7 March 2024).
- Bonmatin, J.M.; Mitchell, E.A.D.; Glauser, G.; Lumawig-Heitzman, E.; Claveria, F.; Bijleveld van Lexmond, M.; Taira, K.; Sánchez-Bayo, F. Residues of Neonicotinoids in Soil, Water and People’s Hair: A Case Study from Three Agricultural Regions of the Philippines. Sci. Total Environ. 2021, 757, 143822. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fu, Y.; Zhang, Y.; Zhao, Z.; Xu, T.; Chen, Y.; Luo, J.; Yang, M. Residue, Distribution and Degradation of Neonicotinoids and Their Metabolites in Chrysanthemum Plants and Cultivated Soils. Microchem. J. 2023, 194, 109315. [Google Scholar] [CrossRef]
- Abu-Duka, A.B.; Mohammadali, M.T. Study of the Efectiveness of Pesticides Thiamethoxam and Acetamiprid against Cabbage Aphid Brevicoryne brassicae and Measure the Residue of Acetamiprid in Leaves and Soil of Cabbage Using HPLC. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 123–129. [Google Scholar]
- Jiménez-Ortega, L.A.; de Jesús Bastidas-Bastidas, J.; Valdez-Baro, O.; Báez-Sañudo, M.A.; Báez-Sañudo, A.; Basilio Heredia, J. Residuos de Plaguicidas En Biomasa Agrícola de Chile (Capsicum annuum L.) Usando Un Método QuEChERS Acoplado a LC-MS/MS y GC-MS/MS: Pesticide Residues in Agricultural Biomass of Pepper (Capsicum annuum L.) Using a QuEChERS Method Coupled to LC-MS/MS and GC-MS/MS. e-CUCBA 2023, 10, 92–102. [Google Scholar] [CrossRef]
- Dong, B.; Qin, S.; Hu, J. Occurrence and Health Risk Assessment of Fourteen Pesticides and Their Metabolites in Marketing Tomatoes in China. J. Food Compos. Anal. 2023, 122, 105436. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, Y.; Li, Y.; Yang, W.; Jiang, W.; Liang, Y.; Zhang, Z. Residue Behaviors of Six Pesticides during Apple Juice Production and Storage. Food Res. Int. 2024, 177, 113894. [Google Scholar] [CrossRef]
- Azizi, S.; Mbewe, N.J.; Mo, H.; Edward, F.; Sumari, G.; Mwacha, S.; Msapalla, A.; Mawa, B.; Mosha, F.; Matowo, J. Is Anopheles gambiae (Sensu Stricto), the Principal Malaria Vector in Africa Prone to Resistance Development against New Insecticides? Outcomes from Laboratory Exposure of An. gambiae (s.s.) to Sub-Lethal Concentrations of Chlorfenapyr and Clothianidin. Curr. Res. Parasitol. Vector-Borne Dis. 2024, 5, 100172. [Google Scholar] [CrossRef]
- FAO; WHO. Pesticide Detail: Clothianidin. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/es/?p_id=238 (accessed on 8 March 2024).
- EU Comission Regulation (EU) 2023/334. Official Journal of the European Union 2023. Available online: https://eur-lex.europa.eu/eli/reg/2023/334/oj (accessed on 8 March 2024).
- Cheng, C.; Hu, J. Residue Levels of Chlorantraniliprole and Clothianidin in Rice and Sugar Cane and Chronic Dietary Risk Assessment for Different Populations. Microchem. J. 2022, 183, 107936. [Google Scholar] [CrossRef]
- Elumalai, P.; Yi, X.; Chen, Z.; Rajasekar, A.; Brazil de Paiva, T.C.; Hassaan, M.A.; Ying, G.; Huang, M. Detection of Neonicotinoids in Agriculture Soil and Degradation of Thiacloprid through Photo Degradation, Biodegradation and Photo-Biodegradation. Environ. Pollut. 2022, 306, 119452. [Google Scholar] [CrossRef]
- EU Implementing Regulation (EU) 2018/783. Official Journal of the European Union 2018. Available online: https://eur-lex.europa.eu/eli/reg_impl/2018/783/oj (accessed on 8 March 2024).
- FAO; WHO. Pesticide Detail: Imidacloprid. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/es/?p_id=206 (accessed on 8 March 2024).
