Nanobiopesticides: Sustainability Aspects and Safety Concerns
Abstract
:1. Introduction
2. Pesticides, Biopesticides, and Nanobiopesticides
3. Materials and Methods
4. Results and Discussions
4.1. Literature Overview: Temporal and Spatial Distribution, Type of Source
4.2. Analysis of Typology and Effectiveness of NPs
4.2.1. Metal Nanoparticles
4.2.2. Inorganic Nanoparticles
4.2.3. Encapsulated Nanoparticles
4.2.4. Plant Extracts and Essential Oils
4.3. Nanoparticle Sizes
4.4. Impact on Targets and Non-Targets
4.5. Environmental Sustainability Aspects
Life Cycle Assessment Application
4.6. Safety and Regulatory Aspects
4.7. Challenges and Opportunities
- Develop synthesis methods that are energy-efficient and less dependent on limited resources.
- Improve the biodegradability of nanoparticles and assess bioaccumulation risks.
- Implement long-term impact studies on ecosystems and non-target organisms.
- Ensure affordable costs to promote widespread adoption, especially in the most vulnerable settings.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Input | Quantity |
---|---|
Mentha piperita extract | 1 g of leaves |
Polyvinylpyrrolidone | 3 mg |
Distilled water | 0.3 mL |
Ultrasonication energy | 0.00083 kWh |
Output | |
Mentha piperita-based nanobiopesticide | 10 mg |
Appendix A.2
Input | Quantity |
---|---|
AgNO3 | 0.001690 g |
Double-distilled water | 10.00 mL |
Ocimum sanctum extract | 2.00 g |
Methanol | 5.00 mL |
Output | |
AgNO3-based nanobiopesticide | 10 mg |
Appendix A.3
Impact Categories | Unit | AgNO3-Based Nanobiopesticide | Plant-Based Nanobiopesticide | Commercial Pesticide |
---|---|---|---|---|
GWP | kg CO2 eq | 9.98 × 10−4 | 6.56 × 10−4 | 1.23 × 10−2 |
SOD | kg CFC11 eq | 5.30 × 10−10 | 2.02 × 10−9 | 3.61 × 10−8 |
IR | kBq Co-60 eq | 7.84 × 10−5 | 5.99 × 10−5 | 6.57 × 10−4 |
OFHH | kg NOx eq | 6.68 × 10−6 | 2.12 × 10−6 | 2.74 × 10−5 |
FPMP | kg PM2.5 eq | 1.07 × 10−6 | 2.62 × 10−7 | 6.89 × 10−6 |
OFTE | kg NOx eq | 6.68 × 10−6 | 2.12 × 10−6 | 2.77 × 10−5 |
TAP | kg SO2 eq | 6.32 × 10−6 | 6.78 × 10−6 | 7.58 × 10−5 |
FEP | kg P eq | 2.36 × 10−6 | 1.96 × 10−7 | 6.06 × 10−6 |
MEP | kg N eq | 5.64 × 10−8 | 9.30 × 10−7 | 3.19 × 10−6 |
TEC | kg 1,4-DCB | 8.49 × 10−5 | 4.79 × 10−5 | 1.15 × 10−2 |
FEC | 3.72 × 10−6 | 4.98 × 10−6 | 1.18 × 10−4 | |
MEC | 1.33 × 10−6 | 9.36 × 10−7 | 9.69 × 10−6 | |
HCT | 8.78 × 10−8 | 5.52 × 10−8 | 1.83 × 10−5 | |
HNCT | 1.57 × 10−5 | 1.24 × 10−6 | 2.13 × 10−4 | |
LU | m2a crop eq | 1.04 × 10−4 | 6.22 × 10−4 | 6.84 × 10−4 |
MRS | kg Cu eq | 1.75 × 10−4 | 2.55 × 10−6 | 2.66 × 10−4 |
FRS | kg oil eq | 2.40 × 10−4 | 1.54 × 10−4 | 3.65 × 10−3 |
WC | m3 | 9.49 × 10−6 | 1.14 × 10−4 | 3.99 × 10−5 |
References
- Popp, J.; Pető, K.; Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2013, 33, 243–255. [Google Scholar] [CrossRef]
- Statista. 2024. Available online: https://www.statista.com/statistics/1263077/global-pesticide-agricultural-use/ (accessed on 15 January 2025).
