Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Selection
2.2. LCA Methodology
Reference | PFAS | Target PFAS Contaminant | PFAS Remediation | Sustainability Assessment | ||
---|---|---|---|---|---|---|
Environmental Media | Location | Technology Studied | Type (Data Basis) of Case Study | (Dimension & Tool) | ||
[24] | Groundwater | Ohio, USA | PFOA, PFOS | GAC (reactivation & reuse) | Scenario (similar facility, literature) | Environment (LCA) |
IEX resin (regeneration & reuse) | Scenario (pilot-scale data, literature) | |||||
[25] | Groundwater | USA | PFOA, PFOS, PFBA, FOSA | In-situ ultrasonic reactor | Scenario (author’s previous study) | Environment (LCA), economy (cost analysis) |
Pump-and-treat with GAC | Scenario (literature) | |||||
[26] | Spent fire-extinguishing water | Germany | PFAS | Flocculation/precipitation (PerfluorAD) | Scenario (lab-scale data, literature) | Environment (LCA) |
GAC (single use) | Scenario (literature) | |||||
Thermal treatment (incineration) | Scenario (literature) | |||||
[27] | Landfill leachate | ZhuZhou, China | PFAS | On-site membrane bioreactor treatment | Scenario (similar facility, literature) | Environment (LCA), economy (LCCA) 3 |
Off-site membrane bioreactor treatment | Scenario (literature) | |||||
[28] | Groundwater | USA | 10 PFAS substances 1 | IEX resin (single use) + incineration | Scenario (lab-scale data, literature) | Environment (LCA) |
IEX resin (single use) + electrochemical oxidation (EO) | ||||||
IEX resin (regeneration & reuse) + EO | ||||||
[29] | Groundwater | Brighton, USA | PFOA, PFOS | IEX resin 2 | Scenario (literature) | Environment (LCA), economy (WBS), society (SSEM, etc.) 4 |
GAC 2 | ||||||
[30] | Groundwater | USA | PFOA, PFOS | In-situ microbial remediation (RAPIMER) | Scenario (lab-scale data) | Environment (LCA) |
Activated carbon (AC) 2 | Scenario (literature) | |||||
IEX resin 2 | Scenario (literature) | |||||
[31] | Groundwater (AFFF-impacted) | Willow Grove, USA | PFOA, PFOS | Anion exchange resin (AER, single use); AER (regeneration & reuse); GAC (single use); GAC (reactivation & reuse) | Scenario (pilot-scale data, literature) | Environment (LCA), economy (LCCA) |
3. Results
3.1. Goal and Scope Definition
3.1.1. System Boundary
3.1.2. Functional Unit
3.2. Inventory Data Sources and Quality
3.3. Life Cycle Impact Assessment
3.4. Interpretation
4. Discussion and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marquínez-Marquínez, A.N.; Loor-Molina, N.S.; Quiroz-Fernández, L.S.; Maddela, N.R.; Luque, R.; Rodríguez-Díaz, J.M. Recent Advances in the Remediation of Perfluoroalkylated and Polyfluoroalkylated Contaminated Sites. Environ. Res. 2023, 219, 115152. [Google Scholar] [CrossRef]
- Cordner, A.; Goldenman, G.; Birnbaum, L.S.; Brown, P.; Miller, M.F.; Mueller, R.; Patton, S.; Salvatore, D.H.; Trasande, L. The True Cost of PFAS and the Benefits of Acting Now. Environ. Sci. Technol. 2021, 55, 9630–9633. [Google Scholar] [CrossRef]
- Ehsan, M.N.; Riza, M.; Pervez, M.N.; Khyum, M.M.O.; Liang, Y.; Naddeo, V. Environmental and Health Impacts of PFAS: Sources, Distribution and Sustainable Management in North Carolina (USA). Sci. Total Environ. 2023, 878, 163123. [Google Scholar] [CrossRef]