- Castro-Valdez, D.F.; Pérez-Grajales, M.; Pérez-Olvera, M.A.; Contreras-Cruz, L.F.; Pineda-Pineda, J. Residuos de Plaguicidas en Brócoli (Brassica oleracea var. Itálica) Para El Mercado Nacional e Internacional. Rev. Int. Contam. Ambiental 2021, 37, 133–143. [Google Scholar] [CrossRef]
- FAO; WHO. Pesticide Detail: Thiamethoxam. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/es/?p_id=245 (accessed on 8 March 2024).
- Liu, R.; Li, B.; Liu, Y.; Pan, C.; Zhou, Z.; Diao, J.; Zhang, Y. Selenium Nanoparticle Alleviates Penthiopyrad-Induced Oxidative Stress and Restores the Development and Flavor Quality of Tomato Fruit. J. Food Compos. Anal. 2024, 130, 106142. [Google Scholar] [CrossRef]
- FAO; WHO. Pesticide Detail: Thiacloprid. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/es/?p_id=223 (accessed on 8 May 2024).
- European Commission Proposal for a COUNCIL REGULATION Amending Annex II to Regulation (EC) No 396/2005 of the European Parliament and of the Council as Regards Maximum Residue Levels for Thiacloprid in or on Certain Products. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52023PC0739 (accessed on 9 April 2024).
- Nuñez Ramos, P.A.; Santana, M.; Mejía, A.; Cabral, C.; Arias, J.; López-Rodríguez, G.; Sánchez, L. Presencia de Residuos de Organofosforados y Carbamatos En Vegetales Orientales, La Vega, República Dominicana. Rev. Agropec. Fores. 2021, 10, 69–80. [Google Scholar]
- EU Commission Regulation (EU) No 491/2014. Available online: http://data.europa.eu/eli/reg/2014/491/oj (accessed on 9 April 2024).
- Kumar Karedla, A.; Surya Raj, R.; Krishnamoorthy, S.V.; Suganthi, A.; Bhuvaneswari, K.; Karthikeyan, S.; Geetha, P.; Senthilkumar, M.; Jeyarajan Nelson, S. Validation, Dissipation Kinetics and Monitoring of Flonicamid and Dinotefuran Residues in Paddy Grain, Straw, Its Processed Produces and Bran Oil Using LC-MS/MS. Food Chem. 2024, 435, 137589. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Wang, Y.; Song, Q.; Chen, L.; Zhang, Y.; Hu, D. Determination of Nitenpyram Dissipation and Residue in Kiwifruit by LC-MS/MS. Food Addit.Contam. A 2020, 37, 955–962. [Google Scholar] [CrossRef]
- Tison, L.; Beaumelle, L.; Monceau, K.; Thiéry, D. Transfer and Bioaccumulation of Pesticides in Terrestrial Arthropods and Food Webs: State of Knowledge and Perspectives for Research. Chemosphere 2024, 357, 142036. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, F.; Yue, X.; Zhang, S.; Wang, H.; Xiao, J.; Cao, H.; Shi, Y. Inhalation Bioaccessibility of Imidacloprid in Particulate Matter: Implications for Risk Assessment during Spraying. J. Hazard Mater. 2024, 469, 133986. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, P.; Chang, J.; Li, W.; Yang, L.; Tian, H. Unraveling the Toxic Effects of Neonicotinoid Insecticides on the Thyroid Endocrine System of Lizards. Environ. Pollut. 2020, 258, 113731. [Google Scholar] [CrossRef]
- Humann-Guilleminot, S.; Laurent, S.; Bize, P.; Roulin, A.; Glauser, G.; Helfenstein, F. Contamination by Neonicotinoid Insecticides in Barn Owls (Tyto alba) and Alpine Swifts (Tachymarptis melba). Sci. Total Environ. 2021, 785, 147403. [Google Scholar] [CrossRef]