- Eurostat. 2024. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_consumption_of_pesticides (accessed on 15 January 2025).
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Chagnon, M.; Kreutzweiser, D.; Mitchell, E.A.; Morrissey, C.A.; Noome, D.A.; Van der Sluijs, J.P. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 2015, 22, 119–134. [Google Scholar] [CrossRef]
- Rathee, V.; Dubey, A.K.; Kaur, M. Effects of Pesticides on Human Health. J. Forensic Sci. Res. 2023, 7, 034–039. [Google Scholar] [CrossRef]
- Duprè, M.; Michels, T.; le Gal, P.Y. Crop drivers in the shift from synthetic inputs to alternative practices in diversified farming systems. Eur. J. Agron. 2020, 120, 126146. [Google Scholar] [CrossRef]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Cappa, F.; Baracchi, D.; Cervo, R. Biopesticides and Insect Pollinators: Detrimental Effects, Outdated Guidelines, and Future Directions. Sci. Total Environ. 2022, 837, 155714. [Google Scholar] [CrossRef]
- Aioub, A.A.A.; Ghosh, S.; AL-Farga, A.; Nawaz Khan, A.; Bibi, R.; Elwakeel, A.M.; Nawaz, A.; Sherif, N.T.; Elmasry, S.A.; Ammar, E.E. Back to the origins: Biopesticides as promising alternatives to conventional agrochemicals. Eur. J. Plant Pathol. 2024, 169, 697–713. [Google Scholar] [CrossRef]
- Machado, S.; Pereira, R.; Sousa, R.M.O.F. Nanobiopesticides: Are they the future of phytosanitary treatments in modern agriculture? Sci. Total Environ. 2023, 896, 166401. [Google Scholar] [CrossRef]
- Farooq, M.A.; Hannan, F.; Islam, F.; Ayyaz, A.; Zhang, N.; Chen, W.; Zhang, K.; Huang, Q.; Xu, L.; Zhou, W. The potential of nanomaterials for sustainable modern agriculture: Present findings and future perspectives. Environ. Sci. Nano 2022, 9, 1926–1951. [Google Scholar] [CrossRef]
- Fu, L.; Wang, Z.; Dhankher, O.P.; Xing, B. Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production, J. Exp. Bot. 2020, 71, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Ghodake, V.N.; Naik, S.V.; Bhukhanwala, K.N.; Kande, K.V.; Bhor, N.J.; Patravale, V.B. Nanoengineered Systems for Biopesticides. In Handbook of Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 243–259. [Google Scholar] [CrossRef]
- Zhou, W.; Li, M.; Achal, V. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg. Contam. 2025, 11, 100410. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Omole, R.K.; Johnson, R.M.; Uthman, Q.O.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Ullah, M.I.; Sajjad, A.; Shakeel, Q.; Hussain, A. Environmental and health effects of pesticide residues. In Sustainable Agriculture Reviews; Inamuddin, M.I.A., Ahamed, E., Lichtfouse, E., Eds.; Springer: New York, NY, USA, 2021; pp. 311–336. [Google Scholar]
- Han, Y.; Mo, R.; Yuan, X.; Zhong, D.; Tang, F.; Ye, C.; Liu, Y. Pesticide residues in nut-planted soils of China and their relationship between nut/soil. Chemosphere 2017, 180, 42–47. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, S.; Sarma, S.J.; Misra, K.; Brar, S.K. Pesticides in water. In Handbook of Water Purity and Quality; Academic Press: Cambridge, MA, USA, 2021; pp. 231–253. [Google Scholar]
- Jallow, M.F.; Awadh, D.G.; Albaho, M.S.; Devi, V.Y.; Ahmad, N. Monitoring of pesticide residues in commonly used fruits and vegetables in Kuwait. Int. J. Environ. Res. Public Health 2017, 14, 833. [Google Scholar] [CrossRef]
- Otorkpa, O.J.; Otorkpa, C.O.; Auta, H.S.; Ukah, A.A. Pattern and Impact of pesticide poisoning: A review of published case reports. Texila Int. J. Public Health 2024, 12. [Google Scholar] [CrossRef]
- Pitoniak, A.; Bohmann, D. Mechanisms and functions of Nrf2 signaling in Drosophila. Free Radic. Biol. Med. 2015, 88 Pt B, 302–313. [Google Scholar] [CrossRef]
- Agricultural Chemical Solutions, Inc. Pesticides Price List. 2025. Available online: http://www.agchemicalsolutions.com/pesticides (accessed on 17 January 2025).