- Zhou, T.; Li, X.; Liu, H.; Dong, S.; Zhang, Z.; Wang, Z.; Li, J.; Nghiem, L.D.; Khan, S.J.; Wang, Q. Occurrence, Fate, and Remediation for per-and Polyfluoroalkyl Substances (PFAS) in Sewage Sludge: A Comprehensive Review. J. Hazard. Mater. 2024, 466, 133637. [Google Scholar] [CrossRef]
- Bolan, N.; Sarkar, B.; Yan, Y.; Li, Q.; Wijesekara, H.; Kannan, K.; Tsang, D.C.W.; Schauerte, M.; Bosch, J.; Noll, H.; et al. Remediation of Poly- and Perfluoroalkyl Substances (PFAS) Contaminated Soils—To Mobilize or to Immobilize or to Degrade? J. Hazard. Mater. 2021, 401, 123892. [Google Scholar] [CrossRef]
- Meegoda, J.N.; Bezerra de Souza, B.; Casarini, M.M.; Kewalramani, J.A. A Review of PFAS Destruction Technologies. Int. J. Environ. Res. Public Health 2022, 19, 16397. [Google Scholar] [CrossRef]
- Verma, S.; Lee, T.; Sahle-Demessie, E.; Ateia, M.; Nadagouda, M.N. Recent Advances on PFAS Degradation via Thermal and Nonthermal Methods. Chem. Eng. J. Adv. 2023, 13, 100421. [Google Scholar] [CrossRef]
- Mahinroosta, R.; Senevirathna, L. A Review of the Emerging Treatment Technologies for PFAS Contaminated Soils. J. Environ. Manag. 2020, 255, 109896. [Google Scholar] [CrossRef]
- Lei, X.; Lian, Q.; Zhang, X.; Karsili, T.K.; Holmes, W.; Chen, Y.; Zappi, M.E.; Gang, D.D. A Review of PFAS Adsorption from Aqueous Solutions: Current Approaches, Engineering Applications, Challenges, and Opportunities. Environ. Pollut. 2023, 321, 121138. [Google Scholar]
- Amen, R.; Ibrahim, A.; Shafqat, W.; Hassan, E.B. A Critical Review on PFAS Removal from Water: Removal Mechanism and Future Challenges. Sustainability 2023, 15, 16173. [Google Scholar] [CrossRef]
- Sharma, N.; Kumar, V.; Sugumar, V.; Umesh, M.; Sondhi, S.; Chakraborty, P.; Kaur, K.; Thomas, J.; Kamaraj, C.; Maitra, S.S. A Comprehensive Review on the Need for Integrated Strategies and Process Modifications for Per- and Polyfluoroalkyl Substances (PFAS) Removal: Current Insights and Future Prospects. Case Stud. Chem. Environ. Eng. 2024, 9, 100623. [Google Scholar] [CrossRef]
- Grimison, C.; Knight, E.R.; Nguyen, T.M.H.; Nagle, N.; Kabiri, S.; Bräunig, J.; Navarro, D.A.; Kookana, R.S.; Higgins, C.P.; McLaughlin, M.J.; et al. The Efficacy of Soil Washing for the Remediation of Per- and Poly-Fluoroalkyl Substances (PFASs) in the Field. J. Hazard. Mater. 2023, 445, 130441. [Google Scholar] [CrossRef]
- Thapa, B.S.; Pandit, S.; Mishra, R.K.; Joshi, S.; Idris, A.M.; Tusher, T.R. Emergence of Per- and Poly-Fluoroalkyl Substances (PFAS) and Advances in the Remediation Strategies. Sci. Total Environ. 2024, 916, 170142. [Google Scholar] [CrossRef]
- Shih, C.-H.; Kim, J.; Yang, S.-H.; Soker, O.; Strathmann, T.J.; Chu, K.-H. Remediation of PFAS-Impacted Soils Using Magnetic Activated Carbon (MAC) and Hydrothermal Alkaline Treatment (HALT). Sci. Total Environ. 2024, 912, 168931. [Google Scholar] [CrossRef]
- Dickman, R.A.; Aga, D.S. A Review of Recent Studies on Toxicity, Sequestration, and Degradation of per- and Polyfluoroalkyl Substances (PFAS). J. Hazard. Mater. 2022, 436, 129120. [Google Scholar] [CrossRef]
- ISO 18504:2017; Soil Quality—Sustainable Remediation. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- van der Giesen, C.; Cucurachi, S.; Guinée, J.; Kramer, G.J.; Tukker, A. A Critical View on the Current Application of LCA for New Technologies and Recommendations for Improved Practice. J. Clean. Prod. 2020, 259, 120904. [Google Scholar] [CrossRef]
