Editorial Board Members’ Collection Series: Plastic Contamination

A special issue of Environments (ISSN 2076-3298).

Deadline for manuscript submissions: 20 December 2025 | Viewed by 847

Special Issue Editors


grade E-Mail Website
Guest Editor

E-Mail
Guest Editor
Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia
Interests: advanced electrochemistry; advanced materials; SERS; PFAS; microplastics; nanoplastics; hyper spectrum; algorithm; super-resolution image; AI; environmental science; sensors; detection/imaging/remediation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plastic contamination is a global problem that impacts the environment and human health, food security, and economies. Several advances have been made by the scientific community in recent years, namely gaining knowledge on the levels of plastic contamination in the environment, as well as knowledge also regarding their fate and behaviour in the environment (including adsorption behaviour and (eco)toxicological effects). The smaller the plastic particles are, the more difficult it is to quantify them, and thus, work on the development of analytical methodologies for the quantification of smaller plastic particles in different matrices and their fate and behaviour in the environment is still needed.

This Special Issue aims to collect papers related to plastic contamination, from macro to nanoplastics, covering the most recent developments related to their analysis, including the use of machine learning, their interaction with other contaminants, their effects on One Health, and their fate and behaviour in the environment. This Special Issue also welcomes papers related to the prevention and treatment/removal of plastic contamination.

Dr. Teresa A. P. Rocha-Santos
Dr. Cheng Fang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Environments is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plastic contamination
  • macroplastics, microplastics, and nanoplastics
  • risk assessment
  • analysis and quantification
  • fate and transportation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1856 KiB  
Article
Convergence Research for Microplastic Pollution at the Watershed Scale
by Heejun Chang, Elise Granek, Amanda Gannon, Jordyn M. Wolfand and Janice Brahney
Environments 2025, 12(6), 187; https://doi.org/10.3390/environments12060187 - 3 Jun 2025
Viewed by 246
Abstract
Microplastics are found in Earth’s atmosphere, lithosphere, hydrosphere, pedosphere, and ecosphere. While there is a growing interest and need to solve this grand challenge in both the academic and policy realms, few have engaged with academics, policymakers, and community partners to co-identify the [...] Read more.
Microplastics are found in Earth’s atmosphere, lithosphere, hydrosphere, pedosphere, and ecosphere. While there is a growing interest and need to solve this grand challenge in both the academic and policy realms, few have engaged with academics, policymakers, and community partners to co-identify the problem, co-design research, and co-produce knowledge in tackling this issue. Using a convergence research framework, we investigated the perception of microplastic pollution among different end users, delivered educational materials to K-12 teachers and practitioners, and identified key sampling points for assessing environmental microplastic concentrations in the Columbia River Basin, United States. Three community partner workshops identified regional issues and concerns associated with microplastic pollution and explored potential policy intervention strategies. The stakeholder survey, co-designed with community partners, identified varying perceptions around microplastic pollution across educators, government employees, non-profit employees, and industry practitioners. Pre- and post-test results of teacher workshops show increases in participants’ knowledge after taking a four-week summer class with the knowledge being translated to their students. Community partners also helped develop a unique passive sampling plan for atmospheric deposition of microplastics using synoptic moss samples and provided freshwater samples for microplastic quantification across the basin. Our study drew three major lessons for successfully conducting convergence environmental research—(1) communication and trust building, supported by the use of key-informants to expand networks; (2) co-creation through collaboration, where partners and students shaped research and education to enhance impact; and (3) change-making, as project insights were translated into policy discussions, community outreach, and classrooms. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Plastic Contamination)
Show Figures

Figure 1

21 pages, 2891 KiB  
Article
Method Validation: Extraction of Microplastics from Organic Fertilisers
by Delphine Ciréderf Boulant, Mathilde Simon, Anthony Magueresse, Nicolas Mortas, Nicolas Thévenin, Valérie Yeuch, Gaël Durand, Adrien Caurant, Sophie Goulitquer, Aurélie Even, Solenne Maisonnat, Zhazira Yesbergenova-Cuny, Isabelle Deportes, Stéphane Bruzaud and Mikaël Kedzierski
Environments 2025, 12(5), 143; https://doi.org/10.3390/environments12050143 - 26 Apr 2025
Viewed by 414
Abstract
It has been demonstrated that organic fertilisers could be a source of microplastics (MPs) in agricultural soils. These organic fertilisers comprise a diverse array of matrices including organic waste and by-products. Currently, there is no established methodology for the extraction of MP from [...] Read more.
It has been demonstrated that organic fertilisers could be a source of microplastics (MPs) in agricultural soils. These organic fertilisers comprise a diverse array of matrices including organic waste and by-products. Currently, there is no established methodology for the extraction of MP from these matrices. The present article aims to validate a standardised protocol for the extraction of MPs from a diverse range of complex, organic-rich samples. The protocol has been developed to ensure a high recovery of MPs, to preserve their integrity, and to eliminate organic particles that interfere with FTIR analyses. Spiked MPs sized 315–5000 µm were subjected to a two-step process involving chemical digestion (H2O2, 30% (w/v), 53 °C) and density separation (NaI, >1.60 g·cm−3). This resulted in a mean extraction rate exceeding 95%, with undigested matter remaining below 5%. No evidence of fragmentation was observed. Furthermore, the chemical nature of spiked microplastics is still perfectly interpretable from the FTIR spectra despite the different chemical treatments undergone. These findings thus validate the method for the microplastic range 315–5000 µm. However, a new method for reanalysing the project’s data produced contrasting results, suggesting a significant drop in recovery rates for size ranges below 250 µm. This reanalysis approach constitutes the second innovation of this protocol, and enables a more critical analysis of the results obtained in publications on microplastics. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Plastic Contamination)
Show Figures

Figure 1

Back to TopTop