- Razaq, M.; Shah, F.M. Biopesticides for management of arthropod pests and weeds. In Biopesticides: Volume 2: Advances in Bio-Inoculants; Woodhead Publishing: Cambridge, UK, 2022; pp. 7–18. [Google Scholar] [CrossRef]
- Bilgrami, A.L.; Khan, A. Introduction. In Plant Nematode Biopesticides; Academic Press: Cambridge, MA, USA, 2022; pp. 1–15. [Google Scholar] [CrossRef]
- Villarreal, G.U.; Campos, E.V.R.; de Oliveira, J.L.; Fraceto, L.F. Development and commercialization of pheromone-based biopesticides: A global perspective. In Development and Commercialization of Biopesticides; Academic Press: Cambridge, MA, USA, 2023; pp. 37–56. [Google Scholar] [CrossRef]
- Daraban, G.M.; Hlihor, R.-M.; Suteu, D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. Toxics 2023, 11, 983. [Google Scholar] [CrossRef]
- National Nanotechnology Initiative: Leading to the Next Industrial Revolution. A Report by the Interagency Working Group on Nanoscience, Engineering and Technology. Committee on Technology National Science and Technology Council, 2000. Available online: https://clintonwhitehouse4.archives.gov/media/pdf/nni.pdf (accessed on 10 January 2025).
- European Commission. Commission Recommendation of 18 October 2011 on the definition of nanomaterial Text with EEA relevance. Off. J. Eur. Union 2011, 275, 38–40. Available online: https://eur-lex.europa.eu/eli/reco/2011/696/oj (accessed on 20 January 2025).
- Pan, X.; Guo, X.; Zhai, T.; Zhang, D.; Rao, W.; Cao, F.; Guan, X. Nanobiopesticides in sustainable agriculture: Developments, challenges, and perspectives. Environ. Sci. Nano. 2023, 10, 41–61. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Dilbaghi, N.; Marrazza, G.; Aly Hassan, A.; Kim, K.-H. Nano-based smart pesticide formulations: Emerging opportunities for agriculture. J. Control. Release 2019, 294, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Batool, A.; Nazir, M.; Majeed Zargar, S. Nano-pesticides and nano-fertilizers from natural (plant/ animal) wastes. Biocatal. Agric. Biotechnol. 2024, 60, 103265. [Google Scholar] [CrossRef]
- Gottardo, S.; Mech, A.; Drbohlavovà, J.; Małyska, A.; Bøwadt, S.; Sintes, J.R.; Rauscher, H. Towards safe and sustainable innovation in nanotechnology: State-of-play for smart nanomaterials. NanoImpact 2021, 21, 100297. [Google Scholar] [CrossRef]
- Anjaneyulu, B.; Chauhan, V.; Mittal, C.; Afshari, M. Innovative nanocarrier systems: A comprehensive exploration of recent developments in nano-biopesticide formulations. J. Environ. Chem. Eng. 2024, 12, 113693. [Google Scholar] [CrossRef]
- Lallawmawma, H.; Sathishkumar, G.; Sarathbabu, S.; Ghatak, S.; Sivaramakrishnan, S.; Gurusubramanian, G.; Kumar, N.S. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ. Sci. Pollut. Res. 2015, 22, 17753–17768. [Google Scholar] [CrossRef]
- Udoh, G.D.; Gibbs, J.L. Commentary: Highlighting the need for pesticides safety training in Nigeria: A survey of farm households in Rivers State. Front. Public Health 2022, 10, 988855. [Google Scholar] [CrossRef] [PubMed]
