Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Microplastic Contamination in Human Stools, Foods, and Drinking Water Associated with Indonesian Coastal Population
Environments 2021, 8(12), 138; https://doi.org/10.3390/environments8120138 - 16 Dec 2021
Cited by 9 | Viewed by 2929
Abstract
Approximately 381 million tons of plastic are produced globally every year, and the majority of it ends up as pollutants. In the environment, plastic waste is fragmented into microplastic particles less than 5 mm in size; owing to their small size, durability, and [...] Read more.
Approximately 381 million tons of plastic are produced globally every year, and the majority of it ends up as pollutants. In the environment, plastic waste is fragmented into microplastic particles less than 5 mm in size; owing to their small size, durability, and abundance, they can easily be dispersed, incorporated into the food chains, and enter the human body. The extent of microplastic exposure in the human body has become a major concern in many countries, including in Indonesia, the second largest plastic waste contributor in the world. Here, we report the detection of microplastics in human stools collected from a fisherman community in the coastal area of Surabaya, Indonesia. Microplastics were found in more than 50% of samples analyzed with a concentration ranging from 3.33 to 13.99 µg of microplastic per gram of feces (µg/g). HDPE was observed as the most prevalent type of microplastic, with an average concentration of 9.195 µg/g in positive samples. Different types of microplastics were also detected in seafood, staple foods, drinking water, table salts, and toothpaste, which were regularly used and consumed by the study participants. Results from this preliminary study indicate widespread contamination of microplastic in the human body and in consumables associated with the coastal populations of Indonesia. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Graphical abstract

Article
NOx and CO Fluctuations in a Busy Street Canyon
Environments 2021, 8(12), 137; https://doi.org/10.3390/environments8120137 - 15 Dec 2021
Cited by 4 | Viewed by 1885
Abstract
Busy street canyons can have a large flow of vehicles and reduced air exchange and wind speeds at street level, exposing pedestrians to high pollutant concentrations. The airflow tended to move with vehicles along the canyon and the 1-s concentrations of NO, NO [...] Read more.
Busy street canyons can have a large flow of vehicles and reduced air exchange and wind speeds at street level, exposing pedestrians to high pollutant concentrations. The airflow tended to move with vehicles along the canyon and the 1-s concentrations of NO, NO2 and CO were highly skewed close to the road and more normally distributed at sensors some metres above the road. The pollutants were more autocorrelated at these elevated sensors, suggesting a less variable concentration away from traffic in the areas of low turbulence. The kerbside concentrations also showed cyclic changes approximating nearby traffic signal timing. The cross-correlation between the concentration measurements suggested that the variation moved at vehicle speed along the canyon, but slower vertically. The concentrations of NOx and CO were slightly higher at wind speeds of under a metre per second. The local ozone concentrations had little effect on the proportion of NOx present as NO2. Pedestrians on the roadside would be unlikely to exceed the USEPA hourly guideline value for NO2 of 100 ppb. Across the campaign period, 100 individual minutes exceeded the guidelines, though the effect of short-term, high-concentration exposures is not well understood. Tram stops at the carriageway divider are places where longer exposures to higher levels of traffic-associated pollutants are possible. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

Article
Toxic Effects of Thallium on Biological Indicators of Haplic Chernozem Health: A Case Study
Environments 2021, 8(11), 119; https://doi.org/10.3390/environments8110119 - 03 Nov 2021
Cited by 3 | Viewed by 1805
Abstract
Thallium (Tl) was introduced into Haplic Chernozem in the amounts of 3, 30, and 300 mg/kg, and biological indicators were observed at 10, 30, and 90 days after incubation in the laboratory experiment. An increase in biological activities; i.e., the total number of [...] Read more.
Thallium (Tl) was introduced into Haplic Chernozem in the amounts of 3, 30, and 300 mg/kg, and biological indicators were observed at 10, 30, and 90 days after incubation in the laboratory experiment. An increase in biological activities; i.e., the total number of bacteria, Azotobacter spp. abundance, enzymes (catalase, dehydrogenases), and phytotoxic indicators (germination rate of radish) after 30 days of Tl exposure were noted. The total number of bacteria and Azotobacter spp. abundance, enzyme activity, and phytotoxicity were more sensitive (16–76%) and informative (12–65%) indicators compared to the control, respectively. Integral biological indicators of soil state (IIBS) noted at 10, 30, and 90 days decreased at a dose of 30 and 300 mg/kg by 13–43% in relation to the control. An increase in Tl concentration and duration of exposure (up to 90 days) inhibited biological properties and caused ecotoxicological effects, respectively. We concluded that the use of individual indicators served as an indicator of the state of the soil. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Graphical abstract

Article
A Case Study on Metal Contamination in Water and Sediment near a Coal Thermal Power Plant on the Eastern Coast of Bangladesh
Environments 2021, 8(10), 108; https://doi.org/10.3390/environments8100108 - 15 Oct 2021
Cited by 11 | Viewed by 1688
Abstract
This study has evaluated the potential ecological risk and human health risk for the contamination of nine elements (Cu, Cr, Mn, Zn, As, Pb, Co, Fe, and Sr) in water and sediment samples in two seasons, i.e., before and after rainy season, by [...] Read more.
This study has evaluated the potential ecological risk and human health risk for the contamination of nine elements (Cu, Cr, Mn, Zn, As, Pb, Co, Fe, and Sr) in water and sediment samples in two seasons, i.e., before and after rainy season, by calculating several pollution indices such as pollution load index (PLI), potential ecological risk (PER), and target hazard quotient (THQ). Samples were analyzed for elemental concentration using energy dispersive X-ray fluorescence (EDXRF) spectrometry. This study found that waters in the Kutubdia channel are safe and standard for aquatic organisms. In addition, the study area’s elemental concentration in water and sediments is still safe but moderately enriched with Zn and Cu. The elemental concentration in water was observed to be high in the pre-monsoon season and vice versa in the sediment study. The result also reveals no potential ecological risk (PER < 4) in the study site. However, the health risk index showed a noncarcinogenic risk (THQ > 1) for children and adults regarding the inhalation process where manganese was dominant. Apart from this, the pollution source was also identified by multivariate statistical analysis, including cluster analysis (CA) and principal component analysis (PCA)—and a natural pollution source prevalent was found. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2021)
Show Figures

Figure 1

Article
Abundance and Composition of Marine Litter on the Seafloor of the Gulf of Sant Jordi (Western Mediterranean Sea)
Environments 2021, 8(10), 106; https://doi.org/10.3390/environments8100106 - 13 Oct 2021
Cited by 5 | Viewed by 1514
Abstract
This article analyzes the abundance and composition of marine litter in the Gulf of Sant Jordi (Catalonia, Spain). Marine litter was removed from the sea by a fishing trawler operating from the port of L’Ametlla de Mar; 56 hauls were performed between July [...] Read more.
This article analyzes the abundance and composition of marine litter in the Gulf of Sant Jordi (Catalonia, Spain). Marine litter was removed from the sea by a fishing trawler operating from the port of L’Ametlla de Mar; 56 hauls were performed between July and September 2018. The marine litter was classified following UNEP/IOC Guidelines on Survey and Monitoring of Marine Litter and EU MSFD Technical Group on Marine Litter Joint List, with a total of 2691 items collected and an average number by haul of 48 (SD 28.24). The density was 130 items km−2 but with significant differences according to trawling depth: 192 items km−2 (≤100 m) and 71.5 items km−2 (>100 m). As expected, plastic was the most commonly found material, comprising almost 80% of the total. The relative presence of plastics declined as trawling depth increased. An alarmingly high amount of sanitary waste was found. Further studies are necessary to compare summer results with those of smaller seasonal populations and to analyze what happens to sanitary waste. Full article
Show Figures

Figure 1

Article
Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings
Environments 2021, 8(8), 86; https://doi.org/10.3390/environments8080086 - 23 Aug 2021
Cited by 3 | Viewed by 2196
Abstract
Food waste is a common global threat to the environment, agriculture, and society. In the present study, we used 30% food waste, mixed with 70% bio-fertilizers, and evaluated their ability to affect the growth of Chinese cabbage. The experiment was conducted using different [...] Read more.
Food waste is a common global threat to the environment, agriculture, and society. In the present study, we used 30% food waste, mixed with 70% bio-fertilizers, and evaluated their ability to affect the growth of Chinese cabbage. The experiment was conducted using different concentrations of food waste to investigate their effect on Chinese cabbage growth, chlorophyll content, and mineral content. Leaf length, root length, and fresh and dry weight were significantly increased in plants treated with control fertilizer (CF) and fertilizer mixed with food waste (MF). However, high concentrations of food waste decreased the growth and biomass of Chinese cabbage due to salt content. Furthermore, higher chlorophyll content, transpiration efficiency, and photosynthetic rate were observed in CF- and MF-treated plants, while higher chlorophyll fluorescence was observed in the MF × 2 and MF × 6 treatments. Inductively coupled plasm mass spectrometry (ICP-MS) results showed an increase in potassium (K), calcium (Ca), phosphorous (P), and magnesium (Mg) contents in the MF and MF × 2 treatments, while higher sodium (Na) content was observed in the MF × 4 and MF × 6 treatments due to the high salt content found in food waste. The analysis of abscisic acid (ABA) showed that increasing amounts of food waste increase the endogenous ABA content, compromising the survival of plants. In conclusion, optimal amounts of food waste—up to MF and MF × 2—increase plant growth and provide an ecofriendly approach to be employed in the agriculture production system. Full article
Show Figures

Figure 1

Article
Analysis of the Rice Yield under an Agrivoltaic System: A Case Study in Japan
Environments 2021, 8(7), 65; https://doi.org/10.3390/environments8070065 - 10 Jul 2021
Cited by 13 | Viewed by 3582
Abstract
Agrivoltaic systems, comprising photovoltaic panels placed over agricultural crops, have recently gained increasing attention. Emerging interest in these systems led us to investigate their influence on rice crops. Various factors affecting rice crop yield, including fertilizer application, temperature, and solar radiation, were directly [...] Read more.
Agrivoltaic systems, comprising photovoltaic panels placed over agricultural crops, have recently gained increasing attention. Emerging interest in these systems led us to investigate their influence on rice crops. Various factors affecting rice crop yield, including fertilizer application, temperature, and solar radiation, were directly observed, and measured to evaluate changes associated with the shading rates of photovoltaic systems installed above rice crops. The results suggest that the allowable upper limit of the shading rate for agrivoltaic installations ranges from 27 to 39%, which sustains at least 80% of the rice yield, a condition set by the Japanese Ministry of Agriculture, Forestry and Fisheries for these systems. If such systems are applied to rice paddies in Japan at 28% density, they could generate 284 million MWh/yr. This is equivalent to approximately 29% of the total Japanese electricity demand, based on 2018 calculations. This projection indicates the potential of agrivoltaic systems for efficient land use and sustainable energy generation. Full article
Show Figures