- Arvidsson, R.; Svanström, M.; Sandén, B.A.; Thonemann, N.; Steubing, B.; Cucurachi, S. Terminology for Future-Oriented Life Cycle Assessment: Review and Recommendations. Int. J. Life Cycle Assess. 2024, 29, 607–613. [Google Scholar] [CrossRef]
- Cantoni, B.; Bergna, G.; Baldini, E.; Malpei, F.; Antonelli, M. PFAS in Textile Wastewater: An Integrated Scenario Analysis for Interventions Prioritization to Reduce Environmental Risk. Process Saf. Environ. Prot. 2024, 183, 437–445. [Google Scholar] [CrossRef]
- Dahlbom, S.; Bjarnemark, F.; Nguyen, B.; Petronis, S.; Mallin, T. Analysis of Per- and Polyfluoroalkyl Substances (PFAS) Extraction from Contaminated Firefighting Materials: Effects of Cleaning Agent, Temperature, and Chain-Length Dependencies. Emerg. Contam. 2024, 10, 100335. [Google Scholar] [CrossRef]
- Boyer, T.H.; Ellis, A.; Fang, Y.; Schaefer, C.E.; Higgins, C.P.; Strathmann, T.J. Life Cycle Environmental Impacts of Regeneration Options for Anion Exchange Resin Remediation of PFAS Impacted Water. Water Res. 2021, 207, 117798. [Google Scholar] [CrossRef]
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Emery, I.; Kempisty, D.; Fain, B.; Mbonimpa, E. Evaluation of Treatment Options for Well Water Contaminated with Perfluorinated Alkyl Substances Using Life Cycle Assessment. Int. J. Life Cycle Assess. 2019, 24, 117–128. [Google Scholar] [CrossRef]
- Laramay, F.; Crimi, M. A Sustainability Assessment of an in Situ Ultrasonic Reactor for Remediation of PFAS-Contaminated Groundwater. Remediation 2020, 31, 59–72. [Google Scholar] [CrossRef]
- Maga, D.; Aryan, V.; Bruzzano, S. Environmental Assessment of Various End-of-Life Pathways for Treating Per- and Polyfluoroalkyl Substances in Spent Fire-Extinguishing Waters. Environ. Toxicol. Chem. 2021, 40, 947–957. [Google Scholar] [CrossRef]
- Feng, D.; Song, C.; Mo, W. Environmental, Human Health, and Economic Implications of Landfill Leachate Treatment for per- and Polyfluoroalkyl Substance Removal. J. Environ. Manag. 2021, 289, 112558. [Google Scholar] [CrossRef]
- Li, G.; Dunlap, J.; Wang, Y.; Huang, Q.; Li, K. Environmental Life Cycle Assessment (LCA) of Treating PFASs with Ion Exchange and Electrochemical Oxidation Technology. ACS ES T Water 2022, 2, 1555–1564. [Google Scholar] [CrossRef]
- Moeini, M.; Modaresahmadi, K.; Tran, T.; Reddy, K.R. Sustainability Assessment of PFAS Adsorbents for Groundwater Remediation. Mater. Today Proc. 2022, 60, 2209–2216. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Da, Y.; Yu, J.; Long, B.; Zhang, P.; Bakker, C.; McCarl, B.A.; Yuan, J.S.; Dai, S.Y. Sustainable Environmental Remediation via Biomimetic Multifunctional Lignocellulosic Nano-Framework. Nat. Commun. 2022, 13, 1–13. [Google Scholar] [CrossRef]
- Ellis, A.C.; Boyer, T.H.; Fang, Y.; Liu, C.J.; Strathmann, T.J. Life Cycle Assessment and Life Cycle Cost Analysis of Anion Exchange and Granular Activated Carbon Systems for Remediation of Groundwater Contaminated by Per- and Polyfluoroalkyl Substances (PFASs). Water Res. 2023, 243, 120324. [Google Scholar] [CrossRef]
- EN 17472:2022; Sustainability of Construction Works—Sustainability Assessment of Civil Engineering Works—Calculation Methods. European Committee for Standardization (CEN): Brussels, Belgium, 2022.