- Wossen, T.; Menkir, A.; Alene, A.; Abdoulaye, T.; Ajala, S.; Badu-Apraku, B.; Gedil, M.; Mengesha, W.; Meseka, S. Drivers of transformation of the maize sector in Nigeria. Glob. Food Secur. 2023, 38, 100713. [Google Scholar] [CrossRef]
- Ojo, T.O.; Baiyegunhi, L.J.S. Gender differentials on productivity of rice farmers in south western Nigeria: An Oaxaca-Blinder decomposition approach. Heliyon 2023, 9, e22724. [Google Scholar] [CrossRef]
- Ikuemonisan, E.S.; Mafimisebi, T.E.; Ajibefun, I.; Adenegan, K. Cassava production in Nigeria: Trends, instability and decomposition analysis (1970–2018). Heliyon 2020, 6, e05089. [Google Scholar] [CrossRef]
- Udoekpo, I.U.; Inyangudoh, A.I.; Awa-Arua, T.A.; Ogwo, E.I.; Offiong, N.A.O.; Inam, E.J.; Halsall, C.J. Assessment of organochlorine pesticide residues in agricultural soils of southern Nigeria and analysis of potential health risks. Toxicol. Rep. 2024, 13, 101843. [Google Scholar] [CrossRef] [PubMed]
- Ademola, S.M.; Esan, V.I.; Sangoyomi, T.E. Assessment of pesticide knowledge, safety practices and postharvest handling among cocoa farmers in Southwestern Nigeria. Heliyon 2024, 10, e31724. [Google Scholar] [CrossRef]
- Adejumo, O.E.; Kolapo, A.L.; Folarin, A.O. Moringa oleifera Lam. (Moringaceae) grown in Nigeria: In vitro antisickling activity on deoxygenated erythrocyte cells. J. Pharm. Bioallied Sci. 2012, 4, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Bello Musawa, B.; Muhammad, S.; Onyema, R. Modeling and distribution of neem (Azadirachta indica A. Juss) in Nigeria. Afr. J. Agric. Res. 2021, 10, 232–245. [Google Scholar]
- Sundararajan, B.; Ranjitha Kumari, B.D. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J. Trace Elem. Med. Biol. 2017, 43, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Sayed, A.M.M.; Kim, S.; Behle, R.W. Characterisation of silver nanoparticles synthesized by Bacillus thuringiensis as a nanobiopesticide for insect pest control. Biocontrol Sci. Technol. 2017, 27, 1308–1326. [Google Scholar] [CrossRef]
- Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Thangaraj, M.P. Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J. Photochem. Photobiol. B Biol. 2017, 174, 306–314. [Google Scholar] [CrossRef]
- Joeniarti, E.; Susilo, A.; Ardiarini, N.R.; Indrasari, N.; Fahmi, M.Z. Efficiency study of neem seeds-based nanobiopesticides. Chem. Chem. Technol. 2019, 13, 240–246. [Google Scholar] [CrossRef]
- Noveriza, R.; Mardiningsih, T.L.; Trisilawati, O.; Rahma, H.; Zulkarnaen. Effect of combination of biofertilizer and nanobiopesticide citronella against mosaic disease on patchouli plant. IOP Conf. Ser. Earth Environ. Sci. 2020, 468, 012051. [Google Scholar] [CrossRef]
- Pascoli, M.; de Albuquerque, F.P.; Calzavara, A.K.; Tinoco-Nunes, B.; Oliveira, W.H.C.; Gonçalves, K.C.; Polanczyk, R.A.; Della Vechia, J.F.; de Matos, S.T.S.; de Andrade, D.J.; et al. The potential of nano biopesticide based on zein nanoparticles and neem oil for enhanced control of agricultural pests. J. Pest Sci. 2020, 93, 793–806. [Google Scholar] [CrossRef]
- Zhang, J.; Brown, G.; Fu, J.; James, P.; Mukandiwa, L.; Huang, X.; Yu, C. Nanobiopesticides: Silica nanoparticles with spiky surfaces enable dual adhesion and enhanced performance. EcoMat 2020, 2, e12028. [Google Scholar] [CrossRef]
