Can Phthalates Be Considered as Microplastic Tracers in the Mediterranean Marine Environment?
Abstract
:1. Introduction
2. Methods of Analysis
2.1. Quality Control and Quality Assurance (QC/QA)
2.2. Analytical Methods
2.2.1. Sample Preparation
2.2.2. Analysis
3. Occurrence, Spatial, and Seasonal Distribution of PAEs in the Mediterranean Area
3.1. Seawater
3.2. Sediments
3.3. Biota
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Plastic Europe. Plastics—The Fast Facts 2023. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2023/ (accessed on 3 June 2024).
- OECD. Plastic Pollution Is Growing Relentlessly as Waste Management and Recycling Fall Short, Says OECD. Available online: https://www.oecd.org/environment/plastic-pollution-is-growing-relentlessly-as-waste-management-and-recycling-fall-short.html (accessed on 4 June 2024).
- Ryan, P.G. Ingestion of plastics by marine organisms. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 235–266. [Google Scholar]
- Seng, N.; Lai, S.; Fong, J.; Saleh, M.F.; Cheng, C.; Cheok, Z.Y.; Todd, P.A. Early evidence of microplastics on seagrass and macroalgae. Mar. Freshw. Res. 2020, 71, 922–928. [Google Scholar] [CrossRef]
- Rivers-Auty, J.; Bond, A.L.; Grant, M.L.; Lavers, J.L. The one-two punch of plastic exposure: Macro-and micro-plastics induce multi-organ damage in seabirds. J. Hazard. Mater. 2023, 442, 130117. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.M.; Rao, D.Q. Microplastics: Their Effects on Amphibians and Reptiles—A Review. Pak. J. Zool. 2022, 54, 2931–2951. [Google Scholar] [CrossRef]
- Wang, R.; Mou, H.; Lin, X.; Zhu, H.; Li, B.; Wang, J.; Junaid, M.; Wang, J. Microplastics in mollusks: Research progress, current contamination status, analysis approaches, and future perspectives. Front. Mar. Sci. 2021, 8, 759919. [Google Scholar] [CrossRef]
- Ma, C.; Chen, Q.; Li, J.; Li, B.; Liang, W.; Su, L.; Shi, H. Distribution and translocation of micro-and nanoplastics in fish. Crit. Rev. Toxicol. 2021, 51, 740–753. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, S.; Morales-Caselles, C.; Kadar, J.; Rivas, M.L. Overview of global status of plastic presence in marine vertebrates. Glob. Chang. Biol. 2021, 27, 728–737. [Google Scholar] [CrossRef]
- Yee, M.S.L.; Hii, L.W.; Looi, C.K.; Lim, W.M.; Wong, S.F.; Kok, Y.Y.; Tan, B.-K.; Wong, C.-Y.; Leong, C.-O. Impact of microplastics and nanoplastics on human health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef]
- Mansfield, I.; Reynolds, S.J.; Lynch, I.; Matthews, T.J.; Sadler, J.P. Birds as bioindicators of plastic pollution in terrestrial and freshwater environments: A 30-year review. Environ. Pollut. 2024, 348, 123790. [Google Scholar] [CrossRef]
- Iqbal, R.; Khan, M.T.; Bilal, H.; Aslam, M.M.; Khan, I.A.; Raja, S.; Arslane, M.; Nguyen, P.M. Microplastics as vectors of environmental contaminants: Interactions in the natural ecosystems. Hum. Ecol. Risk Assess. 2022, 28, 1022–1042. [Google Scholar] [CrossRef]
- Di Bella, G.; Porretti, M.; Cafarelli, M.; Litrenta, F.; Potortì, A.G.; Lo Turco, V.; Albergamo, A.; Xhilari, M.; Faggio, C. Screening of phthalate and non-phthalate plasticizers and bisphenols in Sicilian women’s blood. Environ. Toxicol. Pharmacol. 2023, 100, 104166. [Google Scholar] [CrossRef]
- Porretti, M.; Impellitteri, F.; Caferro, A.; Albergamo, A.; Litrenta, F.; Filice, M.; Imbrogno, S.; Di Bella, G.; Faggio, C. Assessment of the effects of non-phthalate plasticizer DEHT on the bivalve molluscs Mytilus galloprovincialis. Chemosphere 2023, 336, 139273. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, C.; He, D.; Sun, J.; Li, J.; Pan, X. Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity. Sci. Total Environ. 2022, 849, 157951. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). Environment Programme and Secretariat of the Basel, Rotterdam and Stockholm Conventions. Chemicals in Plastics: A Technical Report. 2023. Available online: https://www.unep.org/resources/report/chemicals-plastics-technical-report (accessed on 29 July 2024).
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef] [PubMed]
- Beltifa, A.; Feriani, A.; Machreki, M.; Ghorbel, A.; Ghazouani, L.; Di Bella, G.; Van Loco, J.; Reyns, T.; Mansour, H.B. Plasticizers and bisphenol A, in packaged foods sold in the Tunisian markets: Study of their acute in vivo toxicity and their environmental fate. Environ. Sci. Pollut. Res. 2017, 24, 22382–22392. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, N.N.; Xu, R.; Li, Z.H.; Xu, X.R.; Liu, S. Phthalates released from microplastics can’t be ignored: Sources, fate, ecological risks, and human exposure risks. TrAC Trends Anal. Chem. 2024, 179, 117870. [Google Scholar] [CrossRef]
- Adeogun, A.O.; Ibor, O.R.; Omogbemi, E.D.; Chukwuka, A.V.; Adegbola, R.A.; Adewuyi, G.A.; Arukwe, A. Environmental occurrence and biota concentration of phthalate esters in Epe and Lagos Lagoons, Nigeria. Mar. Environ. Res. 2015, 108, 24–32. [Google Scholar] [CrossRef]
- Sha, Y.; Xia, X.; Yang, Z.; Huang, G.H. Distribution of PAEs in the middle and lower reaches of the Yellow River, China. Environ. Monitor. Assess. 2007, 124, 277–287. [Google Scholar] [CrossRef]
- Zeng, F.; Wen, J.; Cui, K.; Wu, L.; Liu, M.; Li, Y.; Zhu, F.; Ma, Z.; Zeng, Z. Seasonal distribution of phthalate esters in surface water of the urban lakes in the subtropical city, Guangzhou, China. J. Hazard. Mater. 2009, 169, 719–725. [Google Scholar] [CrossRef]
- Xing, H.; Yu, X.; Huang, J.; Du, X.; Wang, M.; Sun, J.; Lu, G.; Tao, X. Characteristics and health risks of phthalate ester contamination in soil and plants in coastal areas of South China. Int. J. Environ. Res. Public Health 2022, 19, 9516. [Google Scholar] [CrossRef]
- Net, S.; Delmont, A.; Sempéré, R.; Paluselli, A.; Ouddane, B. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review. Sci. Total Environ. 2015, 515, 162–180. [Google Scholar] [CrossRef]
- He, W.; Yang, C.; Liu, W.; He, Q.; Wang, Q.; Li, Y.; Kong, X.; Lan, X.; Xu, F. The partitioning behavior of persistent toxicant organic contaminants in eutrophic sediments: Coefficients and effects of fluorescent organic matter and particle size. Environ. Pollut. 2016, 219, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lv, L.; Ding, L.; Gao, L.; Li, J.; Ma, X.; Yu, Y. Comparison of phthalate esters (PAEs) in freshwater and marine food webs: Occurrence, bioaccumulation, and trophodynamics. J. Hazard. Mater. 2024, 466, 133534. [Google Scholar] [CrossRef] [PubMed]
- Gugliandolo, E.; Licata, P.; Crupi, R.; Albergamo, A.; Jebara, A.; Turco, V.L.; Potortì, A.G.; Ben Mansour, H.; Cuzzocrea, S.; Di Bella, G. Plasticizers as microplastics tracers in Tunisian marine environment. Front. Mar. Sci. 2020, 7, 589398. [Google Scholar] [CrossRef]
- ECHA. Chemical Database—ECA CHEM. Available online: https://chem.echa.europa.eu/ (accessed on 28 August 2024).