- Bjørn, A.; Owsianiak, M.; Laurent, A.; Olsen, S.I.; Corona, A.; Hauschild, M.Z. Scope Definition. In Life Cycle Assessment: Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 75–116. [Google Scholar]
- European Commission—Joint Research Centre—Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance, 1st ed.; Publications Office of the European Union: Luxembourg, 2010. [Google Scholar]
- Leung, S.C.E.; Wanninayake, D.; Chen, D.; Nguyen, N.T.; Li, Q. Physicochemical Properties and Interactions of Perfluoroalkyl Substances (PFAS)—Challenges and Opportunities in Sensing and Remediation. Sci. Total Environ. 2023, 905, 166764. [Google Scholar] [CrossRef]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS Removal by Ion Exchange Resins: A Review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef]
- Bare, J. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI), TRACI Version 2.1—User’s Manual. EPA/600/R-12/554; United States Environmental Protection Agency: Washington, DC, USA, 2012. [Google Scholar]
- European Commission (EC). Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations; European Commission (EC): Brussels, Belgium, 2021. [Google Scholar]
- PRé Sustainability. SimaPro Tutorial; 6.0.; PRé Sustainability: Amersfoort, The Netherlands, 2023. [Google Scholar]
- Vilén, A.; Laurell, P.; Vahala, R. Comparative Life Cycle Assessment of Activated Carbon Production from Various Raw Materials. J. Environ. Manag. 2022, 324, 116356. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D. Sustainability Assessment for Remediation Decision-Making. In Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment; Dou, D., Ed.; Elsevier: Oxford, UK, 2020; pp. 43–73. [Google Scholar]
- Owsianiak, M.; Lemming, G.; Hauschild, M.Z.; Bjerg, P.L. Assessing Environmental Sustainability of Remediation Technologies in a Life Cycle Perspective Is Not so Easy. Environ. Sci. Technol. 2013, 47, 1182–1183. [Google Scholar] [CrossRef] [PubMed]
- US EPA (United States Environmental Protection Agency). Per- and Polyfluoroalkyl Substances (PFAS): Proposed PFAS National Primary Drinking Water Regulation. Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas (accessed on 11 July 2024).
- Swedish Food Agency. Drinking Water Regulations (2022:12). Available online: https://www.livsmedelsverket.se/om-oss/lagstiftning1/gallande-lagstiftning/livsfs-202212 (accessed on 10 July 2024).
- Weitz, K.; Kantner, D.; Kessler, A.; Key, H.; Larson, J.; Bodnar, W.; Parvathikar, S.; Davis, L.; Robey, N.; Taylor, P.; et al. Review of Per- and Poly-Fluoroalkyl Treatment in Combustion-Based Thermal Waste Systems in the United States. Sci. Total Environ. 2024, 932, 172658. [Google Scholar] [CrossRef]
- Björklund, S.; Weidemann, E.; Jansson, S. Emission of Per- and Polyfluoroalkyl Substances from a Waste-to-Energy Plant─Occurrence in Ashes, Treated Process Water, and First Observation in Flue Gas. Environ. Sci. Technol. 2023, 57, 10089–10095. [Google Scholar] [CrossRef]
- Hou, D.; Al-Tabbaa, A.; O’Connor, D.; Hu, Q.; Zhu, Y.G.; Wang, L.; Kirkwood, N.; Ok, Y.S.; Tsang, D.C.W.; Bolan, N.S.; et al. Sustainable Remediation and Redevelopment of Brownfield Sites. Nat. Rev. Earth Environ. 2023, 4, 271–286. [Google Scholar] [CrossRef]
- Sparrevik, M.; Saloranta, T.; Cornelissen, G.; Eek, E.; Fet, A.M.; Breedveld, G.D.; Linkov, I. Use of Life Cycle Assessments to Evaluate the Environmental Footprint of Contaminated Sediment Remediation. Environ. Sci. Technol. 2011, 45, 4235–4241. [Google Scholar] [CrossRef] [PubMed]