- Velho, M.C.; Cossetin, L.F.; Godoi, S.N.; Santos, R.C.V.; Gündel, A.; Monteiro, S.G.; Ourique, A.F. Nanobiopesticides: Development and insecticidal activity of nanoemulsions containing lemongrass or eucalyptus oils. Nat. Prod. Res. 2020, 35, 6210–6215. [Google Scholar] [CrossRef] [PubMed]
- Cherif, A.; Mansour, R.; Sun, C.; Grissa-Lebdi, K. Lethal effects of nano and commercial formulations of abamectin on Tuta absoluta (Meyrick) and its mirid predators Macrolophus pygmaeus and Nesidiocoris tenuis. Int. J. Trop. Insect Sci. 2022, 42, 2183–2193. [Google Scholar] [CrossRef]
- Shatalova, E.I.; Grizanova, E.V.; Dubovskiy, I.M. The Effect of Silicon Dioxide Nanoparticles Combined with Entomopathogenic Bacteria or Fungus on the Survival of Colorado Potato Beetle and Cabbage Beetles. Nanomaterials 2022, 12, 1558. [Google Scholar] [CrossRef] [PubMed]
- Giunti, G.; Laudani, F.; Lo Presti, E.; Bacchi, M.; Palmeri, V.; Campolo, O. Contact Toxicity and Ovideterrent Activity of Three Essential Oil-Based Nano-Emulsions against the Olive Fruit Fly Bactrocera oleae. Horticulturae 2022, 8, 240. [Google Scholar] [CrossRef]
- Khaleel, A.I.; Mohmed, A.S.; Al-Taey, D.K.A.; Kamaluddin, Z.N. Green synthesis of ZnO nanoparticles using Myrtus communis L. extract and their insecticidal activity against Myzus persicae (Sulzer). Biopestic. Int. 2023, 19, 143–148. [Google Scholar] [CrossRef]
- Jahan, N.; Rasheed, K.; Rahman, K.U.; Hazafa, A.; Saleem, A.; Alamri, S.; Iqbal, M.O.; Rahman, M.A. Green inspired synthesis of zinc oxide nanoparticles using Silybum marianum (milk thistle) extract and evaluation of their potential pesticidal and phytopathogens activities. PeerJ 2023, 11, e15743. [Google Scholar] [CrossRef]
- Iqbal, H.; Jahan, N.; Ali, S.; Shahzad, A.; Iqbal, R. Formulation of Moringa oleifera nanobiopesticides and their evaluation against Tribolium castaneum and Rhyzopertha dominica. J. Plant Dis. Prot. 2024, 131, 133–142. [Google Scholar] [CrossRef]
- Jahan, N.; Hussain, N.; Touqeer, S.I.; Khalil-Ur-Rahman;Shamshad, H.; Abbas, N. Formulation of Mentha piperita-Based Nanobiopesticides and Assessment of the Pesticidal and Antimicrobial Potential. Life 2024, 14, 144. [Google Scholar] [CrossRef]
- Pan, X.; Cao, F.; Guo, X.; Wang, Y.; Cui, Z.; Huang, T.; Hou, Y.; Guan, X. Development of a Safe and Effective Bacillus thuringiensis-Based Nanobiopesticide for Controlling Tea Pests. J. Agric. Food Chem. 2024, 72, 14. [Google Scholar] [CrossRef]
- Ghosh, A.; Majumdar, D.; Biswas, H.; Chowdhury, A.; Podder, S. Nano-biopesticide formulation comprising of silver nanoparticles anchored to Ocimum sanctum: A sustainable approach to pest control in jute farming. Sci. Rep. 2025, 15, 3414. [Google Scholar] [CrossRef]
- International Standard ISO 14040; Environmental Management—Life Cycle Assessment—Principle and Framework. International Organisation for Standardisation (ISO): Geneve, Switzerland, 2006. Available online: https://www.iso.org/standard/37456.html. (accessed on 20 January 2025).