- Hlisníková, H.; Petrovičová, I.; Kolena, K.; Šidlovská, M.; Sirotkin, A. Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 6811. [Google Scholar] [CrossRef]
- Bai, P.Y.; Wittert, G.; Taylor, A.W.; Martin, S.A.; Milne, R.W.; Jenkins, A.J.; Januszewski, A.S.; Shi, Z. The association between total phthalate concentration and non-communicable diseases and chronic inflammation in South Australian urban dwelling men. Environ. Res. 2017, 158, 366–372. [Google Scholar] [CrossRef]
- Mariana, M.; Cairrao, E. The relationship between phthalates and diabetes: A review. Metabolites 2023, 13, 746. [Google Scholar] [CrossRef]
- Stojanoska, M.M.; Milosevic, N.; Milic, N.; Abenavoli, L. The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders. Endocrine 2017, 55, 666–681. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, J.; Chen, C.; Wan, H.; Chen, Y.; Wang, Y.; Zhang, W.; Chen, B.; Wang, N.; Lu, Y. Exposure to phthalates and cardiovascular diseases in Chinese with type 2 diabetes. Environ. Sci. Pollut. Res. 2021, 28, 58113–58122. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.K.; Loch-Caruso, R.; Meeker, J.D. Urinary phthalate metabolites in relation to biomarkers of inflammation and oxidative stress: NHANES 1999–2006. Environ. Res. 2011, 111, 718–726. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off. J. Eur. Union 2006, 45, 1–590. [Google Scholar]
- United States Consumer Product Safety Commission. Phthalates. 2015. Available online: https://www.cpsc.gov/Business--Manufacturing/Business-Education/Business-Guidance/Phthalates (accessed on 30 July 2024).
- Canadian Minister of Justice. Phthalates Regulations. SOR/2016-188. Consolidation 18 October 2022. 2022. Available online: https://laws-lois.justice.gc.ca/eng/regulations/SOR-2016-188/index.html (accessed on 30 July 2024).
- Common Market of the South (Mercosur). Reglamento Técnico Mercosur Sobre Lista Positiva de Aditivos para la Elaboración de Materiales Plásticos y Revestimientos Poliméricos Destinados a Entrar en Contacto con Alimentos (Derogación de la Resolución gmc n° 32/07). 2019. Available online: https://normas.mercosur.int/simfiles/normativas/73869_RES_039-2019_ES_RTM%20Lista%20Positiva%20Aditivos%20Pl%C3%A1sticos.pdf (accessed on 30 July 2024).
- Ministry of Industry and Information Technology of China. China RoHS 2.0. The Administrative Measures for the Restriction of the Use of Hazardous Substances in Electrical and Electronic Products Amendment to GB/T 26572-2011 “Requirements of Concentration Limits for Certain Restricted Substances in Electrical and Electronic Products”. 2022. Available online: https://www.complianceandrisks.com/blog/phthalates-officially-in-scope-of-china-rohs-from-1-january-2026/#:~:text=After%20a%20long%20lead%2Din,%25)%20to%20the%20list%20of (accessed on 30 July 2024).
- Sharma, S.; Sharma, V.; Chatterjee, S. Microplastics in the Mediterranean Sea: Sources, pollution intensity, sea health, and regulatory policies. Front. Mar. Sci. 2021, 8, 634934. [Google Scholar] [CrossRef]
- Bleu, U.M.P. UNEP/MAP-Plan Bleu: State of the Environment and Development in the Mediterranean. Available online: https://planbleu.org/en/soed-2020-state-of-environment-and-development-in-mediterranean/ (accessed on 30 July 2024).
- Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.Á.; Irigoien, X.; Duarte, C.M. Plastic accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef] [PubMed]
- Abidli, S.; Antunes, J.C.; Ferreira, J.L.; Lahbib, Y.; Sobral, P.; El Menif, N.T. Microplastics in sediments from the littoral zone of the north Tunisian coast (Mediterranean Sea). Estuar. Coast. Shelf Sci. 2018, 205, 1–9. [Google Scholar] [CrossRef]
- Savoca, D.; Barreca, S.; Lo Coco, R.; Punginelli, D.; Orecchio, S.; Maccotta, A. Environmental aspect concerning phthalates contamination: Analytical approaches and assessment of biomonitoring in the aquatic environment. Environments 2023, 10, 99. [Google Scholar] [CrossRef]
- Tienpont, B.; David, F.; Dewulf, E.; Sandra, P. Pitfalls and solutions for the trace determination of phthalates in water samples. Chromatographia 2005, 61, 365–370. [Google Scholar] [CrossRef]
- Tienpont, B. Determination of Phthalates in Environmental, Food and Biomatrices—An Analytical Challenge. Ph.D. Thesis, Department of Organic Chemistry at Faculty of Science of Ghent University, Ghent, Belgium, 2004. [Google Scholar]
- Fankhauser-Noti, A.; Grob, K. Blank problems in trace analysis of diethylhexyl and dibutyl phthalate: Investigation of the sources, tips and tricks. Anal. Chim. Acta 2007, 582, 353–360. [Google Scholar] [CrossRef]
- U.S. EPA. Test methods for evaluating solid waste. In Laboratory Manual: Physical/Chemical Methods, SW-846, 3rd ed.; EPA: Cincinnati, OH, USA, 1986. [Google Scholar]
- Shruti, V.C.; Kutralam-Muniasamy, G. Blanks and bias in microplastic research: Implications for future quality assurance. Trends Environ. Anal. Chem. 2023, 38, e00203. [Google Scholar] [CrossRef]
- IUPAC. Analytical Chemistry Division, Compendium of Analytical Nomenclature (The IUPAC ‘Orange Book’), 3rd ed.; Inczédy, J., Lengyel, T., Ure, A.M., Eds.; Blackwell Science, Ltd.: Oxford, UK, 1998. [Google Scholar]
- Di Bella, G.; Ben Mansour, H.; Ben Tekaya, A.; Beltifa, A.; Potortì, A.G.; Saiya, E.; Bartolomeo, G.; Dugo, G.; Lo Turco, V. Plasticizers and BPA residues in Tunisian and Italian culinary herbs and spices. J. Food Sci. 2018, 83, 1769–1774. [Google Scholar] [CrossRef]
- European Commission. Commission Decision of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Commun. 2002, 221, 8–36. [Google Scholar]
- Cantwell, H. Blanks in Method Validation—Supplement to Eurachem Guide the Fitness for Purpose of Analytical Methods, 1st ed.; Cantwell, H., Ed.; Eurachem: Middlesex, UK, 2019. [Google Scholar]
- U.S. EPA. Residue Chemistry Test Guideline. OPPTS 860.1340: Residue Analytical Method. Available online: https://www.regulations.gov/document/EPA-HQ-OPPT-2009-0155-0007 (accessed on 31 August 2024).
- U.S. EPA. Ecological Effects Test Guideline. OCSPP 850.6100: Environmental Chemistry Methods and Associated Independent Laboratory Validation. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100IR9V.PDF?Dockey=P100IR9V.pdf (accessed on 31 August 2024).
- Beltifa, A.; Belaid, A.; Lo Turco, V.; Machreki, M.; Ben Mansour, H.; Di Bella, G. Preliminary evaluation of plasticizer and BPA in Tunisian cosmetics and investigation of hazards on human skin cells. Int. J. Environ. Health Res. 2018, 28, 491–501. [Google Scholar] [CrossRef]
- Visconti, G.; Boccard, J.; Feinberg, M.; Rudaz, S. From fundamentals in calibration to modern methodologies: A tutorial for small molecules quantification in liquid chromatography–mass spectrometry bioanalysis. Anal. Chim. Acta 2023, 1240, 340711. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Potortì, A.G.; LoTurco, V.; Saitta, M.; Dugo, G. Plasticizer residues by HRGC–MS in espresso coffees from capsules, pods and moka pots. Food Control 2014, 41, 185–192. [Google Scholar] [CrossRef]
- Kim, M.; Li, D.; Shim, W.; Oh, J.; Park, J. Simultaneous gas chromatography-mass spectrometric determination of total and individual phthalic esters utilizing alkaline hydrolysis and silyl derivatization technique. Bull. Korean Chem. Soc. 2007, 28, 432. [Google Scholar]
- Fromme, H.; Küchler, T.; Otto, T.; Pilz, K.; Müller, J.; Wenzel, A. Occurrence of phthalates and bisphenol A and F in the environment. Water Res. 2002, 36, 1429–1438. [Google Scholar] [CrossRef]
- He, W.; Qin, N.; Kong, X.; Liu, W.; He, Q.; Ouyang, H.; Yang, C.; Jiang, Y.; Wang, Q.; Xu, F.; et al. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake. Sci. Total Environ. 2013, 461, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Furtmann, K. Phthalates in surface water—A method for routine trace level analysis. Fresenius J. Anal. Chem. 1994, 348, 291–296. [Google Scholar] [CrossRef]
- Dévier, M.H.; Le Menach, K.; Viglino, L.; Di Gioia, L.; Lachassagne, P.; Budzinski, H. Ultra-trace analysis of hormones, pharmaceutical substances, alkylphenols and phthalates in two French natural mineral waters. Sci. Total Environ. 2013, 443, 621–632. [Google Scholar] [CrossRef]
- Zeng, F.; Cui, K.; Xie, Z.; Wu, L.; Liu, M.; Sun, G.; Lin, Y.; Luo, D.; Zeng, Z. Phthalate esters (PAEs): Emerging organic contaminants in agricultural soils in peri-urban areas around Guangzhou, China. Environ. Pollut. 2008, 156, 425–434. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Bornman, M.; Ravandhalala, L.; Chimuka, L.; Genthe, B.; Adeniyi, A.J.W.S. Phthalate ester plasticizers in freshwater systems of Venda, South Africa and potential health effects. Water SA 2010, 36, 117–125. [Google Scholar] [CrossRef]
- Das, M.T.; Ghosh, P.; Thakur, I.S. Intake estimates of phthalate esters for South Delhi population based on exposure media assessment. Environ. Pollut. 2014, 189, 118–125. [Google Scholar] [CrossRef]
- Gao, D.; Li, Z.; Wen, Z.; Ren, N. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere 2014, 95, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Cai, Y.E.; Shi, Y.; Liu, J.; Mou, S.; Lu, Y. A liquid–liquid extraction technique for phthalate esters with water-soluble organic solvents by adding inorganic salts. Microchim. Acta 2007, 157, 73–79. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Shen, J. Occurrence and removal characteristics of phthalate esters from typical water sources in Northeast China. J. Anal. Met. Chem. 2013, 1, 419349. [Google Scholar] [CrossRef]
- Net, S.; Dumoulin, D.; El-Osmani, R.; Rabodonirina, S.; Ouddane, B. Case study of PAHs, Me-PAHs, PCBs, phthalates and pesticides contamination in the Somme River water, France. Int. J. Environ. Res. 2014, 8, 1159–1170. [Google Scholar]
- U.S. EPA. Phthalate Esters by Gas Chromatography with Electron Capture Detection (GC/ECD). Method 8061a, Rev 1; 1996. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/8061a.pdf (accessed on 7 September 2024).
