Convergence Research for Microplastic Pollution at the Watershed Scale
Abstract
:1. Introduction
2. Convergence Approach for Addressing Microplastic Pollution at the Watershed Scale
3. Results: Engagement Process
3.1. Community Partner Engagement
3.2. Community-Staged Surveys
3.3. K-12 Teacher Education
3.4. Environmental Sampling
4. Discussion: Lessons Learned
4.1. Communication and Trust Building
4.2. Co-Creation Through Collaboration
4.3. Change-Making
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isobe, A.; Iwasaki, S.; Uchida, K.; Tokai, T. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat. Commun. 2019, 10, 417. [Google Scholar] [CrossRef] [PubMed]
- Kukkola, A.; Chetwynd, A.J.; Krause, S.; Lynch, I. Beyond microbeads: Examining the role of cosmetics in microplastic pollution and spotlighting unanswered questions. J. Hazard. Mater. 2024, 476, 135053. [Google Scholar] [CrossRef] [PubMed]
- Dokl, M.; Copot, A.; Krajnc, D.; Fan, Y.; Vujanović, A.; Aviso, K.B.; Tan, R.R.; Kravanja, Z.; Čuček, L. Global projections of plastic use, end-of-life fate and potential changes in consumption, reduction, recycling and replacement with bioplastics to 2050. Sustain. Prod. Consum. 2024, 51, 498–518. [Google Scholar] [CrossRef]
- Parvez, M.; Ullah, H.; Faruk, O.; Simon, E.; Czédli, H. Role of Microplastics in Global Warming and Climate Change: A Review. Water Air Soil Pollut. 2024, 235, 201. [Google Scholar] [CrossRef]
- Bucci, K.; Bayoumi, M.; Stevack, K.; Watson-Leung, T.; Rochman, C.M. Microplastics may induce food dilution and endocrine disrupting effects in fathead minnows (Pimephales promelas), and decrease offspring quality. Environ. Pollut. 2024, 345, 123551. [Google Scholar] [CrossRef] [PubMed]
- Borrelle, S.B.; Ringma, J.; Lavender Law, K.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Rochman, C.M. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A global perspective on microplastics. J. Geophys. Res. Ocean. 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Lau, W.W.Y.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Palardy, J.E. Evaluating scenarios toward zero plastic pollution. Science 2020, 369, 1455–1461. [Google Scholar] [CrossRef]
- Zhao, B.; Richardson, R.E.; You, F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. J. Hazard. Mater. 2024, 477, 135329. [Google Scholar] [CrossRef]
- Peng, X.; Chen, M.; Chen, S.; Dasgupta, S.; Xu, H.; Ta, K.; Bai, S. Microplastics contaminate the deepest part of the world’s ocean. Geochem. Perspect. Lett. 2018, 9, 1–5. [Google Scholar] [CrossRef]
- Brahney, J.; Hallerud, M.; Heim, E.; Hahnenberger, M.; Sukumaran, S. Plastic rain in protected areas of the United States. Science 2020, 368, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Citterich, F.; Giudice, A.L.; Azzaro, M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth’s poles. Sci. Total Environ. 2023, 869, 161847. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zheng, J.; Xu, W.; Zhang, Q.; Chen, N.; Wang, H.; Qian, X.; Wang, G. Spatiotemporal occurrence and characteristics of microplastics in the urban road dust in a megacity, eastern China. J. Hazard. Mater. 2024, 468, 133733. [Google Scholar] [CrossRef]
- Soltani, M.; Shahsavani, A.; Hopke, P.K.; Bakhtiarvand, N.A.; Abtahi, M.; Rahmatinia, M.; Kermani, M. Investigating the inflammatory effect of microplastics in cigarette butts on peripheral blood mononuclear cells. Sci. Rep. 2025, 15, 458. [Google Scholar] [CrossRef]