- International Standard ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organisation for Standardisation (ISO): Geneve, Switzerland, 2006. Available online: https://www.iso.org/standard/38498.html (accessed on 20 January 2025).
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Veronese, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonized life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Wu, J.; Zhai, Y.; Liu, G.; Bosker, T.; Vijver, M.G.; Peijnenburg, W.J.G.M. Multigenerational Effects of Silver Nanoparticles in Soil on the Nematode Caenorhabditis elegans. ACS Sustain. Chem. Eng. 2021, 9, 16172–16181. [Google Scholar] [CrossRef]
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as Well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Available online: https://eur-lex.europa.eu/eli/reg/2006/1907/oj/eng (accessed on 20 January 2025).
- European Commission. Commission Regulation (EU) 2018/1881 of 3 December 2018 Amending Regulation (EC) No 1907/2006 of the European Parliament and the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Annexes I, III, VI, VII, VIII, IX, X, XI, and XII to Address Nanoforms of Substances (Text with EEA Relevance). Off. J. Eur. Union 2018, 308, 1–20. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.308.01.0001.01.ENG&toc=OJ:L:2018:308:TOC (accessed on 20 January 2025).
- Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/reg/2012/528/oj/eng (accessed on 20 January 2025).
- Delegated Regulation (EU) 2022/692 OF The Commission of 16 February 2022 Amending, for the Purposes of Its Adaptation to Technical and Scientific Progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on Classification, Labelling and Packaging of Substances and Mixtures. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:32022R0692 (accessed on 20 January 2025).
- Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: https://eur-lex.europa.eu/eli/reg/2009/1107/oj/eng (accessed on 20 January 2025).
- United States Government. Federal Insecticide, Fungicide, and Rodenticide Act. 2012. Available online: https://www.agriculture.senate.gov/imo/media/doc/FIFRA.pdf (accessed on 20 January 2025).
- United States Environmental Protection Agency. Control of Nanoscale Materials under the Toxic Substance Control Act. Available online: https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under (accessed on 20 January 2025).
- Government of Canada. Nanomaterials. 2016. Available online: https://www.canada.ca/en/health-canada/services/chemical-substances/chemicals-management-plan/initiatives/nanomaterials.html (accessed on 20 January 2025).
- Government of Canada. Policy Statement on Health Canada’s Working Definition for Nanomaterial. 2011. Available online: https://www.canada.ca/en/health-canada/services/science-research/reports-publications/nanomaterial/policy-statement-health-canada-working-definition.html (accessed on 20 January 2025).
- United States–Canada Regulatory Cooperation Council. Joint Forward Plan. 2014. Available online: https://obamawhitehouse.archives.gov/sites/default/files/omb/oira/irc/us-canada-rcc-joint-forward-plan.pdf (accessed on 20 January 2025).
- Australian Pesticides and Veterinary Medicines Authority. Nanotechnologies for Pesticides and Veterinary Medicines: Regulatory Considerations. 2015. Available online: https://apvma.gov.au/sites/default/files/publication/15626-nanotechnologies-pesticides-veterinary-medicines_regulatory-considerations_july2015.pdf (accessed on 20 January 2025).
- World Bank. Agriculture, Forestry, and Fishing, Value Added (% of GDP). 2024. Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS (accessed on 21 January 2024).