- Bergström, S.; Barri, T.; Norberg, J.; Jönsson, J.Å.; Mathiasson, L. Extracting syringe for extraction of phthalate esters in aqueous environmental samples. Anal. Chim. Acta 2007, 594, 240–247. [Google Scholar] [CrossRef]
- Yan, H.; Liu, B.; Du, J.; Row, K.H. Simultaneous determination of four phthalate esters in bottled water using ultrasound-assisted dispersive liquid–liquid microextraction followed by GC-FID detection. Analyst 2010, 135, 2585–2590. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Zhang, D.; Wang, T.; Wang, X.M.; Du, X. Dispersive liquid–liquid microextraction followed by high performance liquid chromatography for determination of phthalic esters in environmental water samples. Anal. Methods 2014, 6, 1121–1127. [Google Scholar] [CrossRef]
- Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of dispersive liquid–liquid microextraction method. J. Chromatogr. A 2010, 1217, 2342–2357. [Google Scholar] [CrossRef] [PubMed]
- Amritha, P.S.; Vinod, V.; Harathi, P.B. A critical review on extraction and analytical methods of phthalates in water and beverages. J. Chromatogr. A 2022, 1675, 463175. [Google Scholar]
- Brossa, L.; Marcé, R.M.; Borrull, F.; Pocurull, E. Determination of endocrine-disrupting compounds in water samples by on-line solid-phase extraction–programmed-temperature vaporisation–gas chromatography–mass spectrometry. J. Chromatogr. A 2003, 998, 41–50. [Google Scholar] [CrossRef]
- Luís, C.; Algarra, M.; Câmara, J.S.; Perestrelo, R. Comprehensive insight from phthalates occurrence: From health outcomes to emerging analytical approaches. Toxics 2021, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Bach, C.; Dauchy, X.; Severin, I.; Munoz, J.F.; Etienne, S.; Chagnon, M.C. Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: Chemical analysis and potential toxicity. Food Chem. 2013, 139, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Serrano, M.; Borrull, F.; Marce, R.M.; Pocurull, E. Phthalate esters in marine ecosystems: Analytical methods, occurrence and distribution. Trends Anal. Chem. 2022, 151, 116598. [Google Scholar] [CrossRef]
- Le, T.M.; Nguyen, H.M.N.; Nguyen, V.K.; Nguyen, A.V.; Vu, N.D.; Yen, N.T.H.; Hoang, A.Q.; Minh, T.B.; Kannan, K.; Tran, T.M. Profiles of phthalic acid esters (PAEs) in bottled water, tap water, lake water, and wastewater samples collected from Hanoi, Vietnam. Sci. Total Environ. 2021, 788, 147831. [Google Scholar] [CrossRef]
- Paluselli, A.; Aminot, Y.; Galgani, F.; Net, S.; Sempere, R. Occurrence of phthalate acid esters (PAEs) in the northwestern Mediterranean Sea and the Rhone River. Prog. Oceanogr. 2018, 163, 221–231. [Google Scholar] [CrossRef]
- Ozbek, N.; Baysal, A.; Akman, S.; Dogan, M. Solid-Phase Extraction. In Analytical Seperation Science; Wiley: Hoboken, NJ, USA, 2015; pp. 1571–1594. [Google Scholar]
- Jiménez-Skrzypek, G.; González-Sálamo, J.; Varela-Martínez, D.A.; González-Curbelo, M.Á.; Hernández-Borges, J. Analysis of phthalic acid esters in sea water and sea sand using polymer-coated magnetic nanoparticles as extraction sorbent. J. Chromatogr. A 2020, 1611, 460620. [Google Scholar] [CrossRef]
- Luo, Y.B.; Yu, Q.W.; Yuan, B.F.; Feng, Y.Q. Fast microextraction of phthalate acid esters from beverage, environmental water and perfume samples by magnetic multi-walled carbon nanotubes. Talanta 2012, 90, 123–131. [Google Scholar] [CrossRef]
- Jagirani, M.S.; Soylak, M. Green sorbents for the solid phase extraction of trace species. Curr. Opin. Green Sustain. Chem. 2024, 2024, 100899. [Google Scholar] [CrossRef]
- Fernández-González, V.; Moscoso-Pérez, C.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Reliable, rapid and simple method for the analysis of phthalates in sediments by ultrasonic solvent extraction followed by head space-solid phase microextraction gas chromatography mass spectrometry determination. Talanta 2017, 162, 648–653. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhang, H.H.; Jian-Long, L.; Gui-Peng, Y. Determination of phthalic acid esters in seawater and sediment by solid-phase microextraction and gas chromatography-mass spectrometry. Chin. J. Anal. Chem. 2017, 45, 348–356. [Google Scholar] [CrossRef]
- Saliu, F.; Montano, S.; Leoni, B.; Lasagni, M.; Galli, P. Microplastics as a threat to coral reef environments: Detection of phthalate esters in neuston and scleractinian corals from the Faafu Atoll, Maldives. Mar. Pollut. Bull. 2019, 142, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Savoca, D.; Arculeo, M.; Barreca, S.; Buscemi, S.; Caracappa, S.; Gentile, A.; Persichetti, M.F.; Pace, A. Chasing phthalates in tissues of marine turtles from the Mediterranean Sea. Mar. Pollut. Bull. 2018, 127, 165–169. [Google Scholar] [CrossRef]
- Blair, J.D.; Ikonomou, M.G.; Kelly, B.C.; Surridge, B.; Gobas, F.A. Ultra-trace determination of phthalate ester metabolites in seawater, sediments, and biota from an urbanized marine inlet by LC/ESI-MS/MS. Environ. Sci. Technol. 2009, 43, 6262–6268. [Google Scholar] [CrossRef]
- Hidalgo-Serrano, M.; Borrull, F.; Pocurull, E.; Marcé, R.M. Pressurised liquid extraction and liquid chromatography–high resolution mass spectrometry for the simultaneous determination of phthalate diesters and their metabolites in seafood species. Food Anal. Methods 2020, 13, 1442–1453. [Google Scholar] [CrossRef]