- Hsiao, C.J.; Lin, C.L.; Lin, T.Y.; Wang, S.E.; Wu, C.H. Imidacloprid Toxicity Impairs Spatial Memory of Echolocation Bats through Neural Apoptosis in Hippocampal CA1 and Medial Entorhinal Cortex Areas. Neuroreport 2016, 27, 462–468. [Google Scholar] [CrossRef]
- Maeda, M.; Kitauchi, S.; Hirano, T.; Ikenaka, Y.; Nishi, M.; Shoda, A.; Murata, M.; Mantani, Y.; Tabuchi, Y.; Yokoyama, T.; et al. Fetal and Lactational Exposure to the No-Observed-Adverse-Effect Level (NOAEL) Dose of the Neonicotinoid Pesticide Clothianidin Inhibits Neurogenesis and Induces Different Behavioral Abnormalities at the Developmental Stages in Male Mice. J. Vet. Med. Sci. 2021, 83, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.M.; Green, F.B.; Smith, P.N. Toxic Responses of Blue Orchard Mason Bees (Osmia lignaria) Following Contact Exposure to Neonicotinoids, Macrocyclic Lactones, and Pyrethroids. Ecotoxicol. Environ. Saf. 2021, 208, 111681. [Google Scholar] [CrossRef] [PubMed]
- Fischer, N.; Costa, C.P.; Hur, M.; Kirkwood, J.S.; Woodard, S.H. Impacts of Neonicotinoid Insecticides on Bumble Bee Energy Metabolism Are Revealed under Nectar Starvation. Sci. Total Environ. 2024, 912, 169388. [Google Scholar] [CrossRef]
- Morfin, N.; Fillier, T.A.; Pham, T.H.; Goodwin, P.H.; Thomas, R.H.; Guzman-Novoa, E. First Insights into the Honey Bee (Apis mellifera) Brain Lipidome and Its Neonicotinoid-Induced Alterations Associated with Reduced Self-Grooming Behavior. J. Adv. Res. 2022, 37, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Shi, J.; Yu, L.; Wu, X. Metabolic Profiling of Apis mellifera Larvae Treated with Sublethal Acetamiprid Doses. Ecotoxicol. Environ. Saf. 2023, 254, 114716. [Google Scholar] [CrossRef]
- Mora-Gutiérrez, A.; Guevara, J.; Rubio, C.; Calvillo-Velasco, M.; Silva-Adaya, D.; Retana-Márquez, S.; Espinosa, B.; Martínez-Valenzuela, C.; Rubio-Osornio, M. Clothianidin and Thiacloprid Mixture Administration Induces Degenerative Damage in the Dentate Gyrus and Alteration in Short-Term Memory in Rats. Journal Of Toxicology. J. Toxicol. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Zuščíková, L.; Bažány, D.; Greifová, H.; Knížatová, N.; Kováčik, A.; Lukáč, N.; Jambor, T. Screening of Toxic Effects of Neonicotinoid Insecticides with a Focus on Acetamiprid: A Review. Toxics. 2023, 11, 598. [Google Scholar] [CrossRef]
- Gibbons, D.; Morrissey, C.; Mineau, P. A Review of the Direct and Indirect Effects of Neonicotinoids and Fipronil on Vertebrate Wildlife. Environ. Sci. Pollut. Res. 2015, 22, 103–118. [Google Scholar] [CrossRef]
- Chen, Y.; Tzeng, D.T.W.; Yang, E. Chronic Effects of Imidacloprid on Honey Bee Worker Development—Molecular Pathway Perspectives. Int. J. Mol. Sci. 2021, 22, 11835. [Google Scholar] [CrossRef]
- Yuanyuan, Z.; Zhixing, R.; Hao, Y.; Yu, L. A Novel Multi-Criteria Framework for Optimizing Ecotoxicological Effects and Human Health Risks of Neonicotinoid Insecticides: Characterization, Assessment and Regulation Strategies. J. Hazard Mater. 2022, 432, 128712. [Google Scholar] [CrossRef]
- Costas-Ferreira, C.; Faro, L.R.F. Neurotoxic Effects of Neonicotinoids on Mammals: What Is There beyond the Activation of Nicotinic Acetylcholine Receptors?—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 8413. [Google Scholar] [CrossRef] [PubMed]