Ref. | Year | Focus | Precursor/ Reducing Agent | NPs Size | Larvicidal Efficacy | Lethal Time | Target | ||
---|---|---|---|---|---|---|---|---|---|
LC50 | LC90 | LC95 | LT50 | ||||||
[35] | 2015 | AgNPs Biosynthesis | Jasminum nervosum | 4–22 nm | 57.40 µg/mL | N.S.* | 144.35 µg/mL | 2.24 h × 150 µg/L | Culex quinquefasciatus (Southern house mosquito) |
2–20 nm | 82.62 µg/mL | N.S. | 254.68 µg/mL | 4.51 h × 150 µg/L | |||||
[44] | 2017 | AgNPs Biosynthesis | Artemisia vulgaris L. | 89.76 nm | third-stage larvae: 156.55 ppm/12 h, 62.47 ppm/24 h fourth-stage larvae: 97.90 ppm/12 h, 43.01 ppm/24 h | third-stage larvae: 2506.21 ppm/12 h, 430.16 ppm/24 h. fourth-stage larvae: 1677.36 ppm/12 h, 376.70 ppm/24 h | N.S. | 5.5 h × 150 µg/L | Aedes aegypti (Yellow fever mosquito) |
[45] | 2017 | AgNPs Biosynthesis | Bacillus thuringiensis kurstaki (Btk). | 2–100 nm | 0.81 mg/mL (supernatant), 0.46 mg/mL (pellet) | N.S. | N.S. | N.S. | Trichoplusia ni (Cabbage looper) |
5.20 mg/mL (supernatant), 1.95 mg/mL (pellet) | N.S. | N.S. | N.S. | Agrotis ipsilon (Seedling Noctule) | |||||
[46] | 2017 | ZnNPs Biosynthesis | Bacillus thuringiensis | 20 nm | 10.71 μg/mL | N.S. | N.S. | N.S. | Callosobruchus maculatus (cowpea weevil) |
[47] | 2019 | NPs encapsulated in succinic anhydride cross-linked chitosan | Azadirachta indica (neem) | 271.6 nm | 100% mortality at 0.3% (nanobiopesticide) vs. 81.67% (simple neem extract) | Spodoptera litura (tobacco cutworm) | |||
[48] | 2020 | Lemongrass essential oil based nanobiopesticides | Cymbopogon flexuosus (lemongrass) | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. |
[49] | 2020 | NBP production from neem oil encapsulated in zein NPs | Azadirachta indica (neem) | 198 ± 16 nm | 0.375 µg/mL | 0.859 µg/mL | N.S. | N.S. | Bemisia tabac (Silverleaf whitefly) |
0.210 µg/mL | 0.715 µg/mL | N.S. | N.S. | Tetranychus urticae (Red spider mite) | |||||
0.455 µg/mL | 0.940 µg/mL | N.S. | N.S. | Acanthoscelides obtectus (Bean weevil) | |||||
[50] | 2020 | Nanospinosad preparation by using spiky silica hollow NPs to load spinosad | Biopesticide spinosad, derived from Saccharopolyspora spinosa | 330–350 nm | 100% mortality at 0.1 mg/cattle hair and 74% at 0.01 mg/cattle hair. More effective than smooth nanoparticles (mortality of 63% at 0.1 mg/hair and 27% at 0.01 mg/hair), commercial spinosad product (mortality of 35% at 0.1 mg/hair), and pure spinosad (mortality of 25% at 0.01 mg/hair) | N.S. | Rhipicephalus microplus (Asian blue tick) | ||
[51] | 2021 | Lemongrass essential emulsion-based nanobiopesticides | Essential oils of Cymbopogon flexuosus (lemongrass) | 70–125 nm | N.S. | N.S. | N.S. | N.S. but LT100 is 30 min. a 50 μL/mL | Lucilia cuprina (Australian sheep blowfly) |
[52] | 2022 | Production of nano-encapsulated formulations of abamectin | Abamectin in polymeric nanoparticles | 175–200 nm | Precise values are N.S., but 65–75% mortality of larvae is achieved within 24 h, which is higher than the commercial formulation. | Tuta absoluta (Tomato pinworm) | |||
[53] | 2022 | Silicon dioxide (SiO2) nanoparticles modified with epoxy, silane, and amide groups | SiO2 | 10–20 nm | SiO2 combined with Bt shows an increase in mortality of +10–15% compared with Bt alone. | 37% within 3 days when treated with a combination of SiO2 nanoparticles and Bt | Leptinotarsa decemlineata (Colorado potato beetle) | ||