- Cusworth, S.J.; Davies, W.J.; McAinsh, M.R.; Gregory, A.S.; Storkey, J.; Stevens, C.J. Agricultural fertilisers contribute substantially to microplastic concentrations in UK soils. Commun. Earth Environ. 2024, 5, 7. [Google Scholar] [CrossRef]
- Qadeer, A.; Ajmal, Z.; Usman, M.; Zhao, X.; Chang, S. Agricultural plastic mulching as a potential key source of microplastic pollution in the terrestrial ecosystem and consequences. Resour. Conserv. Recycl. 2021, 175, 105855. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S. Microplastic contamination in urban aquatic environments: Occurrence characteristics in urban streams and stormwater runoff from urban surfaces. J. Environ. Manag. 2024, 359, 121050. [Google Scholar] [CrossRef] [PubMed]
- Werbowski, L.M.; Gilbreath, A.N.; Munno, K.; Zhu, X.; Grbic, J.; Wu, T.; Sutton, R.; Sedlak, M.D.; Deshpande, A.D.; Rochman, C.M. Urban stormwater runoff: A major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters. ACS EST Water 2021, 1, 1420–1428. [Google Scholar] [CrossRef]
- Hu, Y.; Gong, M.; Wang, J.; Bassi, A. Current research trends on microplastic pollution from wastewater systems: A critical review. Rev. Environ. Sci. Bio/Technol. 2019, 18, 207–230. [Google Scholar] [CrossRef]
- Jose, S.; Lonappan, L.; Cabana, H. Prevalence of microplastics and fate in wastewater treatment plants: A review. Environ. Chem. Lett. 2024, 22, 657–690. [Google Scholar] [CrossRef]
- Liu, N.; Cheng, S.; Wang, X.; Li, Z.; Zheng, L.; Lyu, Y.; Ao, X.; Wu, H. Characterization of microplastics in the septic tank via laser direct infrared spectroscopy. Water Res. 2022, 226, 119293. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.M.; Lo, C.K.Y.; Kan, C.W. A systematic literature review for addressing microplastic fibre pollution: Urgency and opportunities. Water 2024, 16, 1988. [Google Scholar] [CrossRef]
- Rochman, C. Microplastics research—From sink to source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef]
- Horton, A.A.; Dixon, S.J. Microplastics: An introduction to environmental transport processes. Wiley Interdiscip. Rev. Water 2018, 5, e1268. [Google Scholar] [CrossRef]
- Singh, J.; Yadav, B.K.; Schneidewind, U.; Krause, S. Microplastics pollution in inland aquatic ecosystems of india with a global perspective on sources, composition, and spatial distribution. J. Hydrol. Reg. Stud. 2024, 53, 101798. [Google Scholar] [CrossRef]
- Stanton, T.; Johnson, M.; Nathanail, P.; MacNaughtan, W.; Gomes, R.L. Freshwater microplastic concentrations vary through both space and time. Environ. Pollut. 2020, 263, 114481. [Google Scholar] [CrossRef]
- Talbot, R.; Chang, H. Microplastics in Freshwater: A global review of factors affecting spatial and temporal variations. Environ. Pollut. 2022, 292, 118393. [Google Scholar] [CrossRef]
- Jain, R.; Gaur, A.; Suravajhala, R.; Chauhan, U.; Pant, M.; Tripathi, V.; Pant, G. Microplastic pollution: Understanding microbial degradation and strategies for pollutant reduction. Sci. Total Environ. 2023, 905, 167098. [Google Scholar] [CrossRef]
- Waldschläger, K.; Brückner, M.Z.M.; Carney Almroth, B.; Hackney, C.R.; Adyel, T.M.; Alimi, S.O.; Belontz, S.L.; Cowger, W.; Doyle, D.; Gray, A. Learning from natural sediments to tackle microplastics challenges: A multidisciplinary perspective. Earth Sci. Rev. 2022, 228, 104021. [Google Scholar] [CrossRef]
- National Research Council (NRC). Convergence: Facilitating Transdisciplinary Integration of Life Sciences, Physical Sciences, Engineering, and Beyond; National Academies Press: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Sharp, P.A.; Hockfield, S.; Jacks, T. Convergence: The Future of Health. Science 2017, 355, 589. [Google Scholar] [CrossRef]