Figure 1

Article
Classification of Noise Sources for Port Area Noise Mapping
Environments 2021, 8(2), 12; https://doi.org/10.3390/environments8020012 - 09 Feb 2021
Cited by 12 | Viewed by 2478
Abstract
Maritime transportation is recognized to have advantages in terms of environmental impact compared to other forms of transportation. However, an increment in traffic volumes will also produce an increase in noise emissions in the surroundings for a greener source, as ports are frequently [...] Read more.
Maritime transportation is recognized to have advantages in terms of environmental impact compared to other forms of transportation. However, an increment in traffic volumes will also produce an increase in noise emissions in the surroundings for a greener source, as ports are frequently surrounded by urban areas. When more sources or higher noise emissions are introduced, the noise exposure of citizens increases, and the likelihood of official complaints rises. As a consequence, among the most demanding aspects of port management is effective noise management aimed at a reduction in the exposure of citizens while ensuring the growth of maritime traffic. At the same time, the topic has not been thoroughly studied by the scientific community, mostly because port areas are challenging from a noise management point of view; they are often characterized by a high degree of complexity, both in terms of the number of different noise sources and their interaction with the other main transportation infrastructure. Therefore, an effective methodology of noise modeling of the port area is currently missing. With regard to the INTERREG Maritime Program, the present paper reports a first attempt to define noise mapping guidelines. On the basis of the current state-of-the-art and the authors’ experiences, noise sources inside port areas can be divided into several different categories: road sources, railway sources, ship sources, port sources, and industrial sources. A further subdivision can be achieved according to the working operation mode and position of the sources. This classification simplifies actions of identification of the responsible source from control bodies, in the case that noise limits are exceeded or citizen complaints arise. It also represents a necessary tool to identify the best placing of medium/long-term noise monitoring stations. The results also act as a base for a future definition of specific and targeted procedures for the acoustic characterization of port noise sources. Full article
(This article belongs to the Special Issue Feature Papers in Environments in 2020)
Show Figures

Figure 1

Article
An Investigation of the Potential Adoption of Anaerobic Digestion for Energy Production in Irish Farms
Environments 2021, 8(2), 8; https://doi.org/10.3390/environments8020008 - 27 Jan 2021
Cited by 6 | Viewed by 2104
Abstract
Anaerobic digestion (AD) has been recognised as an effective means of simultaneously producing energy while reducing greenhouse gas (GHG) emissions. Despite having a large agriculture sector, Ireland has experienced little uptake of the technology, ranking 20th within the EU-28. It is, therefore, necessary [...] Read more.
Anaerobic digestion (AD) has been recognised as an effective means of simultaneously producing energy while reducing greenhouse gas (GHG) emissions. Despite having a large agriculture sector, Ireland has experienced little uptake of the technology, ranking 20th within the EU-28. It is, therefore, necessary to understand the general opinions, willingness to adopt, and perceived obstacles of potential adopters of the technology. As likely primary users of this technology, a survey of Irish cattle farmers was conducted to assess the potential of on-farm AD for energy production in Ireland. The study seeks to understand farmers’ motivations, perceived barriers, and preferred business model. The study found that approximately 41% of the 91 respondents were interested in installing AD on their farming enterprise within the next five years. These Likely Adopters tended to have a higher level of education attainment, and together, currently hold 4379 cattle, potentially providing 37,122 t year−1 of wastes as feedstock, resulting in a potential CO2 reduction of 800.65 t CO2-eq. year−1. Moreover, the results indicated that the primary consideration preventing the implementation of AD is a lack of information regarding the technology and high investment costs. Of the Likely Adopters and Possible Adopters, a self-owned and operated plant was the preferred ownership structure, while 58% expressed an interest in joining a co-operative scheme. The findings generated provide valuable insights into the willingness of farmers to implement AD and guidance for its potential widespread adoption. Full article
(This article belongs to the Special Issue Small-Scale Anaerobic Digestion for Biogas Production)
Show Figures

Figure 1

Article
Mercury Bioavailability in Fluvial Sediments Estimated Using Chironomus riparius and Diffusive Gradients in Thin-Films (DGT)
Environments 2021, 8(2), 7; https://doi.org/10.3390/environments8020007 - 25 Jan 2021
Cited by 7 | Viewed by 1594
Abstract
Mercury bioavailability was assessed by exposing the dipteran Chironomus riparius for the whole life cycle to legacy-contaminated fluvial sediments (0.038–0.285 mg Hg kg−1 d.w.) and analyzing tissue concentrations in larvae at different exposure times (7, 11, and 16 days) and in adults. [...] Read more.
Mercury bioavailability was assessed by exposing the dipteran Chironomus riparius for the whole life cycle to legacy-contaminated fluvial sediments (0.038–0.285 mg Hg kg−1 d.w.) and analyzing tissue concentrations in larvae at different exposure times (7, 11, and 16 days) and in adults. In the same experiment, diffusive gradients in thin-film passive samplers (DGTs), both piston- and probe-shaped, were co-deployed in the same sediments and retrieved at the same times as the organisms. To compare the two approaches, results showed a good agreement between accumulation kinetics of C. riparius and DGTs, both approximating an apparent steady-state. A strong correlation was found between values in tissues and in both types of DGTs (r between 0.74 and 0.99). Concentrations in mature larvae (19–140 µg kg−1 w.w.), which may represent a basal level of the aquatic food web, exceeded the European Environmental Quality Standard for biota (20 µg kg−1 w.w.), which aims at protecting the top predators from secondary poisoning. Body burdens in larvae and in adults were similar, showing negligible decontamination during metamorphosis and proving an efficient mercury transfer from sediments to terrestrial food webs. Full article
(This article belongs to the Special Issue Mercury in Fluvial Systems: Distribution and Cycling Processes)
Show Figures

Figure 1

Article
Water Quality Monitoring with Arduino Based Sensors
Environments 2021, 8(1), 6; https://doi.org/10.3390/environments8010006 - 14 Jan 2021
Cited by 13 | Viewed by 5129
Abstract
Water is a quintessential element for the survival of mankind. Its variety of uses means that it is always in a constant state of demand. The supply of water most primarily comes from large reservoirs of water such as lakes, streams, and the [...] Read more.
Water is a quintessential element for the survival of mankind. Its variety of uses means that it is always in a constant state of demand. The supply of water most primarily comes from large reservoirs of water such as lakes, streams, and the ocean itself. As such, it is good practice to monitor its quality to ensure it is fit for human consumption. Current water quality monitoring is often carried out in traditional labs but is time consuming and prone to inaccuracies. Therefore, this paper aims to investigate the feasibility of implementing an Arduino-based sensor system for water quality monitoring. A simple prototype consisting of a microcontroller and multiple attached sensors was employed to conduct weekly onsite tests at multiple daily intervals. It was found that the system works reliably but is reliant on human assistance and prone to data inaccuracies. The system however, provides a solid foundation for future expansion works of the same category to elevate the system to being Internet of Things (IoT) friendly. Full article
Show Figures

Figure 1

Article
Subtle Changes or Dramatic Perceptions of Air Pollution in Sydney during COVID-19
Environments 2021, 8(1), 2; https://doi.org/10.3390/environments8010002 - 01 Jan 2021
Cited by 9 | Viewed by 2777
Abstract
The COVID-19 pandemic made it critical to limit the spread of the disease by enforcing human isolation, restricting travel and reducing social activities. Dramatic improvements to air quality, especially NO2, have often characterised places under COVID-19 restrictions. Air pollution measurements in [...] Read more.
The COVID-19 pandemic made it critical to limit the spread of the disease by enforcing human isolation, restricting travel and reducing social activities. Dramatic improvements to air quality, especially NO2, have often characterised places under COVID-19 restrictions. Air pollution measurements in Sydney in April 2019 and during the lockdown period in April 2020 show reduced daily averaged NO2 concentrations: 8.52 ± 1.92 and 7.85 ± 2.92 ppb, though not significantly so (p1~0.15) and PM2.5 8.91 ± 4.94 and 7.95 ± 2.64 µg m−3, again a non-significant difference (p1~0.18). Satellite imagery suggests changes that parallel those at ground level, but the column densities averaged over space and time, in false-colour, are more dramatic. Changed human mobility could be traced in increasing times spent at home, assessed from Google Mobility Reports and mirrored in decreased traffic flow on a major road, suggesting compliance with the restrictions. Electricity demand for the State of New South Wales was low under lockdown in early April 2020, but it recovered rapidly. Analysis of the uses of search terms: bushfires, air quality, haze and air pollution using Google Trends showed strong links between bushfires and pollution-related terms. The smoke from bushfires in late 2019 may well have added to the general impression of improved air quality during lockdown, despite only modest changes in the ground level measurements. This gives hints that successful regulation of air quality requires maintaining a delicate balance between our social perceptions and the physical reality. Full article
(This article belongs to the Special Issue Response to Current Air Quality Changes in Small and Large Areas)
Show Figures

Figure 1

Article
Evaluation of the Phytotoxicity of Leachate from a Municipal Solid Waste Landfill: The Case Study of Bukov Landfill
Environments 2020, 7(12), 111; https://doi.org/10.3390/environments7120111 - 13 Dec 2020
Cited by 15 | Viewed by 2296
Abstract
Municipal solid waste landfilling, landfilling process and landfill reclamation result in leachate, which may be dangerous to the environment. Municipal solid waste leachate phytotoxicity tests were performed using the toxicity test and a subchronic toxicity pot experiment by direct application of leachate to [...] Read more.
Municipal solid waste landfilling, landfilling process and landfill reclamation result in leachate, which may be dangerous to the environment. Municipal solid waste leachate phytotoxicity tests were performed using the toxicity test and a subchronic toxicity pot experiment by direct application of leachate to reference soil in 5, 25, and 50% concentration for a period of 28 days. White mustard (Sinapis alba L.) seeds were exposed to different leachate dilution. Leachate were collected monthly in 2018 in the period from April to September. Furthermore, pH, conductivity, and dissolved oxygen were measured. The inhibition results on Sinapis alba L. seeds in the tested leachate samples ranged from −18.02 to 39.03%. Lower concentration of leachate showed a stimulating effect (only for Sample 1 and Sample 2 at 5% concentration). It was found out that leachate taken at the landfill is phytotoxic. The results of measurements are based on rainfall which affects the quantity and quality of the leachate. The values of germinated seeds/growing plants from the subchronic toxicity pot experiment ranged from 80 to 104%; therefore, the leachate is considered phytotoxic. However, it was confirmed that leachate may be used for landfill irrigation. Full article
Show Figures