- Zhang, B.T.; Gao, Y.; Lin, C.; Yang, W.; Liu, T.; Liu, X.; Wang, Y. Spatial distribution of phthalate acid esters in sediments of the Laizhou Bay and its relationship with anthropogenic activities and geochemical variables. Sci. Total Environ. 2020, 722, 137912. [Google Scholar] [CrossRef]
- Reid, A.M.; Brougham, C.A.; Fogarty, A.M.; Roche, J.J. (Accelerated solvent-based extraction and enrichment of selected plasticisers and 4-nonylphenol, and extraction of tin from organotin sources in sediments, sludges and leachate soils. Anal. Chim. Acta 2009, 634, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.C.; Tien, C.J.; Sun, Y.M.; Hsieh, C.Y.; Lee, C.C. Occurrence of phthalates in sediment and biota: Relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere 2008, 73, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Espadaler, I.; Caixach, J.; Om, J.; Ventura, F.; Cortina, M.; Pauné, F.; Rivera, J. (Identification of organic pollutants in Ter river and its system of reservoirs supplying water to Barcelona (Catalonia, Spain): A study by GC/MS and FAB/MS. Water Res. 1997, 31, 1996–2004. [Google Scholar] [CrossRef]
- Bruzzoniti, M.C.; Checchini, L.; De Carlo, R.M.; Orlandini, S.; Rivoira, L.; Del Bubba, M. QuEChERS sample preparation for the determination of pesticides and other organic residues in environmental matrices: A critical review. Anal. Bioanal. Chem. 2014, 406, 4089–4116. [Google Scholar] [CrossRef]
- Santana-Mayor, Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. TrAC Trend. Anal. Chem. 2019, 116, 214–235. [Google Scholar] [CrossRef]
- Massous, A.; Ouchbani, T.; Lo Turco, V.; Litrenta, F.; Nava, V.; Albergamo, A.; Potortì, A.G.; Di Bella, G. Monitoring moroccan honeys: Physicochemical properties and contamination pattern. Foods 2023, 12, 969. [Google Scholar] [CrossRef] [PubMed]
- Derrar, S.; Lo Turco, V.; Albergamo, A.; Sgrò, B.; Ayad, M.A.; Litrenta, F.; Saim, M.S.; Potortì, A.G.; Aggad, H.; Rando, R.; et al. Study of Physicochemical Quality and Organic Contamination in Algerian Honey. Foods 2024, 13, 1413. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Liu, X.; Chen, H.; Pan, R.; Ma, G. Determination of 16 phthalate esters in tea samples using a modified QuEChERS sample preparation method combined with GC-MS/MS. Food Addit. Contam. Part A 2014, 31, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Weng, R.; Lu, Y.; Wang, X.; Zhang, D.; Li, Y.; Qiu, J.; Qian, Y. Evaluation of phthalic acid esters in fish samples using gas chromatography tandem mass spectrometry with simplified QuEChERS technique. Food Anal. Methods 2018, 11, 3293–3303. [Google Scholar] [CrossRef]
- Tsochatzis, E.; Karayannakidis, P.; Kalogiannis, S. Determination of selected dichloroanilines and phthalates in lyophilised mussels samples with ultra-high performance liquid chromatography-tandem mass spectrometry after QuEChERS clean-up. Food Addit. Contam. Part A 2019, 36, 1253–1260. [Google Scholar] [CrossRef]
- Gu, Y.Y.; Yu, X.J.; Peng, J.F.; Chen, S.B.; Zhong, Y.Y.; Yin, D.Q.; Hu, X.L. Simultaneous solid phase extraction coupled with liquid chromatography tandem mass spectrometry and gas chromatography tandem mass spectrometry for the highly sensitive determination of 15 endocrine disrupting chemicals in seafood. J. Chromatogr. B 2014, 965, 164–172. [Google Scholar] [CrossRef]
- Castro-Jiménez, J.; Ratola, N. An innovative approach for the simultaneous quantitative screening of organic plastic additives in complex matrices in marine coastal areas. Environ. Sci. Pollut. Res. 2020, 27, 11450–11457. [Google Scholar] [CrossRef]
- Ajdari, B.; Nassiri, M.; Zahedi, M.M.; Ziyaadini, M. Determination of phthalate esters in seawater of Chabahar Bay using dispersive liquid-liquid microextraction coupled with GC-FID. Water Sci. Technol. 2018, 77, 1782–1790. [Google Scholar] [CrossRef]
- Hu, H.; Mao, L.; Fang, S.; Xie, J.; Zhao, M.; Jin, H. Occurrence of phthalic acid esters in marine organisms from Hangzhou Bay, China: Implications for human exposure. Sci. Total Environ. 2020, 721, 137605. [Google Scholar] [CrossRef]
- Heo, H.; Choi, M.J.; Park, J.; Nam, T.; Cho, J. Anthropogenic occurrence of phthalate esters in beach seawater in the southeast coast region, South Korea. Water 2019, 12, 122. [Google Scholar] [CrossRef]
- Habibi, E.; Ghanemi, K.; Larki, A. Efficient extraction of phthalate esters with different polarities from seawater samples using multi-walled carbon nanotubes/graphene oxide nanosheets. Anal. Methods 2017, 9, 4425–4433. [Google Scholar] [CrossRef]
- U.S. EPA. Determination of Phthalate and Adipate Esters in Drinking Water by Liquid–Liquid Extraction or Liquid–Solid Extraction and Gas Chromatography with Photoionization Detection. Method 506. Rev. 1.1; 1995. Available online: https://www.nemi.gov/methods/method_summary/4800/ (accessed on 17 September 2024).
- U.S. EPA. Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. Method 625-Base/Neutrals and Acids, Appendix A to Part 136; 2007. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2015-10/documents/method_625_1984.pdf (accessed on 17 September 2024).