- Tsegay, G.; Lartey-Young, G.; Sibhat, M.; Gao, Y.; Guo, L.C.; Meng, X.Z. An Integrated Approach to Assess Human Health Risk of Neonicotinoid Insecticides in Surface Water of the Yangtze River Basin, China. J. Hazard Mater. 2024, 469, 133915. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Wang, Y.; Yang, Z.; Wang, Y.; Huang, M.; Luo, B.; Wang, H.; Chen, Y.; Jiang, Q. Neonicotinoids Residues in the Honey Circulating in Chinese Market and Health Risk on Honey Bees and Human. Environ. Pollut. 2022, 313, 120146. [Google Scholar] [CrossRef] [PubMed]
- Ponce-Vejar, G.; Ramos de Robles, S.L.; Macias-Macias, J.O.; Petukhova, T.; Guzman-Novoa, E. Detection and Concentration of Neonicotinoids and Other Pesticides in Honey from Honey Bee Colonies Located in Regions That Differ in Agricultural Practices: Implications for Human and Bee Health. Int. J. Environ. Res. Public Health 2022, 19, 8199. [Google Scholar] [CrossRef]
- Wang, X.; Anadón, A.; Wu, Q.; Qiao, F.; Ares, I.; Martínez-Larrañaga, M.R.; Yuan, Z.; Martínez, M.A. Mechanism of Neonicotinoid Toxicity: Impact on Oxidative Stress and Metabolism. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 471–507. [Google Scholar] [CrossRef]
- Corringer, P.J.; Le Novère, N.; Changeux, J.P. Nicotinic Receptors at the Amino Acid Level. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 431–458. [Google Scholar] [CrossRef]
- Gotti, C.; Clementi, F. Neuronal Nicotinic Receptors: From Structure to Pathology. Prog. Neurobiol. 2004, 74, 363–396. [Google Scholar] [CrossRef]
- Hirano, T.; Minagawa, S.; Furusawa, Y.; Yunoki, T.; Ikenaka, Y.; Yokoyama, T.; Hoshi, N.; Tabuchi, Y. Growth and Neurite Stimulating Effects of the Neonicotinoid Pesticide Clothianidin on Human Neuroblastoma SH-SY5Y Cells. Toxicol. Appl. Pharmacol. 2019, 383, 114777. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, R.; Zhao, M.; Li, S.; Yin, N.; Zhang, A.; Faiola, F. Typical Neonicotinoids and Organophosphate Esters, but Not Their Metabolites, Adversely Impact Early Human Development by Activating BMP4 Signaling. J. Hazard Mater. 2024, 465, 133028. [Google Scholar] [CrossRef]
- Rodrigues, K.J.A.; Santana, M.B.; Do Nascimento, J.L.M.; Picanço-Diniz, D.L.W.; Maués, L.A.L.; Santos, S.N.; Ferreira, V.M.M.; Alfonso, M.; Durán, R.; Faro, L.R.F. Behavioral and Biochemical Effects of Neonicotinoid Thiamethoxam on the Cholinergic System in Rats. Ecotoxicol. Environ. Saf. 2010, 73, 101–107. [Google Scholar] [CrossRef]
- Lonare, M.; Kumar, M.; Raut, S.; Badgujar, P.; Doltade, S.; Telang, A. Evaluation of Imidacloprid-Induced Neurotoxicity in Male Rats: A Protective Effect of Curcumin. Neurochem. Int. 2014, 78, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, H.H.; Kara, M.; Yumrutas, O.; Uckardes, F.; Eraslan, E.; Demir, C.F.; Bal, R. Determination of the Effects on Learning and Memory Performance and Related Gene Expressions of Clothianidin in Rat Models. Cogn. Neurodyn. 2014, 8, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Ozsahin, A.D.; Bal, R.; Yilmaz, O. Biochemical Alterations in Kidneys of Infant and Adult Male Rats Due to Exposure to the Neonicotinoid Insecticides Imidacloprid and Clothianidin. Toxicol. Res. 2014, 3, 324–330. [Google Scholar] [CrossRef]