Graphical abstract

Article
Waste Wash-Water Recycling in Ready Mix Concrete Plants
Environments 2020, 7(12), 108; https://doi.org/10.3390/environments7120108 - 11 Dec 2020
Cited by 13 | Viewed by 2359
Abstract
The management of waste wash-water (WWW) is one of the most significant environmental problems associated with ready-mix concrete production worldwide. The problems are exacerbated should it be disposed of in an inappropriate manner. This study evaluated the potential of WWW recycling in ready [...] Read more.
The management of waste wash-water (WWW) is one of the most significant environmental problems associated with ready-mix concrete production worldwide. The problems are exacerbated should it be disposed of in an inappropriate manner. This study evaluated the potential of WWW recycling in ready mix concrete plants in Jordan. A representative waste wash-water sample (400 L) was collected from a basin in a ready-mix concrete company. A pilot plant on the lab scale was fabricated and installed. The treatment system consisted of a concrete washout reclaimer, wedgebed slurry settling pond, slow sand filtration unit, and a neutralization unit. Water samples were collected from all stages of the pilot plant and analyzed. The collected waste wash-water samples were utilized for replacement of well water (mixing water) at various ratios. Fourteen concrete mixtures were produced and cast, as well as tested at various curing ages (7, 28, and 90 days). The results show that the raw WWW was not acceptable as mixing water even after dilution as it led to significant reductions in concrete compressive strength and low workability. However, the WWW from the settling pond, the filtered WWW and the filtered-neutralized WWW at dilution ratios up to 75% were shown to be potential alternatives to fresh water for ready-mixed concrete. Therefore, the current guidelines for mixing water quality should be revised to encourage the reuse of the WWW. Full article
Show Figures

Figure 1

Article
Germination and Seedling Growth Responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-Induced Drought Stress
Environments 2020, 7(12), 107; https://doi.org/10.3390/environments7120107 - 10 Dec 2020
Cited by 40 | Viewed by 2372
Abstract
In arid and semi-arid regions, planting drought-tolerant species is the most useful strategy in the reclamation of degraded soils. In the present study, we evaluated the effect of simulated drought by polyethylene glycol (PEG-6000) on seed germination and seedling growth of three desert [...] Read more.
In arid and semi-arid regions, planting drought-tolerant species is the most useful strategy in the reclamation of degraded soils. In the present study, we evaluated the effect of simulated drought by polyethylene glycol (PEG-6000) on seed germination and seedling growth of three desert plants such as Atriplex canescens, Salsola kali and Zygophyllum fabago. Seeds were subjected to water stress to drought stress by PEG at five stress levels (0, −1, −4, −8, −12, −14 bars). Germination of Z. fabago was completely inhibited at an osmotic potential of −8, −10 and −12 bars and the germination of A. canescens was inhibited only at −14 bar. In contrast, S. kali responded positively to high levels of stress and our results showed the highest final germination percent (71.75, 54 and 18.25%) under three-drought stress −8, −12 and −14 bars, respectively. In addition, increasing PEG concentration adversely affected the germination rate and seedling vigor index as well as the root and shoot length of species. Under high stress levels, S. kali achieved a higher germination rate and seedling vigor index compared to Z. fabago and A. canescens. Among species, S. kali was the only one able to develop roots and shoots at −14 bar. Therefore, S. kali could be considered as a promising plant for the rehabilitation of degraded soils at risk of desertification. Full article
(This article belongs to the Special Issue Dynamic of Vegetation and Climate Change)
Show Figures

Graphical abstract

Article
Environmental and Political Determinants of Food Choices: A Preliminary Study in a Croatian Sample
Environments 2020, 7(11), 103; https://doi.org/10.3390/environments7110103 - 22 Nov 2020
Cited by 6 | Viewed by 1778
Abstract
Production, processing, transporting, selling, and consumption of food are highly resource intensive. Therefore, if they are not well managed the consequences for the environment are far-reaching. This study aimed at investigating behaviors and attitudes of the Croatian population concerning the influence of environmental [...] Read more.
Production, processing, transporting, selling, and consumption of food are highly resource intensive. Therefore, if they are not well managed the consequences for the environment are far-reaching. This study aimed at investigating behaviors and attitudes of the Croatian population concerning the influence of environmental and political determinants of food choices, and the socio-demographic factors associated with pro-environmental behavior. Data analysis involved a non-probabilistic sample of 1534 adult participants from Croatia who responded to a validated questionnaire from November 2017 to March 2018. To test differences between sociodemographic groups, Welch’s t-test (two groups) and ANOVA (multiple groups) were used. The relationship between age and motivators of food choices was analyzed with Pearson’s r correlation coefficient. Participants reported a neutral rate of agreement with the items, with the exception of items related to food waste and food origin, for which they expressed a moderate amount of agreement. Socio-demographic factors that influence environmentally or politically concerned food choices in our study were age (older participants, p < 0.001), gender (women in comparison to men, p < 0.05), education level (higher education in comparison to elementary/high school, p < 0.05), marital status (married/cohabiting in comparison to unmarried, p < 0.05), responsibility for food supply (those who are responsible for food supply in comparison to those who are not responsible for food supply, p < 0.05), eating practices (participants with specific eating practices in comparison to participants without specific eating practices, p < 0.05), and smoking (those who have never smoked score and those who used to smoke in comparison to active smokers, p < 0.05). The results show that there are no statistically significant differences in environmental and political determinants of food choices based on the place of residence and employment status. The findings indicate that environmental and political determinants do not play a significant role in the food choices among the Croatian population. Full article
Article
Climate Change Mitigation Policies in the Transportation Sector in Rio de Janeiro, Brazil
Environments 2020, 7(11), 99; https://doi.org/10.3390/environments7110099 - 07 Nov 2020
Cited by 4 | Viewed by 1767
Abstract
This study analyzes climate change mitigation policies focused on light-duty electric vehicles (LDEVs) in the transportation sector in Rio de Janeiro state, Brazil, in the 2016–2050 period. We use the Open Source Energy Modeling System (OSeMOSYS) to analyze scenarios that consider greater uptake [...] Read more.
This study analyzes climate change mitigation policies focused on light-duty electric vehicles (LDEVs) in the transportation sector in Rio de Janeiro state, Brazil, in the 2016–2050 period. We use the Open Source Energy Modeling System (OSeMOSYS) to analyze scenarios that consider greater uptake of LDEVs in different time frames, implementation of a CO2 emission restriction policy, exclusion of fossil fuels from the power mix, and a combination of these policies. We find that carbon pricing, along with higher rates of LDEVs adoption, causes the highest emission reductions (up to 47%), albeit at higher costs. LDEVs become the preferred vehicle technology as soon as they reach cost parity with internal combustion engine vehicles in different scenarios. Greater LDEVs uptake, however, leads to increased electricity consumption (up to 3%), which is provided by fossil fuels when there is no emission restriction policy. If restrictions are placed on the expansion of fossil fuel power plants, fewer LDEVs are adopted (up to less than 26%) because there is not enough electricity to supply the demand. Given the state’s power mix in 2016 (58% provided by fossil fuels), investment in zero-carbon energy is necessary for mitigation policies in the transportation sector to be effective. Full article
(This article belongs to the Special Issue Deployment of Green Technologies for Sustainable Environment)
Show Figures

Figure 1

Article
The Impact of Tourism Activity on Coastal Biodiversity: A Case Study at Praia da Cova Redonda (Algarve—Portugal)
Environments 2020, 7(10), 88; https://doi.org/10.3390/environments7100088 - 12 Oct 2020
Cited by 10 | Viewed by 2374
Abstract
Tourism activity has a very significant weight in the world economy, even being the main activity responsible for the export of many countries, in the form of providing services to foreign citizens. In mainland Portugal, the main tourist region is the Algarve, where [...] Read more.
Tourism activity has a very significant weight in the world economy, even being the main activity responsible for the export of many countries, in the form of providing services to foreign citizens. In mainland Portugal, the main tourist region is the Algarve, where beach tourism, known as sun and sea tourism, plays a decisive role. However, this activity also has its negative impacts. In the present work, a case study was analyzed, at Praia da Cova Redonda, located in the parish of Porches, in the municipality of Lagoa. Negative impacts on land use and occupation were identified, caused by the excessive presence of people, the introduction of invasive species and the artificial filling of beaches. At the end, a set of mitigating measures are presented that aim to ensure that the exploitation of natural resources can be maintained, but in a perspective of preservation and recovery of natural resources and biodiversity. Full article
(This article belongs to the Special Issue Dynamic of Vegetation and Climate Change)
Show Figures

Figure 1

Article
Small Environmental Actions Need of Problem-Solving Approach: Applying Project Management Tools to Beach Litter Clean-Ups
Environments 2020, 7(10), 87; https://doi.org/10.3390/environments7100087 - 11 Oct 2020
Cited by 21 | Viewed by 2386
Abstract
Clean-ups can be considered real conservation actions since beach litter may impact many ecosystem components. However, although these actions are quite easy to carry out, we think that they need to follow specific criteria and clear planning. Contrariwise, an unplanned clean-up could lead [...] Read more.
Clean-ups can be considered real conservation actions since beach litter may impact many ecosystem components. However, although these actions are quite easy to carry out, we think that they need to follow specific criteria and clear planning. Contrariwise, an unplanned clean-up could lead to counter-productive—or even harmful—consequences to the fragile dune ecosystem; e.g., excessive trampling and/or extreme sand removal. Here, we defined a road map for implementing beach clean-ups according to the logic of problem solving and project management, also adding a flow chart. More particularly, we subdivided the clean-up project into different steps as follows: context analysis, input and planning, process, monitoring (outputs and outcomes) and adaptation. Full article
(This article belongs to the Special Issue Anthropogenic Beach Litter and Impact on Habitats)
Show Figures