- Gajary, L.C.; Misra, S.; Desai, A.; Evasius, D.M.; Frechtling, J.; Pendlebury, D.A.; Schnell, J.D.; Silverstein, G.; Wells, J. Convergence Research as a ‘System-of-Systems’: A Framework and Research Agenda. Minerva 2023, 62, 253–286. [Google Scholar] [CrossRef]
- Roco, M.C. Principles of convergence in nature and society and their application: From nanoscale, digits, and logic steps to global progress. J. Nanoparticle Res. 2020, 22, 321. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.A.; Langer, R. Promoting convergence in biomedical science. Science 2011, 333, 527. [Google Scholar] [CrossRef] [PubMed]
- Roco, M.C.; William, S.B. The New World of Discovery, Invention, and Innovation: Convergence of Knowledge, Technology, and Society. J. Nanoparticle Res. 2013, 15, 1946. [Google Scholar] [CrossRef]
- Norström, A.V.; Cvitanovic, C.; Löf, M.F.; West, S.; Wyborn, C.; Balvanera, P.; Bednarek, A.T.; Bennett, E.M.; Biggs, R.; De Bremond, A.; et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 2020, 3, 182–190. [Google Scholar] [CrossRef]
- Phillips, L.A.; Solís, P.; Wang, C.; Varfalameyeva, K.; Burnett, J. Engaged convergence research: An exploratory approach to heat resilience in mobile homes. Prof. Geogr. 2021, 73, 619–631. [Google Scholar] [CrossRef]
- Reed, M.G.; Robson, J.P.; Campos Rivera, M.; Chapela, F.; Davidson-Hunt, I.; Friedrichsen, P.; Haine, E.; Johnston, A.B.D.; Lichtenstein, G.; Lynes, L.S.; et al. Guiding principles for transdisciplinary sustainability research and practice. People Nat. 2023, 5, 1094–1109. [Google Scholar] [CrossRef]
- Sauer, J.; Chang, H. People, place, and planet: Global review of use-inspired research on water-related ecosystem services in urban wetlands. Camb. Prism. Water 2024, 2, e1. [Google Scholar] [CrossRef]
- Palmer-Abbs, M.; Deshpande, P.; Karl, C.W. Enabling transition thinking on complex issues (wicked problems): A framework for future circular economic transitions of plastic management in the Norwegian fisheries and aquaculture sectors. J. Clean. Prod. 2024, 449, 141420. [Google Scholar] [CrossRef]
- Cabello, V.; Willaarts, B.A.; Aguilar, M.; del Moral Ituarte, L. River basins as social-ecological systems: Linking levels of societal and ecosystem water metabolism in a semiarid watershed. Ecol. Soc. 2015, 20, 20. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Booth, E.G.; Gillon, S.; Kucharik, C.J.; Loheide, S.; Mase, A.S.; Motew, M.; Qiu, J.; Rissman, A.R.; Seifert, J.; et al. Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. Ecol. Soc. 2015, 20, 10. [Google Scholar] [CrossRef]
- Scown, M.W.; Flotemersch, J.E.; Spanbauer, T.L.; Eason, T.; Garmestani, A.; Chaffin, B.C. People and water: Exploring the social-ecological condition of watersheds of the United States. Elem. Sci. Anth. 2017, 5, 64. [Google Scholar] [CrossRef]
- Karapetrova, A.; Cowger, W.; Michell, A.; Braun, A.; Bair, E.; Gray, A.; Gan, J. Microplastic Distribution in Western North American Snow. J. Hazard. Mater. 2024, 480, 136126. [Google Scholar] [CrossRef]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, Y.; Lu, Z.; Ren, X.; Barcelo, D.; Zhang, Z.; Wang, Q. Microplastic pollution in organic farming development cannot be ignored in China: Perspective of commercial organic fertilizer. J. Hazard. Mater. 2023, 460, 132478. [Google Scholar] [CrossRef] [PubMed]