- Nimako, C.; Ikenaka, Y.; Akoto, O.; Bortey-Sam, N.; Ichise, T.; Nakayama, S.M.M.; Asante, K.A.; Fujioka, K.; Taira, K.; Ishizuka, M. Human Exposures to Neonicotinoids in Kumasi, Ghana. Environ Toxicol. Chem. 2021, 40, 2306–2318. [Google Scholar] [CrossRef] [PubMed]
- Ospina, M.; Wong, L.Y.; Baker, S.E.; Serafim, A.B.; Morales-Agudelo, P.; Calafat, A.M. Exposure to Neonicotinoid Insecticides in the U.S. General Population: Data from the 2015–2016 National Health and Nutrition Examination Survey. Environ. Res. 2019, 176, 108555. [Google Scholar] [CrossRef]
- Kapoor, U.; Srivastava, M.K.; Srivastava, L.P. Toxicological Impact of Technical Imidacloprid on Ovarian Morphology, Hormones and Antioxidant Enzymes in Female Rats. Food Chem. Toxicol. 2011, 49, 3086–3089. [Google Scholar] [CrossRef]
- Yardimci, M.; Sevgiler, Y.; Rencuzogullari, E.; Arslan, M.; Buyukleyla, M.; Yilmaz, M. Sex-, Tissue-, and Exposure Duration-Dependent Effects of Imidacloprid Modulated by Piperonyl Butoxide and Menadione in Rats. Part I: Oxidative and Neurotoxic Potentials. Arh. Hig. Rada Toksikol. 2014, 65, 387–398. [Google Scholar] [CrossRef]
Neonicotinoid | Molecular Formula | Solubility in Water at 20 °C (mg L−1) | Henry’s Law Constant at 25 °C (Pa m3 mol−1) b | Aqueous Hydrolysis DT50 (Days) at 20 °C and pH 7 c | LogKow at pH 7, 20 °C d | |
---|---|---|---|---|---|---|
Stable pH | Note | |||||
Imidacloprid | C9H10CIN5O2 | 610 (High) | 1.7 × 10−10 | 5–7 | DT50 approx. 1 year—pH 9 | 0.57 |
Acetamiprid | C10H11CIN4 | 2950 (High) | 5.30 × 10−08 | 4–7 | DT50 420—pH 9 | 0.8 |
Clothianidin | C6H8CIN5O2S | 327 (Moderate) | 2.9 × 10−11 | 4–9 | DT50 14.4—pH 9, 50 °C | 0.90 |
Thiamethoxam | C8H10CIN5O3S | 4100 (High) | 4.70 × 10−10 | 1–7 | DT50 11.5—pH 9 | −0.13 |
Nitenpyram | C11H15CIN4O2 | 570,000 (High) | 3.54 × 10−13 | 3–7 | DT50 2.9—pH 9 | −0.66 |
Dinotefuran | C7H14N4O3 | 39,830 (High) | 8.7 × 10−09 | 4–9 | - | −0.549 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota, Z.L.; Díaz, I.A.; Martínez-Ávila, A.E.; Otero-Olvera, M.; Leyva-Ruíz, D.; Aponte-Pineda, L.S.; Rangel-Duarte, S.G.; Pacheco-Aguilar, J.R.; Amaro-Reyes, A.; Campos-Guillén, J.; et al. A Review of the Adverse Effects of Neonicotinoids on the Environment. Environments 2024, 11, 196. https://doi.org/10.3390/environments11090196
Mota ZL, Díaz IA, Martínez-Ávila AE, Otero-Olvera M, Leyva-Ruíz D, Aponte-Pineda LS, Rangel-Duarte SG, Pacheco-Aguilar JR, Amaro-Reyes A, Campos-Guillén J, et al. A Review of the Adverse Effects of Neonicotinoids on the Environment. Environments. 2024; 11(9):196. https://doi.org/10.3390/environments11090196
Chicago/Turabian StyleMota, Zyanya L., Itzel A. Díaz, Adriana E. Martínez-Ávila, M. Otero-Olvera, Dania Leyva-Ruíz, L. S. Aponte-Pineda, S. G. Rangel-Duarte, J. R. Pacheco-Aguilar, Aldo Amaro-Reyes, J. Campos-Guillén, and et al. 2024. "A Review of the Adverse Effects of Neonicotinoids on the Environment" Environments 11, no. 9: 196. https://doi.org/10.3390/environments11090196
APA StyleMota, Z. L., Díaz, I. A., Martínez-Ávila, A. E., Otero-Olvera, M., Leyva-Ruíz, D., Aponte-Pineda, L. S., Rangel-Duarte, S. G., Pacheco-Aguilar, J. R., Amaro-Reyes, A., Campos-Guillén, J., Montes-Flores, L. A., & Ramos-López, M. A. (2024). A Review of the Adverse Effects of Neonicotinoids on the Environment. Environments, 11(9), 196. https://doi.org/10.3390/environments11090196