Figure 1

Article
Effect of Multiple Stresses, Organic Amendment and Compaction, on the Fate and Impact of Isoproturon in Soil
Environments 2020, 7(10), 79; https://doi.org/10.3390/environments7100079 - 29 Sep 2020
Cited by 2 | Viewed by 1670
Abstract
Organic matter decline and compaction are two major processes of soil degradation. Organic amendment is a current practice to compensate the loss of organic matter, which could in addition contribute to increase soil aggregate stability and limit compaction. Therefore, the objective of this [...] Read more.
Organic matter decline and compaction are two major processes of soil degradation. Organic amendment is a current practice to compensate the loss of organic matter, which could in addition contribute to increase soil aggregate stability and limit compaction. Therefore, the objective of this work was to study the effect of multiple physico-chemical stresses, organic amendment (compost of sewage sludge and green waste) addition and soil compaction, on the fate and impact (measured through the urease enzyme activity) of isoproturon. Compost addition and compaction did not significantly affect the fate and impact of isoproturon. The lack of effect of compost can be due to the delay between soil sampling and soil amendment. Compaction had no effect probably because the porosity reduction does not affect the habitable pore space accessible to degrading microorganisms. Nevertheless, isoproturon significantly increased the urease enzyme activity in compacted and not compacted unamended soils contrary to the amended ones. It seems that the organic amendment could act as a buffer with regards to the impact of isoproturon. The results obtained in this work suggest that, in general, the fate and impact of isoproturon in soils will not change following compaction and/or organic amendment addition, neither the corresponding risks for the environment. Full article
Show Figures

Graphical abstract

Article
Techno-Economic Assessment of CHP Systems in Wastewater Treatment Plants
Environments 2020, 7(10), 74; https://doi.org/10.3390/environments7100074 - 26 Sep 2020
Cited by 25 | Viewed by 2882
Abstract
Wastewater treatment plant (WWTP) utilization of combined heat and power (CHP) systems allows for the efficient use of on-site biogas production, as well as increased annual savings in utility costs. In this paper, a review of biogas energy recovery options, CHP prime mover [...] Read more.
Wastewater treatment plant (WWTP) utilization of combined heat and power (CHP) systems allows for the efficient use of on-site biogas production, as well as increased annual savings in utility costs. In this paper, a review of biogas energy recovery options, CHP prime mover technologies, and the costs associated with biogas cleaning give a broad summary of the current state of CHP technology in WWTPs. Even though there are six different prime mover technologies, the main ones currently being implemented in WWTPs are micro turbines, fuel cells and reciprocating engines. Different prime movers offer varying efficiencies, installation costs, and biogas impurity (H2S, siloxanes, HCl) tolerances. To evaluate the long-term savings capabilities, a techno-economic assessment of a CHP installation at a case study WWTP shows the payback, annual savings, and initial costs associated with the installation of a CHP system. In this case, a study a payback of 5.7 years and a net present value of USD 709,000 can be achieved when the WWTP generates over 2,000,000 m3 of biogas per year and utilizes over 36,000 GJ of natural gas per year. Full article
(This article belongs to the Special Issue Pollution Prevention/Environmental Sustainability for Industry)
Show Figures

Figure 1

Communication
Performance of a Woodchip Bioreactor for the Treatment of Nitrate-Laden Agricultural Drainage Water in Northeastern Germany
Environments 2020, 7(9), 71; https://doi.org/10.3390/environments7090071 - 15 Sep 2020
Cited by 5 | Viewed by 2117
Abstract
Reactive barriers, such as denitrifying bioreactors, have been identified as a clean-up option for nutrient-laden agriculture runoff. Here we tested a 20 m long, 3.75 m wide and 2.2 m deep woodchip bioreactor receiving tile drainage water from a 5.2 ha field site, [...] Read more.
Reactive barriers, such as denitrifying bioreactors, have been identified as a clean-up option for nutrient-laden agriculture runoff. Here we tested a 20 m long, 3.75 m wide and 2.2 m deep woodchip bioreactor receiving tile drainage water from a 5.2 ha field site, aiming at testing the hydraulic functioning of a dual-inlet system and quantifying its impact on nutrient loads (nitrogen, reactive phosphorus, organic carbon) in a region with a drainage season taking place in the hydrological winter (November to April). The hydraulic conditions in the dual-inlet bioreactor system developed differently than expected; asymmetric flow rates led to long average hydraulic retention times and a highly dispersed residence time distribution, which was revealed by a bromide tracer test. With a nitrate load reduction of 51 to 90% over three drainage seasons, the woodchip bioreactor proved at the same time to be very effective under the winter conditions of northeastern Germany. The bioreactor turned from an orthophosphate source in the first year of operation into an orthophosphate sink in the second and third year, which was not expected because of anoxic conditions (favorable for denitrification) prevailing within the woodchips. Besides an efficient nutrient retention, the woodchip bioreactor contributed to the total organic carbon load of receiving waters, which impairs the overall positive role of bioreactors within intensively agriculturally used landscapes. We consider this promising low-maintenance biotechnology particularly suitable for single drainage pipes with high discharge and high nitrate concentrations. Full article
(This article belongs to the Special Issue Treatment Wetlands)
Show Figures

Figure 1

Article
Monitoring Arsenic Species Content in Seaweeds Produced off the Southern Coast of Korea and Its Risk Assessment
Environments 2020, 7(9), 68; https://doi.org/10.3390/environments7090068 - 03 Sep 2020
Cited by 10 | Viewed by 2301
Abstract
Seaweed, a popular seafood in South Korea, has abundant dietary fiber and minerals. The toxicity of arsenic compounds is known to be related to their chemical speciation, and inorganic arsenic (iAs) is more detrimental than other species. Due to the different toxicities of [...] Read more.
Seaweed, a popular seafood in South Korea, has abundant dietary fiber and minerals. The toxicity of arsenic compounds is known to be related to their chemical speciation, and inorganic arsenic (iAs) is more detrimental than other species. Due to the different toxicities of the various chemical forms, speciation analysis is important for evaluating arsenic exposure. In this study, total arsenic (tAs) and six arsenic species (arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, and arsenocholine) were analyzed in 180 seaweed samples. Although there were differences between seaweed species, the concentration of tAs was detected at levels ranging from 1 to 100 µg/g, and the distribution of six arsenic species differed depending on the seaweed species. No correlation between the concentration of iAs and tAs was found in most seaweed species. Through statistical clustering, hijiki and gulfweed were seen to be the seaweeds with the highest ratios of iAs to tAs. Using the iAs concentration data from the arsenic speciation analysis, a risk assessment of seaweed intake in South Korea was conducted. The margin of exposure values showed no meaningful risk for the general population, but low levels of risk were identified for seaweed consumers, with high intakes of gulfweed and hijiki. Full article
Show Figures

Graphical abstract

Article
Assessment of Non-Anthropogenic Addition of Uric Acid to a Water Treatment Wetlands
Environments 2020, 7(8), 60; https://doi.org/10.3390/environments7080060 - 05 Aug 2020
Cited by 3 | Viewed by 2040
Abstract
Artificial water-treatment wetlands can reduce nitrogen and phosphorous nutrient concentrations in wastewater effluent to improve water quality and decrease eutrophication in natural waters. The Orlando Easterly Wetlands (OEW) is an engineered wetland that polishes 57 million liters of wastewater per day, lowering the [...] Read more.
Artificial water-treatment wetlands can reduce nitrogen and phosphorous nutrient concentrations in wastewater effluent to improve water quality and decrease eutrophication in natural waters. The Orlando Easterly Wetlands (OEW) is an engineered wetland that polishes 57 million liters of wastewater per day, lowering the total nitrogen and phosphorous concentrations through biological, physical, and chemical processes. In addition to purifying the water, the wetlands provide habitat for avian, mammalian, reptilian and macroinvertebrate species. Previous research has shown that avian species affect the eutrophication of agricultural reservoirs near their roost. The research herein quantifies uric acid in avian and reptilian excretory product and tracks its concentration profile throughout the OEW over a seven-month period. This measure of the non-anthropogenic contribution to nitrogen within the park includes winter months when large numbers of migratory birds occupy the wetland. The enzymatic decomposition of uric acid and the subsequent fluorimetric analysis were used to quantify uric acid throughout the flow train of the OEW. High concentrations of 2–4 mg/L uric acid were found in the influent, but drastically declined to concentrations below 0.2 mg/L in the effluent. Full article
(This article belongs to the Special Issue Treatment Wetlands)
Show Figures

Graphical abstract

Article
From Boiling to Frozen? The Rise and Fall of International Tourism to Iceland in the Era of Overtourism
Environments 2020, 7(8), 59; https://doi.org/10.3390/environments7080059 - 03 Aug 2020
Cited by 17 | Viewed by 5614
Abstract
Overtourism has emerged as a common concept to describe the perceived negative impacts that large numbers of tourists can have on destinations. Iceland is one of the destinations which has been most associated with the concept of overtourism. Tourism in Iceland grew rapidly [...] Read more.
Overtourism has emerged as a common concept to describe the perceived negative impacts that large numbers of tourists can have on destinations. Iceland is one of the destinations which has been most associated with the concept of overtourism. Tourism in Iceland grew rapidly from 2010 to 2019, much higher than in most other countries, with Iceland reaching a ranking as high as thirteenth on a list of countries with the highest ratio of tourists per inhabitant. The increase in visitors to the country has had various impacts on Iceland’s economy, society and environment. This paper provides an overview of the different ways in which overtourism has revealed itself at a national level in Iceland. The implications of supposed overtourism are shown to be complex, with management responses limited by their relative focus. Full article
Show Figures

Figure 1

Article
Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria
Environments 2020, 7(8), 54; https://doi.org/10.3390/environments7080054 - 26 Jul 2020
Cited by 51 | Viewed by 3114
Abstract
Cadmium is acute toxicity inducing heavy metal that significantly decreases the yield of crops. Due to high water solubility, it reaches the plant tissue and disturbs the uptake of macronutrients. Low uptake of nutrients in the presence of cadmium is a well-documented fact [...] Read more.
Cadmium is acute toxicity inducing heavy metal that significantly decreases the yield of crops. Due to high water solubility, it reaches the plant tissue and disturbs the uptake of macronutrients. Low uptake of nutrients in the presence of cadmium is a well-documented fact due to its antagonistic relationship with those nutrients, i.e., potassium. Furthermore, cadmium stressed plant produced a higher amount of endogenous stress ethylene, which induced negative effects on yield. However, inoculation of 1-amino cyclopropane-1-carboxylate deaminase (ACCD), producing plant growth promoting rhizobacteria (PGPR), can catabolize this stress ethylene and immobilized heavy metals to mitigate cadmium adverse effects. We conducted a study to examine the influence of ACCD PGPR on nutrients uptake and yield of bitter gourd under cadmium toxicity. Cadmium tolerant PGPRs, i.e., Stenotrophomonas maltophilia and Agrobacterium fabrum were inoculated solely and in combination with recommended nitrogen, phosphorus, and potassium fertilizers (RNPKF) applied under different concentration of soil cadmium (2 and 5 mg kg−1 soil). Results showed that A. fabrum with RNPKF showed significant positive response towards an increase in the number of bitter gourds per plant (34% and 68%), fruit length (19% and 29%), bitter gourd yield (26.5% and 21.1%), N (48% and 56%), and K (72% and 55%) concentration from the control at different concentrations of soil cadmium (2 and 5 mg kg−1 soil), respectively. In conclusion, we suggest that A. fabrum with RNPKF can more efficaciously enhance N, K, and yield of bitter gourd under cadmium toxicity. Full article
(This article belongs to the Special Issue Soil Contamination by Heavy Metals and Metalloids)
Show Figures