- Holmquist, H.; Fantke, P.; Cousins, I.T.; Owsianiak, M.; Liagkouridis, I.; Peters, G.M. An (Eco)Toxicity Life Cycle Impact Assessment Framework for Per-And Polyfluoroalkyl Substances. Environ. Sci. Technol. 2020, 54, 6224–6234. [Google Scholar] [CrossRef]
- Zodrow, J.; Vedagiri, U.; Sorell, T.; McIntosh, L.; Larson, E.; Hall, L.; Dourson, M.; Dell, L.; Cox, D.; Barfoot, K.; et al. PFAS Experts Symposium 2: PFAS Toxicology and Risk Assessment in 2021—Contemporary Issues in Human and Ecological Risk Assessment of PFAS. Remediation 2022, 32, 29–44. [Google Scholar] [CrossRef]
- Søndergaard, G.L.; Owsianiak, M. LCA of Soil and Groundwater Remediation. In Life Cycle Assessment: Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer: Cham, Switzerland, 2018; pp. 927–959. [Google Scholar]
- Bergerson, J.; Cucurachi, S.; Seager, T.P. Bringing a Life Cycle Perspective to Emerging Technology Development. J. Ind. Ecol. 2020, 24, 6–10. [Google Scholar] [CrossRef]
- Thonemann, N.; Schulte, A.; Maga, D. How to Conduct Prospective Life Cycle Assessment for Emerging Technologies? A Systematic Review and Methodological Guidance. Sustainability 2020, 12, 1192. [Google Scholar] [CrossRef]
- Moni, S.M.; Mahmud, R.; High, K.; Carbajales-Dale, M. Life Cycle Assessment of Emerging Technologies: A Review. J. Ind. Ecol. 2020, 24, 52–63. [Google Scholar] [CrossRef]
- Gavankar, S.; Suh, S.; Keller, A.A. The Role of Scale and Technology Maturity in Life Cycle Assessment of Emerging Technologies: A Case Study on Carbon Nanotubes. J. Ind. Ecol. 2015, 19, 51–60. [Google Scholar] [CrossRef]
- Thomassen, G.; Van Dael, M.; Van Passel, S.; You, F. How to Assess the Potential of Emerging Green Technologies? Towards a Prospective Environmental and Techno-Economic Assessment Framework. Green. Chem. 2019, 21, 4868–4886. [Google Scholar] [CrossRef]
- Bergerson, J.A.; Brandt, A.; Cresko, J.; Carbajales-Dale, M.; MacLean, H.L.; Matthews, H.S.; McCoy, S.; McManus, M.; Miller, S.A.; Morrow, W.R.; et al. Life Cycle Assessment of Emerging Technologies: Evaluation Techniques at Different Stages of Market and Technical Maturity. J. Ind. Ecol. 2020, 24, 11–25. [Google Scholar] [CrossRef]
- Erakca, M.; Baumann, M.; Helbig, C.; Weil, M. Systematic Review of Scale-up Methods for Prospective Life Cycle Assessment of Emerging Technologies. J. Clean. Prod. 2024, 451, 142161. [Google Scholar] [CrossRef]
- Pizzol, M.; Sacchi, R.; Köhler, S.; Anderson Erjavec, A. Non-Linearity in the Life Cycle Assessment of Scalable and Emerging Technologies. Front. Sustain. 2020, 1, 611593. [Google Scholar] [CrossRef]
- Arvidsson, R.; Tillman, A.M.; Sandén, B.A.; Janssen, M.; Nordelöf, A.; Kushnir, D.; Molander, S. Environmental Assessment of Emerging Technologies: Recommendations for Prospective LCA. J. Ind. Ecol. 2018, 22, 1286–1294. [Google Scholar] [CrossRef]
- de Souza, N.R.D.; Matt, L.; Sedrik, R.; Vares, L.; Cherubini, F. Integrating Ex-Ante and Prospective Life-Cycle Assessment for Advancing the Environmental Impact Analysis of Emerging Bio-Based Technologies. Sustain. Prod. Consum. 2023, 43, 319–332. [Google Scholar] [CrossRef]
- Steubing, B.; de Koning, D. Making the Use of Scenarios in LCA Easier: The Superstructure Approach. Int. J. Life Cycle Assess. 2021, 26, 2248–2262. [Google Scholar] [CrossRef]