- Jebara, A.; Albergamo, A.; Rando, R.; Potortì, A.G.; Lo Turco, V.; Mansour, H.B.; Di Bella, G. Phthalates and non-phthalate plasticizers in Tunisian marine samples: Occurrence, spatial distribution and seasonal variation. Mar. Pollut. Bull. 2021, 163, 111967. [Google Scholar] [CrossRef] [PubMed]
- Paluselli, A.; Fauvelle, V.; Schmidt, N.; Galgani, F.; Net, S.; Sempere, R. Distribution of phthalates in Marseille bay (NW Mediterranean Sea). Sci. Total Environ. 2018, 621, 578–587. [Google Scholar] [CrossRef]
- Brossa, L.; Marcé, R.M.; Borrull, F.; Pocurull, E. Occurrence of twenty-six endocrine-disrupting compounds in environmental water samples from Catalonia, Spain. Environ. Toxicol. Chem. Int. J. 2005, 24, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Avila, J.; Tauler, R.; Lacorte, S. Organic micropollutants in coastal waters from NW Mediterranean Sea: Sources distribution and potential risk. Environ. Int. 2012, 46, 50–62. [Google Scholar] [CrossRef]
- Martí, N.; Aguado, D.; Segovia-Martínez, L.; Bouzas, A.; Seco, A. Occurrence of priority pollutants in WWTP effluents and Mediterranean coastal waters of Spain. Mar. Pollut. Bull. 2011, 62, 615–625. [Google Scholar] [CrossRef]
- Fauvelle, V.; Castro-Jiménez, J.; Schmidt, N.; Carlez, B.; Panagiotopoulos, C.; Sempéré, R. One-single extraction procedure for the simultaneous determination of a wide range of polar and nonpolar organic contaminants in seawater. Front. Mar. Sci. 2018, 5, 295. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, D.; Gil-Solsona, R.; Saaltink, M.W.; Rodellas, V.; López-Serna, R.; Folch, A.; Carrera, J.; Gago-Ferrero, P. Chemicals of emerging concern in coastal aquifers: Assessment along the land-ocean interface. J. Hazard. Mater. 2023, 448, 130876. [Google Scholar] [CrossRef]
- Schmidt, N.; Castro-Jiménez, J.; Oursel, B.; Sempéré, R. Phthalates and organophosphate esters in surface water, sediments and zooplankton of the NW Mediterranean Sea: Exploring links with microplastic abundance and accumulation in the marine food web. Environ. Pollut. 2021, 272, 115970. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Jalon-Rojas, I.; Wang, X.H.; Fredj, E.; Zhang, D.; Feng, L.; Li, X. Assessing the potential risk and relationship between microplastics and phthalates in surface seawater of a heavily human-impacted metropolitan bay in northern China, Ecotoxicol. Environ. Saf. 2020, 204, 111067. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, J.; Li, X.; Peng, Q.; Yuan, H.; Li, N.; Duan, L.; Ma, J. Concentrations and distribution of phthalate esters in the seamount area of the Tropical Western Pacific Ocean. Mar. Pollut. Bull. 2019, 140, 107–115. [Google Scholar] [CrossRef]
- Pedrotti, M.L.; Petit, S.; Elineau, A.; Bruzaud, S.; Crebassa, J.C.; Dumontet, B.; Marti, E.; Gorsky, G.; Cózar, A. changes in the floating plastic pollution of the Mediterranean Sea in relation to the distance to land. PLoS ONE 2016, 11, e0161581. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Directive 2013/39/EU of the European Parliament and of the council of 12 august 2013 amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, L226, 1–17. [Google Scholar]
- Van Wezel, A.P.; Van Vlaardingen, P.; Posthumus, R.; Crommentuijn, G.H.; Sijm, D.T.H.M. Environmental risk limits for two phthalates, with special emphasis on endocrine disruptive properties. Ecotoxicol. Environ. Saf. 2000, 46, 305–321. [Google Scholar] [CrossRef]
- Souaf, B.; Methneni, N.; Beltifa, A.; Lo Turco, V.; Danioux, A.; Litrenta, F.; Sedrati, M.; Ben Mansour, H.; Di Bella, G. Occurrence and seasonal variation of plasticizers in sediments and biota from the coast of Mahdia, Tunisia. Environ. Sci. Pollut. Res. 2023, 30, 48532–48545. [Google Scholar] [CrossRef]
- Alkan, N.; Alkan, A.; Castro-Jiménez, J.; Royer, F.; Papillon, L.; Ourgaud, M.; Sempere, R. Environmental occurrence of phthalate and organophosphate esters in sediments across the Gulf of Lion (NW Mediterranean Sea). Sci. Total Environ. 2021, 760, 143412. [Google Scholar] [CrossRef]
- Muscat, M.; Sinagra, E.; Lia, F. Presence of phthalate esters used as common plasticisers in maltese shoreline sand. Environments 2023, 10, 94. [Google Scholar] [CrossRef]
- Stoppa, F.; Schiazza, M.; Pellegrini, J.; Ambrosio, F.A.; Rosatelli, G.; D’Orsogna, M.R. Phthalates, heavy metals and PAHs in an overpopulated coastal region: Inferences from Abruzzo, central Italy. Mar. Pollut. Bull. 2017, 125, 501–512. [Google Scholar] [CrossRef]
- Tickner, J. Phthalates and Their Alternatives: Health and Environmental Concerns. Available online: https://www.uml.edu/docs/Phthalate%20and%20their%20Alternatives_tcm18-229903.pdf (accessed on 30 September 2024).
- Wang, L.Y.; Gu, Y.Y.; Zhang, Z.M.; Sun, A.L.; Shi, X.Z.; Chen, J.; Lu, Y. Contaminant occurrence, mobility and ecological risk assessment of phthalate esters in the sediment-water system of the Hangzhou Bay. Sci. Total Environ. 2021, 770, 144705. [Google Scholar] [CrossRef] [PubMed]
- Vighi, M.; Borrell, A.; Sahyoun, W.; Net, S.; Aguilar, A.; Ouddane, B.; Garcia-Garin, O. Concentrations of bisphenols and phthalate esters in the muscle of Mediterranean striped dolphins (Stenella coeruleoalba). Chemosphere 2023, 339, 139686. [Google Scholar] [CrossRef]
- Rios-Fuster, B.; Alomar, C.; González, G.P.; Martínez, R.M.G.; Rojas, D.L.S.; Hernando, P.F.; Deudero, S. Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. Environ. Res. 2022, 214, 114034. [Google Scholar] [CrossRef]