Figure 1

Article
Decontaminating Terrestrial Oil Spills: A Comparative Assessment of Dog Fur, Human Hair, Peat Moss and Polypropylene Sorbents
Environments 2020, 7(7), 52; https://doi.org/10.3390/environments7070052 - 08 Jul 2020
Cited by 8 | Viewed by 6950
Abstract
Terrestrial oil spills have severe and continuing consequences for human communities and the natural environment. Sorbent materials are considered to be a first line of defense method for directly extracting oil from spills and preventing further contaminant spread, but little is known on [...] Read more.
Terrestrial oil spills have severe and continuing consequences for human communities and the natural environment. Sorbent materials are considered to be a first line of defense method for directly extracting oil from spills and preventing further contaminant spread, but little is known on the performance of sorbent products in terrestrial environments. Dog fur and human hair sorbent products were compared to peat moss and polypropylene sorbent to examine their relative effectiveness in adsorbing crude oil from different terrestrial surfaces. Crude oil spills were simulated using standardized microcosm experiments, and contaminant adsorbency was measured as percentage of crude oil removed from the original spilled quantity. Sustainable-origin absorbents made from dog fur and human hair were equally effective to polypropylene in extracting crude oil from non- and semi-porous land surfaces, with recycled dog fur products and loose-form hair showing a slight advantage over other sorbent types. In a sandy terrestrial environment, polypropylene sorbent was significantly better at adsorbing spilled crude oil than all other tested products. Full article
(This article belongs to the Special Issue Pollution Prevention/Environmental Sustainability for Industry)
Show Figures

Figure 1

Article
UV Light-Irradiated Photocatalytic Degradation of Coffee Processing Wastewater Using TiO2 as a Catalyst
Environments 2020, 7(6), 47; https://doi.org/10.3390/environments7060047 - 19 Jun 2020
Cited by 23 | Viewed by 3198
Abstract
The coffee industry generates a significant amount of wastewater that is rich in organic loads and is highly acidic. The present study investigates the potential of the heterogeneous photocatalytic oxidation process to reduce the pollutant load in coffee processing wastewater. The experimental runs [...] Read more.
The coffee industry generates a significant amount of wastewater that is rich in organic loads and is highly acidic. The present study investigates the potential of the heterogeneous photocatalytic oxidation process to reduce the pollutant load in coffee processing wastewater. The experimental runs were conducted to evaluate the effect of operative parameters such as pH, catalyst dosage, intensity of UV light irradiation, and addition of oxidant on Chemical Oxygen Demand (COD) and colour reduction. Significant results for COD and colour removal, 67%, and 70% respectively, were achieved at a pH of 4 with titanium dioxide (TiO2), and a catalyst dosage of 500 mg/L, using four ultraviolet-C (UV-C) lamps of 16 W each. With the addition of hydrogen peroxide (H2O2) as an oxidant, the removal efficiency increased to 84% and 75% for COD and colour, respectively. Finally, the best results obtained by photocatalytic degradation using UV light were compared to those using solar light. Based on the investigation, it was inferred that the pollutant removal efficiency in coffee pulping wastewater was also considerably high under sunlight. These findings may have relevance in terms of application in countries where coffee processing is carried out and where sunlight irradiance is usually strong: the technique could be exploited to decrease the pollutant content of this wastewater sustainably. Full article
(This article belongs to the Special Issue Emerging Technologies for Advanced Water Purification)
Show Figures

Figure 1

Article
Biogas Production from Food Residues—The Role of Trace Metals and Co-Digestion with Primary Sludge
Environments 2020, 7(6), 42; https://doi.org/10.3390/environments7060042 - 29 May 2020
Cited by 18 | Viewed by 3095
Abstract
The majority of municipal Wastewater Treatment Plants (WWTPs) in Sweden produce biogas from sewage sludge. In order to increase the methane production, co-digestion of internal sludge with Organic Fraction of Municipal Solid Waste (OFMSW) might be feasible in the future. The objective of [...] Read more.
The majority of municipal Wastewater Treatment Plants (WWTPs) in Sweden produce biogas from sewage sludge. In order to increase the methane production, co-digestion of internal sludge with Organic Fraction of Municipal Solid Waste (OFMSW) might be feasible in the future. The objective of this study was therefore to find a beneficial solution for the utilization of OFMSW at the WWTP in Varberg, Sweden. The effects of co-digesting primary sludge (PS) and OFMSW collected in the municipality, in different mixing ratios, were investigated by semi-continuous anaerobic digestion assays. Furthermore, the effects of the addition of a commercial trace elements mixture solution (CTES), available on the market in Sweden, were also examined. Co-digestion of OFMSW and PS resulted in specific methane yields of 404, 392, and 375 NmL CH4/g volatile solids (VS), obtained during semi-continuous operations of 301, 357 and 385 days, for the reactors fed with OMFSW:PS ratio of 4:1, 3:1, and 1:1, and at maximum organic loading rates (OLRs) achieved of 4.0, 4.0 and 5.0 gVS/L/d, respectively. Furthermore, mono-digestion of OFMSW failed already at OLR of 1.0 gVS/L/d, however, an OLR of 4.0 gVS/L/d could be achieved with addition of 14 µL/g VS Commercial Trace Element Solutions (CTES) leading to 363 mL CH4/g VS methane production. These experiments were running during 411 days. Hence, higher process efficiency was obtained when using co-digestion of OFMSW and PS compared to that of OFMSW in mono-digestion. Co-digestion is a more feasible option where a balanced Carbon/Nitrogen (C/N) ratio and nutrient supply can be maintained. Full article
(This article belongs to the Special Issue Wastewater and Solid Waste Treatment)
Show Figures

Figure 1

Article
Plastic Pollution in Soils: Governance Approaches to Foster Soil Health and Closed Nutrient Cycles
Environments 2020, 7(5), 38; https://doi.org/10.3390/environments7050038 - 20 May 2020
Cited by 14 | Viewed by 8098
Abstract
Plastic pollution in soils pose a major threat to soil health and soil fertility that are directly linked to food security and human health. In contrast to marine plastic pollution, this ubiquitous problem is thus far scientifically poorly understood and policy approaches that [...] Read more.
Plastic pollution in soils pose a major threat to soil health and soil fertility that are directly linked to food security and human health. In contrast to marine plastic pollution, this ubiquitous problem is thus far scientifically poorly understood and policy approaches that tackle plastic pollution in soils comprehensively do not exist. In this article, we apply a qualitative governance analysis to assess the effectiveness of existing policy instruments to avoid harmful plastic pollution in (agricultural) soils against the background of international environmental agreements. In particular, environmental and fertiliser legislation relevant to soil protection in the European Union and in Germany are assessed. Regulatory weaknesses and gaps of the respective legislation are identified, and proposals for enhanced command-and-control provisions developed. However, the legal analysis furthermore shows that plastic pollution ecologically is also a problem of quantity, which is difficult to solve exclusively through command-and-control legislation. Instead, comprehensive quantity-control instruments to phase out fossil fuels (worldwide and in all sectors) as required by climate protection law can be effective approaches to tackle plastic pollution in environmental media like agricultural soils as well. Full article
Article
Control of Invasive Forest Species through the Creation of a Value Chain: Acacia dealbata Biomass Recovery
Environments 2020, 7(5), 39; https://doi.org/10.3390/environments7050039 - 20 May 2020
Cited by 20 | Viewed by 2574
Abstract
In Portugal, some species are now considered invasive by law and have proliferated in recent years. Among these, Acacia dealbata stands out. This work investigated the behavior of this species, in order to characterize and evaluate its potential as raw material for biomass [...] Read more.
In Portugal, some species are now considered invasive by law and have proliferated in recent years. Among these, Acacia dealbata stands out. This work investigated the behavior of this species, in order to characterize and evaluate its potential as raw material for biomass pellets production, while controlling its proliferation. It was found that A. dealbata has a large capacity for raw material supply, as cutting 2 ha resulted in about 140 tons of biomass. Thus, the attribution of a market value for this material could result in a reduction in the area occupied by the invasive species, once the demand for it increases, causing a pressure over the resource. This pressure on the species must be duly followed by other control measures, such as reducing the population and mitigating its proliferation. Laboratory tests have shown that both the raw material and the finished product are similar to those obtained with other species normally used for biomass pellet production, such as Pinus pinaster and Eucalyptus globulus. Thus, it can be concluded that there is a high potential for this species in the production of biomass pellets for energy, and that this may be an important contribution to controlling the proliferation of this invasive species. Full article
Show Figures

Figure 1

Article
Vehicular Emission: Estimate of Air Pollutants to Guide Local Political Choices. A Case Study
Environments 2020, 7(5), 37; https://doi.org/10.3390/environments7050037 - 16 May 2020
Cited by 11 | Viewed by 2906
Abstract
The aim of this case study was to show how, with the use of software, is it possible to carry out a preventive screening of vehicular emissions. Moreover, thanks to this preliminary analysis, some areas that are potentially polluted can be identified in [...] Read more.
The aim of this case study was to show how, with the use of software, is it possible to carry out a preventive screening of vehicular emissions. Moreover, thanks to this preliminary analysis, some areas that are potentially polluted can be identified in advance and suitable samplings on small-scale on them would help to verify the effectiveness of policies that can be adopted for the reduction of pollution. To this end, this paper reports a case study on vehicle traffic pollution in Calabria, a region in the south of Italy. We used the methodology called Corinair (Coordination Information AIR), developed by the EEA (European Environment Agency) and uses the software Copert4 (Computer Program to calculate Emission from Road Traffic). The total emissions per area were analyzed and the emissions for particular pollutants per unit area (km²) and per citizen were considered. The obsolete vehicles determined a substantial impact on the local atmospheric pollution. It was demonstrated how it is possible to substantially reduce the pollution of an area by adopting policies that encourage, for example, through tax concessions, the replacement of old cars of private citizens. Full article
(This article belongs to the Special Issue Environmental Monitoring of Pollutants)
Show Figures