[54] | 2022 | Nanoemulsion production from essential oils of anise, fennel, and mint | Pimpinella anisum (Anise), Foeniculum vulgare (fennel) and Mentha piperita. | 100–150 nm | No LC values are specified, but RC50, which is 3.25% for anise, 3.47% for fennel, and 7.95% for mint. | Bactrocera oleae (Olive fruit fly) | |||
[55] | 2023 | ZnO-NPs synthesis | Azadirachta indica, Emblica officinalis (emblica), Allium sativum (garlic) | 14–27 nm | Average mortality in nymphs of 36.69% on day 1 and 54.15% on day 3, higher than the average adult mortality of 29.09% on day 1 and 40.20% on day 3. | Myzus persicae (Green peach aphid) | |||
[56] | 2023 | ZnO-NPs synthesis | Silybum marianum (milk thistle) seeds | 5180 nm | Average mortality of 78 ± 0.57% after 72 h | Tribolium castaneum (Red flour beetle) | |||
Average mortality 74 ± 0.57% after 72 h. | Sitophilus oryzae (Rice weevil) | ||||||||
Inhibition zone of 18 ± 0.4 mm. | Clavibacter michiganensis (Ring Rot) | ||||||||
Inhibition zone of 25 ± 0.4 mm. | Pseudomonas syringae | ||||||||
Inhibition zone of 21 ± 0.57 mm. | Fusarium oxysporum | ||||||||
Inhibition zone of 19 ± 0.4 mm. | Aspergillus niger | ||||||||
[57] | 2024 | Moringa oleifera leaf extract-based nanobiopesticides synthesis | Extract of Moringa oleifera leaves stabilized with Polyvinylpyrrolidone (PVP). | 174 nm | The nanobiopesticide shows a mortality of 83.00% ± 0.56 (after 72 h), +3.7% compared with the mortality of 79.30% ± 2.64 of the crude extract of Moringa oleifera. | Tribolium castaneum (Red flour beetle) | |||
The nanobiopesticide shows a mortality of 92.48% ± 3.12 (after 72 h), +11.3% compared with the mortality of 81.15% ± 2.97 of the crude extract of Moringa oleifera. | Rhyzopertha dominica (Lesser grain borer) | ||||||||
[58] | 2024 | Mentha piperita-based nanobiopesticides synthesis | Mentha piperita | 259,8 nm | Maximum mortality of 84.4% at 1.17% after 72 h, +22% compared with maximum mortality of 62.22% in crude extract. | Tribolium castaneum (Red flour beetle). | |||
Maximum mortality of 77.7% at 1.17% after 72 h, +20% compared with maximum mortality of 57.7% in crude extract. | Sitophilus oryzae (Rice weevil). | ||||||||
[59] | 2024 | Nanostructures of magnesium hydroxide as nanocarriers for Cry1Ac protein from Bt | Bt | N.S. | 1.93 μg/mL | N.S. | N.S. | N.S. | Ectropis obliqua |
[60] | 2025 | AgNPs Synthesis | Ocimum sanctum (Holy basil) | 20 nm | LC50: 93.21 ppm at 24 h, 23.38 ppm at 48 h, 5.96 ppm at 72 h. | Spilosoma obliqua (hairy jute caterpillar) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinci, G.; Savastano, M.; Restuccia, D.; Ruggeri, M. Nanobiopesticides: Sustainability Aspects and Safety Concerns. Environments 2025, 12, 74. https://doi.org/10.3390/environments12030074
Vinci G, Savastano M, Restuccia D, Ruggeri M. Nanobiopesticides: Sustainability Aspects and Safety Concerns. Environments. 2025; 12(3):74. https://doi.org/10.3390/environments12030074
Chicago/Turabian StyleVinci, Giuliana, Marco Savastano, Donatella Restuccia, and Marco Ruggeri. 2025. "Nanobiopesticides: Sustainability Aspects and Safety Concerns" Environments 12, no. 3: 74. https://doi.org/10.3390/environments12030074
APA StyleVinci, G., Savastano, M., Restuccia, D., & Ruggeri, M. (2025). Nanobiopesticides: Sustainability Aspects and Safety Concerns. Environments, 12(3), 74. https://doi.org/10.3390/environments12030074