Reference | Functional Unit | System Boundary | |||
---|---|---|---|---|---|
Type of Media, Volume, Concentration | Remediation Goal | Timescale | Included | Excluded | |
[24] | 1 m3 of groundwater (PFOA and PFOS: 0.7, 7.0, and 70 µg/L in three samples) | 70 ng/L (PFOA, PFOS) | 20 years (Infrastructure) | Pre-treatment (infrastructure, treatment equipment), treatment process, maintenance, and waste disposal (incineration of spent GAC) | On-site GAC handling (e.g., loading and unloading) |
[25] | A plume (15-ft thick, 350-ft wide, and 1000-ft in length) | 90% reduction of each of the four studied PFAS | 1–30 years (Operation) | Transport (personnel and materials), materials manufacturing, installation, operation, and maintenance (GAC replacements) | End-of-life phase (disposal of spent GAC, infrastructure) |
[26] | 1 m3 of AFFF containing spent-extinguishing water (PFAS: 2300 µg/L) | Removal of more than 99% of the influent PFAS | N/A 1 | Treatment process, waste disposal (incineration of precipitation sludge and spent GAC) | Transport (materials & waste disposal), spillage/leakage of PFAS during remediation |
[27] | 1 m3 of leachate (PFAS: 150.7 µg/L); 1 g of PFAS removed | N/A | 15 years (Infrastructure) | Construction (infrastructure), operation, maintenance (membrane replacement), and waste disposal (landfill of spent membrane) | End-of-life (infrastructure) |
[28] | 1000 m3 groundwater (10 PFAS in two samples: 3091 and 3287 µg/L) | Two orders of magnitude removal of the PFAS | N/A | Operation, maintenance, waste disposal (incineration or landfill of spent resin in different scenarios) | Infrastructure, transport (N/A) |
[29] | 800,000 gallons groundwater (PFOA: max. 0.13 µg/L, PFOS: max. 2.9 µg/L) | 8 ng/L (PFOA), 16 ng/L (PFOS) | N/A | Assembly (e.g., pumps, gages, and vessels), operation, transportation, and waste management (resin regeneration, landfill of spent resin) | Five pre-treatment processes before the PFAS adsorption process |
[30] | 1 m3 groundwater (PFAS: 0.21 µg/L) | Zero (PFOA and PFOS) 2 | N/A | Production of sorbents (GAC, IEX resin, and RAPIMER) | N/A |
[31] | 1 m3 groundwater (PFAS: 50 µg/L) | Zero (PFOA and PFOS) | 30 years (Infrastructure) | Construction (infrastructure), operation (e.g., sorbent media, contactors, pipes, fittings, regenerant solution chemicals), and waste disposal (incineration of spent sorbent media) | Equivalent or identical elements for the sorbent technologies (e.g., electricity for pumping), pretreatment operations, and end-of-life (infrastructure) |
Reference | LCA Software/Tool | Background Database |
---|---|---|
[24] | SimaPro v8.3 | Ecoinvent v3 |
[25] | SiteWise | N/A |
[26] | Gabi v9.2 | Gabi Database v8.7 |
[27] | SimaPro v9.0 & EIO-LCA | N/A |
[28] | SimaPro v7.0 | Ecoinvent, USLCI, ELCD, |
[29] | SimaPro v9.0 | N/A |
[30] | OpenLCA 1.10.3 | Ecoinvent v3.7, USLCI |
[31] | SimaPro v9.1 | Ecoinvent v3.5, USLCI v1.10.1, USEI v2.2, Industry Data v2.0, Agri-footprint v5.0, Agribalyse v3.0 |
Reference | Sorbent | Maximum Adsorption Capacity (per kg of Sorbent) | Data Source |
---|---|---|---|
[24] | GAC (from bituminous coal) | 0.11 g PFCs | The literature |
[25] | GAC | 0.40 g PFAS | The literature |
[30] | AC | 0.41 kg PFOA & PFOS | The literature |
Impact Category | Spatial Scale of Impact | Frequency of Selection | Reviewed Articles (Impact Assessment Method) 1 |