Figure 1

Article
Life Cycle Assessment of Community-Based Sewer Mining: Integrated Heat Recovery and Fit-For-Purpose Water Reuse
Environments 2020, 7(5), 36; https://doi.org/10.3390/environments7050036 - 14 May 2020
Cited by 4 | Viewed by 2921
Abstract
Municipal sewage contains significant embedded resources in the form of chemical and thermal energy. Recent developments in sustainable technology have pushed for the integration of resource recovery from household wastewater to achieve net zero energy consumption and carbon-neutral communities. Sewage heat recovery and [...] Read more.
Municipal sewage contains significant embedded resources in the form of chemical and thermal energy. Recent developments in sustainable technology have pushed for the integration of resource recovery from household wastewater to achieve net zero energy consumption and carbon-neutral communities. Sewage heat recovery and fit-for-purpose water reuse are options to optimize the resource recovery potential of municipal wastewater. This study presents a comparative life cycle assessment (LCA) focused on global warming potential (GWP), eutrophication potential (EUP), and human health carcinogenic potential (HHCP) of an integrated sewage heat recovery and water reuse system for a hypothetical community of 30,000 people. Conventional space and water heating components generally demonstrated the highest GWP contribution between the different system components evaluated. Sewage-heat-recovery-based district heating offered better environmental performance overall. Lower impact contributions were demonstrated by scenarios with a membrane bioreactor (MBR) and chlorination prior to water reuse applications compared to scenarios that use more traditional water and wastewater treatment technologies and discharge. The LCA findings show that integrating MBR wastewater treatment and water reuse into a district heating schema could provide additional environmental savings at a community scale. Full article
(This article belongs to the Special Issue Water and Energy Consumption in Urban Water Cycles)
Show Figures

Figure 1

Article
Long-Term Environmental Monitoring in an Arctic Lake Polluted by Metals under Climate Change
Environments 2020, 7(5), 34; https://doi.org/10.3390/environments7050034 - 29 Apr 2020
Cited by 10 | Viewed by 2912
Abstract
Lake Kuetsjarvi (in the lower reaches of the Pasvik River, Murmansk Region, Russia) in the border area between Russia and Norway, is one of the most polluted water reservoirs in the European Arctic. The operation of the Pechenganikel Smelter located on its shores [...] Read more.
Lake Kuetsjarvi (in the lower reaches of the Pasvik River, Murmansk Region, Russia) in the border area between Russia and Norway, is one of the most polluted water reservoirs in the European Arctic. The operation of the Pechenganikel Smelter located on its shores has led to the extremely high concentrations of heavy metals observed in the waters and sediments of the lake. Long-term comprehensive studies of the ecosystem of Lake Kuetsjarvi have made it possible to identify the response of its components to the global and regional change in the environment and climate as a whole, resulting in increased water toxicity and eutrophication, reduction in the number of stenobiont species of aquatic organisms against the background of an increase in the number of eurybiontic and invasive species. Modern communities of Lake Kuetsjarvi are the result of a combination of long-term changes in the abiotic environment and biotic interactions. Heavy-metal pollution of Lake Kuetsjarvi, observed since the 1930s, has led to the formation of a community that is resistant to this type of impact and supports large populations of adapted species. Adaptations of communities to the dynamics of the environmental conditions that their members are exposed to include changes in the species composition, quantitative indicators, ratios between individual taxonomic groups, and the population structure. The development of sympatric forms that differ in the ecological niches they occupy, morphology, and life cycle strategies, including the transition to a short-cycle survival strategy, allows whitefish to remain the dominant species and maintain high population numbers. Unlike the organismal level, responses to medium-term environmental changes on the population and community level are less specific and characterized by stronger inertia. Full article
Show Figures

Figure 1

Article
The Spatial and Temporal Variability of the Effects of Agricultural Practices on the Environment
Environments 2020, 7(4), 33; https://doi.org/10.3390/environments7040033 - 15 Apr 2020
Cited by 15 | Viewed by 3221
Abstract
It is widely known that agricultural practices can alter natural ecosystems, both from a qualitative and quantitative point of view. Indeed, over the years, the intensification of production through excessive or inappropriate use of pesticides and fertilisers in the agricultural sector has had [...] Read more.
It is widely known that agricultural practices can alter natural ecosystems, both from a qualitative and quantitative point of view. Indeed, over the years, the intensification of production through excessive or inappropriate use of pesticides and fertilisers in the agricultural sector has had a negative impact on natural resources. This negative environment impact has had both minor and major consequences for the natural resources present in the different areas of the European Union (EU). This variability depends mainly on the different agricultural training of farmers and on their ability to practise sustainable agriculture. Hence, with a specific set of agri-environmental indicators provided by the Eurostat database, this paper analyses the spatial and temporal variation of the agricultural land-use practices and the related environmental effects in EU countries. In pursuit of this aim, descriptive statistics and multivariate analysis (factor analysis and hierarchical cluster analysis) were adopted to determine the similarities/dissimilarities between the different types of agricultural production in the EU and the dominant dimensions of agricultural production and activities there in terms of their impact of natural resources in order to identify “homogeneity” among member states. The main contribution of this paper lies, above all, in the fact that the classification of these countries in four agro-ecosystems, with similar use of energy, pollution factors, and natural resources, could be useful as a tool for policymakers. Importantly, it could help them to define different incentives that could encourage farmers to adopt more sustainable agricultural production methods. Full article
Show Figures

Figure 1

Article
Adsorption Characteristics of Spent Coffee Grounds as an Alternative Adsorbent for Cadmium in Solution
Environments 2020, 7(4), 24; https://doi.org/10.3390/environments7040024 - 27 Mar 2020
Cited by 20 | Viewed by 3405
Abstract
The present study was conducted to ascertain the potential of spent coffee grounds (SCGs) as an alternative adsorbent for the removal of cadmium (Cd) from aqueous solutions. Therefore, Cd adsorption batch tests, using SCGs that had not undergone any chemical pretreatment, were conducted [...] Read more.
The present study was conducted to ascertain the potential of spent coffee grounds (SCGs) as an alternative adsorbent for the removal of cadmium (Cd) from aqueous solutions. Therefore, Cd adsorption batch tests, using SCGs that had not undergone any chemical pretreatment, were conducted using Cd solutions with a wide concentration range (i.e., 0.1–120 mM) under various adsorption conditions, e.g., ion strength, pH, and solid/solution ratio. For comparison, zeolite, as a well-known common representative adsorbent, was included to determine the adsorption efficiency. The adsorption capacity of the SCGs increased with the decreasing ionic strength of the test solution from 200 to 0 mM of Ca(NO3)2 and the increasing solid:solution ratio from 1:4 to 1:400. The most significant factor influencing the adsorption capacity of the SCGs was the pH of the test solution, with increases in the adsorption capacity as the initial solution pH was increased from 2 to 10. However, the rate for Cd removal remained constant, at 71.19%, when the initial solution pH was between 4 and 8 due to the buffer capacity of SCGs. The obtained data were fitted with the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. The Langmuir isotherm provided the best correlation for Cd adsorption onto SCGs (R2 = 0.96) and zeolite (R2 = 0.92), and the maximum Cd adsorption capacity of the SCGs was 19.32 mg g-1, which was higher than that of zeolite (13.91 mg g−1). These results mean that the SCGs can be utilized as alternative low-cost biosorbents to replace conventional adsorption materials. Full article
Show Figures

Figure 1

Article
Experimental Procedure for Fifth Generation (5G) Electromagnetic Field (EMF) Measurement and Maximum Power Extrapolation for Human Exposure Assessment
Environments 2020, 7(3), 22; https://doi.org/10.3390/environments7030022 - 17 Mar 2020
Cited by 25 | Viewed by 4977
Abstract
The fifth generation (5G) technology has been conceived to cover multiple usage scenarios from enhanced mobile broadband to ultra-reliable low-latency communications (URLLC) to massive machine type communications. However, the implementation of this new technology is causing increasing concern over the possible impact on [...] Read more.
The fifth generation (5G) technology has been conceived to cover multiple usage scenarios from enhanced mobile broadband to ultra-reliable low-latency communications (URLLC) to massive machine type communications. However, the implementation of this new technology is causing increasing concern over the possible impact on health and safety arising from exposure to electromagnetic field radiated by 5G systems, making imperative the development of accurate electromagnetic field (EMF) measurement techniques and protocols. Measurement techniques used to assess the compliance with EMF exposure limits are object to international regulation. The basic principle of the assessment is to measure the power received from a constant radio frequency source, typically a pilot signal, and to apply a proper extrapolation factor. This kind of approach is standardized for 2G, 3G, and 4G technologies, but is still under investigation for 5G technology. Indeed, the use of flexible numerologies and advanced Time Division Duplexing (TDD) and spatial multiplexing techniques, such as beam sweeping and Massive Multiple Input Multiple Output (MIMO), requires the definition of new procedures and protocols for EMF measurement of 5G signals. In this paper a procedure for an accurate estimation of the instant maximum power received from a 5G source is proposed. The extrapolation technique is based on the introduction of proper factors that take into account the effect of the TDD and of the sweep beam in the measured value of the 5G signal level. Preliminary experimental investigation, based on code domain measurement of appropriate broadcast channels, and carried out in a controlled environment are reported, confirming the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Physical Agents: Measurement Methods, Modelling and Mitigations)
Show Figures

Figure 1

Article
Towards Forest Landscape Restoration Programs in the Philippines: Evidence from Logged Forests and Mixed-Species Plantations
Environments 2020, 7(3), 20; https://doi.org/10.3390/environments7030020 - 05 Mar 2020
Cited by 8 | Viewed by 4926
Abstract
With only 7.01 million hectares of remaining forested areas in the Philippines, there is an urgency to protect these areas, while also implementing restoration strategies to increase forest cover and improve forest functionality. In this study, we assess how the so called “rainforestation” [...] Read more.
With only 7.01 million hectares of remaining forested areas in the Philippines, there is an urgency to protect these areas, while also implementing restoration strategies to increase forest cover and improve forest functionality. In this study, we assess how the so called “rainforestation” approach, attempts to implement close-to-nature restoration strategies in humid tropic areas. One of the main objectives of the “rainforestation” approach as a form of a mixed-species plantation is the rehabilitation of structural and floristic integrity similar to natural conditions. We compared study areas located in the provinces of Leyte and Southern Leyte composed of logged forests (temporary plots), with logged forests on a permanent research plot and with mixed-species plantations. Basal area, carbon stocks, volume and biological diversity between study areas were calculated and compared, both for static and dynamic data. Results from the static data indicate that carbon stocks (89.30 t ha−1) and volume (262.56 m3 ha−1) of the mixed-species plantations (“rainforestation” approach) is significantly lower than that of the logged forests. However, when it comes to the capacity of the study areas for potential increments, the mixed-species plantations are not significantly different on basal area increment (0.99 m2 ha−1 yr−1), carbon stock increment (3.67 t ha−1 yr−1) and total volume increment (10.47 m3 ha−1 yr−1) as compared to the logged forests’ capacity (basal area—1.08 m2 ha−1 yr−1, carbon—4.06 t ha−1 yr−1 and total volume—11.98 m3 ha−1 yr−1). The species composition was only partly comparable to logged forests of the region, but overall tree species richness is high in comparison to classical plantation approaches. Previously logged forests are able to recover fast reaching surprisingly high values of carbon stocks and potential commercial timber volume. Our study indicates that “rainforestation” cannot fully replace the functionality of natural forests, but can provide a surprisingly multifunctional tool for landscape restoration, providing both timber and non-timber ecosystem services. Full article
Show Figures