- Erdle, L.M.; Nouri Parto, D.; Sweetnam, D.; Rochman, C.M. Washing machine filters reduce microfiber emissions: Evidence from a community-scale pilot in Parry Sound, Ontario. Front. Mar. Sci. 2021, 8, 777865. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Tehrani-Bagha, A. A review on microplastic emission from textile materials and its reduction techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- Gustavus, M. From Mountain Streams to Urban Rivers: An Assessment of Microplastic Sources and Characteristics. Master’s Thesis, Utah State University, Logan, UT, USA, 2023. [Google Scholar]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Chang, H.; Jung, I.; Strecker, A.; Wise, D.; Lafrenz, M.; Shandas, V.; Moradkhani, H.; Yeakley, A.; Pan, Y.; Bean, R.; et al. Water Supply, Demand, and Quality Indicators of the Spatial Distribution of Water Resources Vulnerability in the Columbia River Basin, USA. Atmos.-Ocean. 2013, 51, 339–356. [Google Scholar] [CrossRef]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef]
- Kapp, K.J.; Yeatman, E. Microplastic hotspots in the Snake and Lower Columbia rivers: A journey from the Greater Yellowstone Ecosystem to the Pacific Ocean. Environ. Pollut. 2018, 241, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Talbot, R.; Granek, E.; Chang, H.; Wood, R.; Brander, S. Spatial and temporal variations of microplastic concentrations in Portland’s freshwater ecosystems. Sci. Total Environ. 2022, 833, 155143. [Google Scholar] [CrossRef]
- Valine, A.E.; Peterson, A.E.; Horn, D.A.; Scully-Engelmeyer, K.M.; Granek, E.F. Microplastic prevalence in 4 Oregon rivers along a rural to urban gradient applying a cost-effective validation technique. Environ. Toxicol. Chem. 2020, 39, 1590–1598. [Google Scholar] [CrossRef]
- Wolfand, J.; Poor, C.J.; Taylor, B.L.H.; Morrow, E.; Radke, A.; Diaz-Gunning, E. Microplastics: The Occurrence in Stormwater Runoff and the Effectiveness of Bioretention Systems for Removal. J. Environ. Eng. 2023, 149, 04023078. [Google Scholar] [CrossRef]
- Audia, C.; Berkhout, F.; Owusu, G.; Quayyum, Z.; Agyei-Mensah, S. Loops and building blocks: A knowledge co-production framework for equitable urban health. J. Urban Health 2021, 98, 394–403. [Google Scholar] [CrossRef]
- Gannon, A.; Granek, E.F.; Nielsen-Pincus, M.; Harkins, L. Perceptions about potential microplastic interventions: A study on knowledge, concerns, and willingness to pay. Micropl. Nanopl. 2025, 5, 11. [Google Scholar] [CrossRef]
- Nohara, N.M.L.; Ariza-Tarazona, M.C.; Triboni, E.R.; Nohara, E.L.; Villarreal-Chiu, J.F.; Cedillo-González, E.I. Are you drowned in microplastic pollution? A brief insight on the current knowledge for early career researchers developing novel remediation strategies. Sci. Total Environ. 2024, 918, 170382. [Google Scholar] [CrossRef] [PubMed]
- Birdman, J.; Wiek, A.; Lang, D.J. Developing key competencies in sustainability through project-based learning in graduate sustainability programs. Int. J. Sustain. High. Educ. 2022, 23, 1139–1157. [Google Scholar] [CrossRef]
- Donovan, G.H.; Jovan, S.E.; Gatziolis, D.; Burstyn, I.; Michael, Y.L.; Amacher, M.C.; Monleon, V.J. Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution. Sci. Total Environ. 2016, 559, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Granek, E.; Ervin, D.; Yeakley, A.; Dujon, V.; Shandas, V. A community-engaged approach to transdisciplinary doctoral training in urban ecosystem services. Sustain. Sci. 2020, 15, 699–715. [Google Scholar] [CrossRef]