---|---|---|---|
Climate change | Global | 8 | [24] (TRACI 2.1), [25] (N/A) 2, [26] (EF 3.0), [27] (TRACI 2.1), [28] (TRACI), [29] (TRACI 2.1), [30] (N/A), [31] (TRACI 2.1) |
Ozone depletion | Global | 7 | [24] (TRACI 2.1), [26] (EF 3.0), [27,28] (TRACI 2.1), [28] (TRACI), [27] (TRACI 2.1), [30] (N/A), [31] (TRACI 2.1) |
Acidification | Regional | 7 | [24] (TRACI 2.1), [26] (EF 3.0), [27] (TRACI 2.1), [28] (TRACI), [29] (TRACI 2.1), [30] (N/A), [31] (TRACI 2.1) |
Photochemical ozone formation/smog | Regional/local | 7 | [24] (TRACI 2.1), [26] (EF 3.0), [27] (TRACI 2.1), [28] (TRACI), [29] (TRACI 2.1), [30] (N/A), [31] (TRACI 2.1) |
Respiratory effects/ particulate matter | Local | 7 | [24] (TRACI 2.1), [26] (EF 3.0), [27] (TRACI 2.1), [28] (TRACI), [29] (TRACI 2.1), [30] (N/A), [31] (TRACI 2.1) |
Eutrophication | Regional | 6 | [24] (TRACI 2.1), [26] (EF 3.0), [27] (TRACI 2.1), [28] (TRACI), [29] (TRACI 2.1), [31] (TRACI 2.1) |
Human toxicity, cancer | Regional/local | 6 | [24] (TRACI 2.1), [27] (TRACI 2.1), [28] (TRACI), [29] (TRACI 2.1), [30] (N/A), [31] (TRACI 2.1) |
Human toxicity, non-cancer | Regional/local | 6 | [24] (TRACI 2.1), [27] (TRACI 2.1), [28] (TRACI), [29] (TRACI 2.1), [30] (N/A), [31] (TRACI 2.1) |
Ecotoxicity | Regional/local | 6 | [24] (TRACI 2.1), [27] (TRACI 2.1), [28] (TRACI), [29] (TRACI 2.1), [30] (N/A), [31] (TRACI 2.1) |
Resource use, energy carriers/fossil fuel depletion | Global | 4 | [24] (TRACI 2.1), [26] (EF 3.0), [27] (TRACI 2.1), [29] (TRACI 2.1), [31] (TRACI 2.1) |
Resource use, minerals and metals | Global | 1 | [26] (EF 3.0) |
Ionizing radiation, human health | Local | 1 | [26] (EF 3.0) |
Reference | Treatment Method | PFAS | Reported GHG Emissions (kg CO2eq/m3 of Remediated Water) | ||
---|---|---|---|---|---|
Initial Concentration (µg/L) | Remediation Goal (µg/L) | Removed PFAS (µg/L) | |||
[24] | GAC | 0.7 | 0.07 | 0.6 | 0.33 |
IEX resin | 0.32 | ||||
GAC | 7.0 | 0.07 | 6.9 | 0.54 | |
IEX resin | 0.33 | ||||
GAC | 70.0 | 0.07 | 69.9 | 2.7 | |
IEX resin | 0.5 | ||||
[26] | Flocculation/ precipitation | 2300 | 9.2 1 | 2290.8 | 1.8 |
GAC | 28.3 | ||||
Incineration | 320.4 | ||||
[27] | On-site membrane bioreactor treatment | 150.7 | 1.5 2 | 149.2 | 18.14 |
Off-site membrane bioreactor treatment | 150.7 | 119.1 2 | 31.6 | 2.6 | |
[30] | AC | 0.21 | 0 3 | 0.21 3 | 4.5 × 10−06 |
IEX resin | 3.4 × 10−07 | ||||
RAPIMER | 1.4 × 10−07 | ||||
[31] | AER (single use) | 50 | 0 | 50 | 0.03 |
AER (regenerable) | 0.27 | ||||
GAC (single use) | 0.44 | ||||
GAC (thermal reactivation) | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Montelius, M.; Carlsson, C. Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review. Environments 2024, 11, 203. https://doi.org/10.3390/environments11090203
Song X, Montelius M, Carlsson C. Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review. Environments. 2024; 11(9):203. https://doi.org/10.3390/environments11090203
Chicago/Turabian StyleSong, Xingqiang, Malin Montelius, and Christel Carlsson. 2024. "Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review" Environments 11, no. 9: 203. https://doi.org/10.3390/environments11090203
APA StyleSong, X., Montelius, M., & Carlsson, C. (2024). Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review. Environments, 11(9), 203. https://doi.org/10.3390/environments11090203