- Fossi, M.C.; Panti, C.; Guerranti, C.; Coppola, D.; Giannetti, M.; Marsili, L.; Minutoli, R. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar. Pollut. Bull. 2012, 64, 2374–2379. [Google Scholar] [CrossRef] [PubMed]
- Baini, M.; Martellini, T.; Cincinelli, A.; Campani, T.; Minutoli, R.; Panti, C.; Finoia, M.G.; Fossi, M.C. First detection of seven phthalate esters (PAEs) as plastic tracers in superficial neustonic/planktonic samples and cetacean blubber. Anal. Methods 2017, 9, 1512–1520. [Google Scholar] [CrossRef]
- Squadrone, S.; Berti, G.; Griglione, A.; Falsetti, S.; Nurra, N.; Sartor, R.M.; Battuello, M.; Bezzo, T.; Favaro, L.; Abete, M.C. Phthalate diester occurrence in marine feed and food (Mediterranean Sea). Environ. Sci. Pollut. Res. 2024, 31, 36174–36179. [Google Scholar] [CrossRef]
- Raguso, C.; Grech, D.; Becchi, A.; Ubaldi, P.G.; Lasagni, M.; Guala, I.; Saliu, F. Detection of microplastics and phthalic acid esters in sea urchins from Sardinia (Western Mediterranean Sea). Mar. Pollut. Bull. 2022, 185, 114328. [Google Scholar] [CrossRef]
- Blasi, M.F.; Avino, P.; Notardonato, I.; Di Fiore, C.; Mattei, D.; Gauger, M.F.W.; Gelippi, M.; Cicala, D.; Hochscheid, S.; Favero, G.; et al. Phthalate esters (PAEs) concentration pattern reflects dietary habitats (δ13C) in blood of Mediterranean loggerhead turtles (Caretta caretta). Ecotoxicol. Environ. Saf. 2022, 239, 113619. [Google Scholar] [CrossRef]
- Squillante, J.; Scivicco, M.; Ariano, A.; Nolasco, A.; Esposito, F.; Cacciola, N.A.; Severino, L.; Cirillo, T. Occurrence of phthalate esters and preliminary data on microplastics in fish from the Tyrrhenian sea (Italy) and impact on human health. Environ. Pollut. 2023, 316, 120664. [Google Scholar] [CrossRef]
- Lo Brutto, S.; Iaciofano, D.; Lo Turco, V.; Potortì, A.G.; Rando, R.; Arizza, V.; Di Stefano, V. First assessment of plasticizers in marine coastal litter-feeder fauna in the Mediterranean Sea. Toxics 2021, 9, 31. [Google Scholar] [CrossRef]
- Vered, G.; Kaplan, A.; Avisar, D.; Shenkar, N. Using solitary ascidians to assess microplastic and phthalate plasticizers pollution among marine biota: A case study of the Eastern Mediterranean and Red Sea. Mar. Pollut. Bull. 2019, 138, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Gu, Y.; Huang, W.; Yin, D. Phthalate monoesters as markers of phthalate contamination in wild marine organisms. Environ. Pollut. 2016, 218, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Arnot, J.A.; Gobas, F.A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms. Environ. Rev. 2006, 14, 229–257. [Google Scholar] [CrossRef]
- Borgå, K.; Fisk, A.T.; Hargrave, B.; Hoekstra, P.F.; Swackhamer, D.; Muir, D.C.G. Bioaccumulation factors for PCBs revisited. Environ. Sci. Technol. 2005, 39, 4523–4532. [Google Scholar] [CrossRef] [PubMed]
PAE | CAS N. | Mw (g/mol) | Carbon Atoms per Chain | WS (mg/L) [28] | Log KOW [28] | KOC (L/kg) [24] | Log KAW [24] | Log KOA [24] |
---|---|---|---|---|---|---|---|---|
DMP | 131–11–3 | 194.2 | 1 | 4000 at 25 °C | 1.54 | 55–360 | −5.40 | 7.01 |
DEP | 84–66–2 | 222.2 | 2 | 932 at 20 °C | 2.20 | 69–1726 | −5.01 | 7.55 |
DBP | 84–74–2 | 278.4 | 4 | 10 at 20 °C | 4.46 | 1375–14,900 | −4.27 | 8.54 |
DIBP | 84–69–5 | 278.4 | 4 | 13.8 at 20 °C | 4.11 | - | −4.27 | 8.54 |
BBP | 85–68–7 | 312.4 | 4,6 | 2.69 at 25 °C | 4.84 | 9 × 103–17 × 103 | −4.08 | 8.78 |
DEHP | 117–81–7 | 390.6 | 8 | 0.003 at 20 °C | 7.50 | 87,420–51 × 103 | −2.80 | 10.53 |
DINP | 28553–12–0 | 418.6 | 9 | 0.0006 at 21 °C | 8.80 | - | −2.43 | 11.03 |
DIDP | 26761–40–0 | 446.7 | 10 | 0.0004 at 20 °C | 9.46 | 286 × 103 | −2.06 | 11.52 |
PAEs Subject to Authorization (Annex XIV) | |
---|---|
Phthalate | Reason for authorization |
Bis(2-ethylhexyl) phthalate (DEHP) | -Toxic for reproduction -Endocrine disrupting properties (effects to environment and human health) |
Dibutyl phthalate (DBP) | |
Benzyl butyl phthalate (BBP) | -Toxic for reproduction -Endocrine disrupting properties (effects to human health) |
Di-isobutyl phthalate (DIBP) | |
Di-n-hexyl phthalate (DnHP) | -Toxic for reproduction |
Dipentyl phthalate (DPP) | |
Di-isopentyl phthalate (DIPP) | |
Bis(2-methoxyethyl) phthalate (DMEP) | |
n-pentyl-isopentyl phthalate | |
Restrictions on the Manufacture, Placing on the Market and Use of Certain Dangerous Substances,Mixtures and Articles (Annex XVII) | |
Phthalate | Restriction |
Bis (2-ethylhexyl) phthalate (DEHP) | The four PAEs shall not be used at 0.1% or above by weight of the plasticized material, individually or in any combination in toys and childcare items. Toys and childcare items should not be placed on the market if either their individual concentration of DEHP, DBP, and BBP or their combination is equal to or greater than 0.1% in their plasticized material. DIBP shall not be placed on the market in toys or childcare items, individually or in any combination with DEHP, DBP, and BBP, in a concentration equal to or greater than 0.1% of the plasticized material. The four PAEs shall not be placed on the market in articles, individually or in any combination, in a concentration equal to or greater than 0.1% of the plasticized material. |
Dibutyl phthalate (DBP) | |
Benzyl butyl phthalate (BBP) | |
Di-isobutyl phthalate (DIBP) | |
Di-isononyl phthalate (DINP) | The three PAEs shall not be used as substances or in mixtures, in a concentration equal to or greater than 0.1% of the plasticized material, in toys and childcare articles which can be placed in the mouth by children. Toys and childcare items with the three PAEs in a concentration greater than 0.1% of the plasticized material shall not be placed on the market. |