Figure 1

Article
Port Noise and Complaints in the North Tyrrhenian Sea and Framework for Remediation
Environments 2020, 7(2), 17; https://doi.org/10.3390/environments7020017 - 24 Feb 2020
Cited by 23 | Viewed by 3467
Abstract
Compared to the other relevant noise sources such as railways, roads, and airplanes, the regulation regarding port noise is lagging behind. The absence of specific laws is likely one of the main causes of the increasingly high number of complaints reported by the [...] Read more.
Compared to the other relevant noise sources such as railways, roads, and airplanes, the regulation regarding port noise is lagging behind. The absence of specific laws is likely one of the main causes of the increasingly high number of complaints reported by the citizens living nearby the ports. At the same time, scientific literature concerning the impact of port noise and its mitigation is not so widespread and only a few studies are available at the moment. However, the volume of maritime traffic has increased in the last years and consequently, Port Authorities are required to assess the impact of port operations on the city soundscape without using specific directives or guidelines. In this context, the INTERREG Maritime programme projects RUMBLE, MON ACUMEN, and REPORT aim to fill this gap, by investigating the state-of-the-art of port noise in the north Tyrrhenian sea and developing helpful instruments. Data were collected via a survey sent to the Port Authorities, local environmental protection agencies and universities involved in the projects. The survey was focused on monitoring systems, previous measurement campaigns, noise maps, and citizens’ complaints already taken. The results confirmed both a lack of awareness among residents and authorities and the absence of actions aimed at reducing port noise. In this framework, the difficulties encountered by the Port Authorities in managing the ports sustainably are highlighted. An underestimation of citizens’ exposure to noise in port areas could be expected. Full article
(This article belongs to the Special Issue Physical Agents: Measurement Methods, Modelling and Mitigations)
Show Figures

Figure 1

Article
In Situ Acoustic Treatment of Anaerobic Digesters to Improve Biogas Yields
Environments 2020, 7(2), 11; https://doi.org/10.3390/environments7020011 - 08 Feb 2020
Cited by 4 | Viewed by 4904
Abstract
Sound has the potential to increase biogas yields and enhance wastewater degradation in anaerobic digesters. To assess this potential, two pilot-scale digestion systems were operated, with one exposed to sound at less than 10 kHz and with one acting as a control. Sounds [...] Read more.
Sound has the potential to increase biogas yields and enhance wastewater degradation in anaerobic digesters. To assess this potential, two pilot-scale digestion systems were operated, with one exposed to sound at less than 10 kHz and with one acting as a control. Sounds used were sine waves, broadband noise, and orchestral compositions. Weekly biogas production from sound-treated digesters was 18,900 L, more than twice that of the control digester. The sound-treated digesters were primarily exposed to orchestral compositions, because this made cavitational events easier to identify and because harmonic and amplitude shifts in music seem to induce more cavitation. Background recordings from the sound-treated digester were louder and had more cavitational events than those of the control digester, which we ascribe to enhanced microbial growth and the resulting accelerated sludge breakdown. Acoustic cavitation, vibrational energy imparted to wastewater and sludge, and mixing due to a release of bubbles from the sludge may all act in concert to accelerate wastewater degradation and boost biogas production. Full article
(This article belongs to the Special Issue Wastewater and Solid Waste Treatment)
Show Figures

Graphical abstract

Article
Solar UV Irradiance in a Changing Climate: Trends in Europe and the Significance of Spectral Monitoring in Italy
Environments 2020, 7(1), 1; https://doi.org/10.3390/environments7010001 - 18 Dec 2019
Cited by 21 | Viewed by 5027
Abstract
Review of the existing bibliography shows that the direction and magnitude of the long-term trends of UV irradiance, and their main drivers, vary significantly throughout Europe. Analysis of total ozone and spectral UV data recorded at four European stations during 1996–2017 reveals that [...] Read more.
Review of the existing bibliography shows that the direction and magnitude of the long-term trends of UV irradiance, and their main drivers, vary significantly throughout Europe. Analysis of total ozone and spectral UV data recorded at four European stations during 1996–2017 reveals that long-term changes in UV are mainly driven by changes in aerosols, cloudiness, and surface albedo, while changes in total ozone play a less significant role. The variability of UV irradiance is large throughout Italy due to the complex topography and large latitudinal extension of the country. Analysis of the spectral UV records of the urban site of Rome, and the alpine site of Aosta reveals that differences between the two sites follow the annual cycle of the differences in cloudiness and surface albedo. Comparisons between the noon UV index measured at the ground at the same stations and the corresponding estimates from the Deutscher Wetterdienst (DWD) forecast model and the ozone monitoring instrument (OMI)/Aura observations reveal differences of up to 6 units between individual measurements, which are likely due to the different spatial resolution of the different datasets, and average differences of 0.5–1 unit, possibly related to the use of climatological surface albedo and aerosol optical properties in the retrieval algorithms. Full article
(This article belongs to the Special Issue Physical Agents: Measurement Methods, Modelling and Mitigations)
Show Figures

Graphical abstract

Article
Tourism Industry’s Vulnerability upon Risk of Flooding: The Aquis Querquennis Complex
Environments 2019, 6(12), 122; https://doi.org/10.3390/environments6120122 - 28 Nov 2019
Cited by 1 | Viewed by 3473
Abstract
Thermal baths are the main touristic attraction of Ourense (Galicia, Spain). Therefore, protecting and potentializing the resources related to this type of tourism is essential for the province. Most of these resources are located by the banks or nearby rivers, which makes them [...] Read more.
Thermal baths are the main touristic attraction of Ourense (Galicia, Spain). Therefore, protecting and potentializing the resources related to this type of tourism is essential for the province. Most of these resources are located by the banks or nearby rivers, which makes them particularly susceptible to flooding, a very common phenomenon throughout the province. In this context, vulnerability analysis, and particularly flooding damage evaluation, are of utmost importance to this area. Considering this scenario, the present study consists of a preliminary analysis of a historical-heritage tourism resource’s vulnerability to flooding. To this end, the study examines the visitation patterns to the Aquis Querquennis complex (Bande, Ourense, Spain), which is located by the banks of the As Conchas reservoir, and the water levels of said reservoir. The complex is a touristic resource with great historical value. Apart from the thermal baths, it encompasses a military campsite and a hostel. The Roman complex attracts a constant tourist flow, which has a positive socioeconomic impact to the area. The analysis showed that there is a correlation between the number of visits and flooding patterns. Increased levels of water are a hinderance for those willing to access the attraction. Consequently, there is a negative relationship between water level and number of visitors. Full article
Show Figures

Figure 1

Article
Workers with Active Implantable Medical Devices Exposed to EMF: In Vitro Test for the Risk Assessment
Environments 2019, 6(11), 119; https://doi.org/10.3390/environments6110119 - 15 Nov 2019
Cited by 5 | Viewed by 3321
Abstract
The occupational health and safety framework identifies workers with an active implantable medical device (AIMD), such as a pacemaker (PM) or an implantable defibrillator (ICD), as a particularly sensitive risk group that must be protected against the dangers caused by the interference of [...] Read more.
The occupational health and safety framework identifies workers with an active implantable medical device (AIMD), such as a pacemaker (PM) or an implantable defibrillator (ICD), as a particularly sensitive risk group that must be protected against the dangers caused by the interference of electromagnetic field (EMF). In this paper, we describe the results of in vitro testing/measurements performed according to the EN50527-2-1:2016 standard, for the risk assessment of employees with a PM exposed to three EMF sources: (1) An electrosurgical unit (ESU); (2) a transcranial stimulator (TMS); and (3) an arc welder. The ESU did not affect the PM behavior in any of the configurations tested. For the TMS and the arc welder, interference phenomena were observed in limited experimental configurations, corresponding to the maximum magnetic field coupling between the EMF source and the implant. The in vitro measurements presented can be considered an example of how the specific risk assessment for a worker with a PM can be performed, according to one of the methodologies proposed in the EN50527-2-1:2016, and can be used as scientific evidence and literature data for future risk assessments on the same EMF sources. Full article
(This article belongs to the Special Issue Physical Agents: Measurement Methods, Modelling and Mitigations)
Show Figures

Figure 1

Article
Impact of Zirconium on Freshwater Periphytic Microorganisms
Environments 2019, 6(10), 111; https://doi.org/10.3390/environments6100111 - 01 Oct 2019
Cited by 3 | Viewed by 3801
Abstract
The majority of studies on biofilms have focused on autotrophic and bacterial taxa, without considering the potential effects on biofilm grazers. In this work, we investigated the effects of realistic environmental concentrations of zirconium (Zr) on periphyton algal growth and micromeiofauna biodiversity. Glass [...] Read more.
The majority of studies on biofilms have focused on autotrophic and bacterial taxa, without considering the potential effects on biofilm grazers. In this work, we investigated the effects of realistic environmental concentrations of zirconium (Zr) on periphyton algal growth and micromeiofauna biodiversity. Glass slides were submerged in a pond for four weeks to colonize biofilms and exposed for four weeks in aquaria to targeted Zr concentrations of 0, 1, and 10 nM, which were monitored over time (average measured concentrations were 0.2 ± 0.1, 0.5 ± 0.3, and 2.9 ± 0.3 nM Zr). The four-week exposure to the highest concentration (3 nM) affected the micromeiofauna structure of biofilms and modified the autotrophic biofilm structure by increasing the proportion of green algae and decreasing the abundance of cyanobacteria and brown algae. Rotifers and the ciliate Aspidisca cicada appeared to be the most sensitive organisms among the observed micromeiofauna. A toxic effect of Zr on rotifers could explain such results. Indirect effects, such as reduced food availability given the reduced algal growth in the presence of Zr, could also play a role in the changes of micromeiofauna community structure. These results are among the few published data on the effects of Zr. Full article
(This article belongs to the Special Issue New Insights into Impacts of Toxic Metals in Aquatic Environments)
Show Figures