- O’Rourke, M.; Crowley, S.; Laursen, B.; Robinson, B.; Vasko, S.E. Disciplinary diversity in teams: Integrative approaches from unidisciplinarity to transdisciplinarity. In Strategies for Team Science Success: Handbook of Evidence-Based Principles for Cross-Disciplinary Science and Practical Lessons Learned from Health Researchers; Springer: Cham, Switzerland, 2019; pp. 21–46. [Google Scholar]
- Shrum, W.; Genuth, J.; Chompalov, I. Structures of Scientific Collaboration; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- McKenna, S.A.; Main, D.S. The role and influence of key informants in community-engaged research: A critical perspective. Action Res. 2013, 11, 113–124. [Google Scholar] [CrossRef]
- Chazdon, S.A.; Lott, S. Ready for engagement: Using key informant interviews to measure community social capacity. In Community Visioning Programs; Routledge: New York, NY, USA, 2017; pp. 15–34. [Google Scholar]
- Lobo, J.; Alberti, M.; Allen-Dumas, M.; Bettencourt, L.M.A.; Beukes, A.; Tapia, L.A.B.; Chen, W.-Q.; Dodge, A.; Neal, Z.; Perreira, A.; et al. A convergence research perspective on graduate education for sustainable urban systems science. Nat. Urban Sustain. 2021, 1, 39. [Google Scholar] [CrossRef]
- Granek, E. Microplastics Pollution: Inside Us. Around US. 2025. Available online: https://sites.google.com/pdx.edu/acelab/research-projects/contaminants (accessed on 8 April 2025).
- Liro, M.; Zielonka, A. Towards a geography of plastic fragmentation. Micropl. Nanopl. 2025, 5, 12. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Williams, S.; Nanz, P.; Renn, O. Characteristics, potentials, and challenges of transdisciplinary research. One Earth 2022, 5, 44–61. [Google Scholar] [CrossRef]
- Chang, H.; Roe, B.E.; Erkoc, M.; Foo, K.; Heyman, J.; Sanyal, D.; Banerjee, D.; Rushforth, R.R.; Srinivasan, J. Convergence Research in Sustainable Regional Systems. Unpublished work. 2025. [Google Scholar]
Week (Team Members) | Topic | Class Activities |
---|---|---|
Week 1 (Hydrologist/Educator) | Plastic Production and Lifecycle
| Excel-based plastic footprint |
Week 2 (Biogeochemist/Environ. Eng.) | Earth Systems/Atmosphere and Terrestrial Environment
| Building the plastic cycle |
Week 3 (Marine Ecologist/Environ Eng.) | Coastal and Marine Environments
| Distribution and hotspots of micro- and macro-plastics in waters and organisms |
Week 4 (Environ Social Sci/Hydrologist) | Policy and Practice
| Writing a letter to the legislature |
Field day | Field and laboratory experience—sample collection and processing | Field data collection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.; Granek, E.; Gannon, A.; Wolfand, J.M.; Brahney, J. Convergence Research for Microplastic Pollution at the Watershed Scale. Environments 2025, 12, 187. https://doi.org/10.3390/environments12060187
Chang H, Granek E, Gannon A, Wolfand JM, Brahney J. Convergence Research for Microplastic Pollution at the Watershed Scale. Environments. 2025; 12(6):187. https://doi.org/10.3390/environments12060187
Chicago/Turabian StyleChang, Heejun, Elise Granek, Amanda Gannon, Jordyn M. Wolfand, and Janice Brahney. 2025. "Convergence Research for Microplastic Pollution at the Watershed Scale" Environments 12, no. 6: 187. https://doi.org/10.3390/environments12060187
APA StyleChang, H., Granek, E., Gannon, A., Wolfand, J. M., & Brahney, J. (2025). Convergence Research for Microplastic Pollution at the Watershed Scale. Environments, 12(6), 187. https://doi.org/10.3390/environments12060187