Di-isodecyl phthalate (DIDP) | |
Di-n-octyl phthalate (DnOP) | |
Bis(2-methoxyethyl) phthalate (DMEP) | The four PAEs shall be used at a maximum concentration of 1000 mg/kg (individually or in any combination |
Diisopentylphthalate (DIPP) | |
Di-n-pentyl phthalate (DPP) | |
Di-n-hexyl phthalate (DnHP) |
Study Area | Sampling Year | DMP | DEP | DBP | DIBP | BBP | DEHP | Ref. |
---|---|---|---|---|---|---|---|---|
Mahdia coast (TN) | 2018–2019 | n.d. | n.d.–0.017 × 106 | n.d.–0.0305 × 106 | n.d.–0.106 × 106 | n.d. | n.d.–0.168 × 106 | [112] |
Marseille Bay (FR) | 2013–2014 | 0.8–11.9 | 3.3–50 | 12.0–596.0 | 27.5–383.4 | 2.6–6.1 | 15.8–923.8 | [113] |
2014 | 1.4–7.3 | 6.9–50 | 28.8–466.0 | 56.5–383.4 | 3.2–5.1 | 56.2–296.5 | [82] | |
Catalan coast (SP) | 2005 | - | - | 110–4620 | - | 80–460 | n.d.–12,740 | [114] |
2009 | 2.8–142 | 24–143 | - | - | 1.3–104 | 31–617 | [115] | |
Valencian coast (SP) | 2008–2009 | n.d. | n.d.–20 × 106 | n.d.–0.3 × 106 | - | - | n.d.–15 × 106 | [116] |
Study Area | Sampling Year | DMP | DEP | DBP | DIBP | BBP | DEHP | Ref. |
---|---|---|---|---|---|---|---|---|
Mahdia coast (TN) | 2018–2019 | n.d. | 0.0644–0.142 | 0.0423–0.0824 | 0.152–0.394 | n.d.–0.0425 | 4.15–5.24 | [112] |
2020 | - | 0.016–0.047 | 0.130–0.326 | 0.379–1.734 | - | 0.314–1.773 | [125] | |
Gulf of Lyon (FR) | 2018 | 0.00001–0.0122 | n.d.–0.0008 | n.d.–0.6877 | n.d.– 0.0129 | n.d.–0.0236 | n.d.–0.6397 | [126] |
Marseille Bay (FR) | 2018 | n.d.–0.0002 | n.d.–0.0021 | 0.0003–0.0031 | 0.0019–0.0057 | 0.0008–0.0019 | 0.0042–0.3195 | [105] |
Maltese shoreline (Malta) | Not reported | - | 0.0092–0.0704 | - | - | - | <LOQ−0.0977 | [127] |
Abruzzo coast (IT) | 2013 | n.d.–0.20 | n.d.–2.18 | n.d.–1.56 | 0.16–5.17 | n.d.–4.86 | 0.02–12 | [128] |
Study Area | Sampling Year | Biota Sample | DMP | DEP | DBP | DIBP | BBP | DEHP | Ref. |
---|---|---|---|---|---|---|---|---|---|
Mahdia coast (TN) | 2018–2019 | Plant | n.d. | 0.0323–0.0809 | 0.307–0.491 | n.d.–0.120 | n.d.–0.171 | 0.465–0.845 | [112] |
Fish (muscle) | n.d. | 0.561–2.70 | n.d.–0.299 | 0.434–1.480 | n.d.–0.739 | 0.772–1.46 | |||
2020 | Plant | - | 0.016–0.046 | 0.027–0.054 | 0.050–1.216 | - | 0.082–0.150 | [125] | |
Mussel | - | 0.071–0.169 | 0.119–0.219 | 0.363–1.961 | - | 0.454–1.223 | |||
Marseille Bay (FR) | 2017–2018 | Zooplankton | 0.052–0.1409 | 0.0186–0.0337 | 0.1302–0.3771 | 0.0461–0.1104 | 0.715–0.811 | 2.982–6.656 | [119] |
2018 | Plant | n.d.–0.0012 | 0.0027–0.0089 | 0.0121–0.1667 | 0.0154–0.0158 | n.d.–0.0056 | 0.1495–0.6996 | [105] | |
Mussel | n.d.–0.0003 | 0.0024–0.0031 | n.d.–0.0176 | 0.0048–0.0228 | n.d.–0.0175 | 0.0535–0.6384 | |||
Fish (muscle) | n.d.–0.0003 | 0.0016–0.007 | 0.0026–0.0369 | 0.0034–0.0229 | n.d.–0.0036 | 0.0114–0.0123 | |||
Catalan coast (SP) | 1990–2018 | Striped dolphin (muscle) ** | n.d.–1.38 | n.d.–8.04 | n.d.–26.59 | - | - | n.d.–48.9 | [131] |
The Cabrera Maritime–Terrestrial National Park (SP) | 2019–2020 | Bivalve Mollusk * | - | 0.540 | 0.780 | - | - | 2.580 | [132] |
Fish (muscle) * | - | 0.170 | 0.720 | - | - | 0.880 | |||
Holothurians (muscle) * | - | 0.490 | 1.240 | - | - | 1.480 | |||
Pelagos Sanctuary (IT) | 2007–2011 | Neuston/plankton * | - | - | - | - | - | 0.005–0.172 | [133] |
2016 | Neuston/plankton | - | - | - | - | n.d.–0.475 | n.d.–2.699 | [134] | |
Cetaceans (skin) | - | - | - | - | n.d.–1.629 | 1.130–26.068 | |||
2022 | Zooplankton * | n.d. | n.d. | n.d. | - | n.d. | 0.104–5.091 | [135] | |
Bivalve mollusk * | n.d. | n.d. | <LOQ | - | n.d. | <LOQ–0.050 | |||
Fish (muscle) * | n.d. | n.d. | <LOQ | - | n.d. | <LOQ−0.641 | |||
Western Sardinia coast (IT) | 2020 | Sea urchin (gonads) * | - | n.d.–0.0139 | n.d.–0.0105 | - | n.d.–0.0035 | n.d.–0.0726 | [136] |
Tyrrhenian sea (IT) | 2019 | Loggerhead turtles * (blood) | 0.009–0.014 | 0.008–0.074 | 0.006–0.057 | 0.007–0.041 | - | 0.012–0.073 | [137] |
Campania coast (IT) | 2020–2021 | Fish (muscle) | 0.178–0.453 | 0.041–0.224 | 0.054–0.289 | - | - | 0.018–6.739 | [138] |
Fish (gills) | 0.179–1.293 | 0.057–1.221 | 0.054–3.737 | - | - | 0.011–4.107 | |||
Stagnone Nature reserve (IT) | 2013–2014 | Amphipods | - | n.d.–0.230 | 0.009–0.046 | n.d.–0.240 | - | 0.006–0.086 | [139] |
Israeli Mediterranean coast (IL) | 2017 | Ascidians | - | - | 1.643–5.064 | - | - | 4.851–9.095 | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bella, G.; Albergamo, A.; Litrenta, F.; Lo Turco, V.; Potortì, A.G. Can Phthalates Be Considered as Microplastic Tracers in the Mediterranean Marine Environment? Environments 2024, 11, 267. https://doi.org/10.3390/environments11120267
Di Bella G, Albergamo A, Litrenta F, Lo Turco V, Potortì AG. Can Phthalates Be Considered as Microplastic Tracers in the Mediterranean Marine Environment? Environments. 2024; 11(12):267. https://doi.org/10.3390/environments11120267
Chicago/Turabian StyleDi Bella, Giuseppa, Ambrogina Albergamo, Federica Litrenta, Vincenzo Lo Turco, and Angela Giorgia Potortì. 2024. "Can Phthalates Be Considered as Microplastic Tracers in the Mediterranean Marine Environment?" Environments 11, no. 12: 267. https://doi.org/10.3390/environments11120267
APA StyleDi Bella, G., Albergamo, A., Litrenta, F., Lo Turco, V., & Potortì, A. G. (2024). Can Phthalates Be Considered as Microplastic Tracers in the Mediterranean Marine Environment? Environments, 11(12), 267. https://doi.org/10.3390/environments11120267