Graphical abstract

Article
Diatom Deformities and Tolerance to Cadmium Contamination in Four Species
Environments 2019, 6(9), 102; https://doi.org/10.3390/environments6090102 - 02 Sep 2019
Cited by 3 | Viewed by 3995
Abstract
The relative tolerance of four diatoms (Nitzschia palea, Pinnularia mesolepta, Mayamaea atomus, and Gomphonema truncatum) to Cd was evaluated, including their proneness to deformities, and the severity of the abnormalities in relation to Cd concentration. The indirect effect [...] Read more.
The relative tolerance of four diatoms (Nitzschia palea, Pinnularia mesolepta, Mayamaea atomus, and Gomphonema truncatum) to Cd was evaluated, including their proneness to deformities, and the severity of the abnormalities in relation to Cd concentration. The indirect effect of Cd on photosynthetic capacities was assessed during a short time exposure experiment using a dose-response approach to evaluate the relative tolerance of the four diatom species. The EC25 were 9 (3, 23), 606 (348, 926), 1179 (1015, 1349) and 2394 (1890, 2896) µg/L for P. mesolepta, G. truncatum, N. palea, and M. atomus respectively. P. mesolepta was by far the most Cd sensitive species while M. atomus was the most tolerant. In addition, diatoms were exposed to a single concentration of Cd comparable to a heavily contaminated environment for a longer duration to evaluate the effect of Cd on growth kinetics and the deformities induced. N. palea, P. mesolepta, and M. atomus were able to grow when cultivated with Cd while G. truncatum was not. Cadmium strongly affected the effective quantum yield in G. truncatum (4.8 ± 5.9% of the control) and P. mesolepta cultures (29.2 ± 6.9% of the control). The effects were moderate for N. palea (88.3 ± 0.7% of the control) and no impact was observed for M. atomus. The results from the two approaches were in accordance since they identified N. palea and M. atomus as the two most tolerant species to Cd, while P. mesolepta and G. truncatum were the most sensitive. The microscopy analyses revealed that P. mesolepta was more impacted by Cd than N. palea and M. atomus considering both the quantity of abnormal cells and the severity of the deformities. Overall, this research shows that not all deformities can be considered equal for a water quality bio-assessment. The work highlights a need to take into account metal-tolerance/sensitivity of the species and the severity of the deformities. Full article
(This article belongs to the Special Issue Aquatic Microbial Ecotoxicology)
Show Figures

Figure 1

Article
Is a Land Use Regression Model Capable of Predicting the Cleanest Route to School?
Environments 2019, 6(8), 90; https://doi.org/10.3390/environments6080090 - 30 Jul 2019
Cited by 13 | Viewed by 5666
Abstract
Land Use Regression (LUR) modeling is a widely used technique to model the spatial variability of air pollutants in epidemiology. In this study, we explore whether a LUR model can predict home-to-school commuting exposure to black carbon (BC). During January and February 2019, [...] Read more.
Land Use Regression (LUR) modeling is a widely used technique to model the spatial variability of air pollutants in epidemiology. In this study, we explore whether a LUR model can predict home-to-school commuting exposure to black carbon (BC). During January and February 2019, 43 children walking to school were involved in a personal monitoring campaign measuring exposure to BC and tracking their home-to-school routes. At the same time, a previously developed LUR model for the study area was applied to estimate BC exposure on points along the route. Personal BC exposure varied widely with mean ± SD of 9003 ± 4864 ng/m3. The comparison between the two methods showed good agreement (Pearson’s r = 0.74, Lin’s Concordance Correlation Coefficient = 0.6), suggesting that LUR estimates are capable of catching differences among routes and predicting the cleanest route. However, the model tends to underestimate absolute concentrations by 29% on average. A LUR model can be useful in predicting personal exposure and can help urban planners in Milan to build a healthier city for schoolchildren by promoting less polluted home-to-school routes. Full article
Show Figures

Figure 1

Article
Potential of Urban Densification to Mitigate the Effects of Heat Island in Vienna, Austria
Environments 2019, 6(7), 82; https://doi.org/10.3390/environments6070082 - 10 Jul 2019
Cited by 11 | Viewed by 4545
Abstract
Global increase of urban population has brought about a growing demand for more dwelling space, resulting in various negative impacts, such as accelerated urbanization, urban sprawl and higher carbon footprints. To cope with these growth dynamics, city authorities are urged to consider alternative [...] Read more.
Global increase of urban population has brought about a growing demand for more dwelling space, resulting in various negative impacts, such as accelerated urbanization, urban sprawl and higher carbon footprints. To cope with these growth dynamics, city authorities are urged to consider alternative planning strategies aiming at mitigating the negative implications of urbanization. In this context, the present contribution investigates the potential of urban densification to mitigate the heat island effects and to improve outdoor thermal conditions. Focusing on a quite densely urbanized district in Vienna, Austria, we carried out a set of simulations of urban microclimate for pre- and post-densification scenarios using the parametric modelling environment Rhinoceros 3D and a set of built-in algorithms in the Rhino’s plug-in Grasshopper. The study was conducted for a hot summer period. The results revealed a notable solar shielding effect of newly introduced vertical extensions of existing buildings, promoting temperature decrease and improved thermal conditions within more shaded urban canyons and courtyards. However, a slight warming effect was noted during the night-time due to the higher thermal storage and lower sky view factor. Full article
(This article belongs to the Special Issue Adaptation Measures for Urban Heat Island)
Show Figures

Figure 1

Article
Ecological Health Index: A Short Term Monitoring Method for Land Managers to Assess Grazing Lands Ecological Health
Environments 2019, 6(6), 67; https://doi.org/10.3390/environments6060067 - 10 Jun 2019
Cited by 2 | Viewed by 5993
Abstract
Grazing lands should be monitored to ensure their productivity and the preservation of ecosystem services. The study objective was to investigate the effectiveness of an Ecological Health Index (EHI) for assessing ecosystem ecological health in grazing lands. The EHI was developed by synthesizing [...] Read more.
Grazing lands should be monitored to ensure their productivity and the preservation of ecosystem services. The study objective was to investigate the effectiveness of an Ecological Health Index (EHI) for assessing ecosystem ecological health in grazing lands. The EHI was developed by synthesizing existing vegetation and soil cover indicators. We implemented long-term transects at 44 farms from two ecological regions in Patagonia, the Humid Magellan Steppe (HMS) (n = 24) and Subandean Grasslands (SG) (n = 20), to collect data on established quantifiable vegetative and soil measurements and the EHI. Using known quantifiable measures, the HMS had numerically greater species richness compared to SG. Similarly, the average percentage of total live vegetation was more favorable in HMS. Correlating the EHI with these known quantifiable measures demonstrated positive correlations with species richness, the percentage of total live vegetation and carrying capacity and was negatively correlations with bare ground. These results suggest that EHI could be a useful method to detect the ecological health and productivity in grazing lands. Overall, we conclude that EHI is an effective short-term monitoring approach that ranchers could implement annually to monitor grazing lands and determine the impacts of ranch decision-making on important ecosystem indicators. Full article
(This article belongs to the Special Issue Agricultural Ecosystem Services)
Show Figures

Figure 1

Article
Fertilizer Efficacy of Poultry Litter Ash Blended with Lime or Gypsum as Fillers
Environments 2019, 6(5), 50; https://doi.org/10.3390/environments6050050 - 01 May 2019
Cited by 10 | Viewed by 3318
Abstract
Ash from power plants that incinerate poultry litter has fertilizer value, but research is lacking on optimal land application methodologies. Experiments were conducted to evaluate calcitic lime and flue gas desulfurization gypsum (FGDG) as potential fillers for poultry litter ash land applications. The [...] Read more.
Ash from power plants that incinerate poultry litter has fertilizer value, but research is lacking on optimal land application methodologies. Experiments were conducted to evaluate calcitic lime and flue gas desulfurization gypsum (FGDG) as potential fillers for poultry litter ash land applications. The ash had phosphorus (P) and potassium (K) contents of 68 and 59 g kg−1, respectively. Soil extractable P and K were measured in an incubation pot study, comparing calcitic lime to FGDG at filler/ash ratios of 1:3, 1:2, 1:1, 2:1, and 3:1. After one month, soils were sampled and annual ryegrass (Lolium multiflorum Lam.) seeds were planted to investigate how plant growth and uptake of P and K were influenced by the fillers. Application of ash alone or with fillers increased soil extractable P and K levels above unamended controls by 100% and 70%, respectively. Filler materials did not affect biomass or P and K concentration of the ryegrass. A field study with a commercial spinner disc fertilizer applicator was conducted to compare application uniformity of ash alone and filler/ash blends. Overall, test data suggested that uniform distribution of ash alone or with fillers is feasible in field applications using a commercial fertilizer spreader. Full article
Show Figures

Figure 1

Article
Aeration to Improve Biogas Production by Recalcitrant Feedstock
Environments 2019, 6(4), 44; https://doi.org/10.3390/environments6040044 - 11 Apr 2019
Cited by 10 | Viewed by 3294
Abstract
Digestion of wastes to produce biogas is complicated by poor degradation of feedstocks. Research has shown that waste digestion can be enhanced by the addition of low levels of aeration without harming the microbes responsible for methane production. This research has been done [...] Read more.
Digestion of wastes to produce biogas is complicated by poor degradation of feedstocks. Research has shown that waste digestion can be enhanced by the addition of low levels of aeration without harming the microbes responsible for methane production. This research has been done at small scales and without provision to retain the aeration in the digestate. In this paper, low levels of aeration were provided to poultry litter slurry through a sub-surface manifold that retained air in the sludge. Digestate (133 L) was supplied 0, 200, 800, or 2000 mL/day air in 200 mL increments throughout the day via a manifold with a volume of 380 mL. Digesters were fed 400 g of poultry litter once weekly until day 84 and then 600 g thereafter. Aeration at 200 and 800 mL/day increased biogas production by 14 and 73% compared to anaerobic digestion while aeration at 2000 mL/day decreased biogas production by 19%. Biogas quality was similar in all digesters albeit carbon dioxide and methane were lowest in the 2000 mL/day treatment. Increasing feed to 600 g/week decreased gas production without affecting biogas quality. Degradation of wood disks placed within the digesters was enhanced by aeration. Full article
Show Figures

Figure 1

Back to TopTop