A New Perspective on Regenerative Medicine: Plant-Derived Extracellular Vesicles
Abstract
1. Introduction
2. Biological Characterization of PDEVs
2.1. Biogenesis Pathways of PDEVs
2.2. Classification of PDEVs
2.3. Physicochemical Characterization of PDEVs
2.3.1. Physical Characterization of PDEVs
2.3.2. Biochemical Characterization of PDEVs
3. Extraction, Isolation, and Storage of PDEVs
Separation Technology | Principle | Advantages | Disadvantages | References |
---|---|---|---|---|
Ultracentrifugation | Particle size and density | High purity, simple operation, suitable for the extraction of most PDEVs | Cumbersome, time-consuming, requires specialized ultra-high-speed centrifuges and centrifuge tubes, costly | [36] |
Polymer precipitation | Solubility | High output, simple operation, low cost | Low purity, may have residual impurities | [37] |
Ultrafiltration | Particle size | Simple, low-cost, and time-consuming method | Low purity and pressure may cause damage to PDEVs, susceptible to irreversible clogging of macromolecules | [38] |
Size-exclusion chromatography | Particle size | Higher purity, more structural integrity, more complete retention of relevant physical properties and biological activity | Low output | [39] |
Tangential flow filtration | Particle size | High purity and throughput, suitable for concentration and separation of large samples; more structural integrity of PDEVs | High cost | [40] |
Immunomagnetic bead method | The specific binding between antibody and exosome-specific marker | High output | High-cost and easy-to-destroy exosome structure | [41] |
Microfluidics | Differences in physical and chemical properties | High speed, high sensitivity, low cost | Lower purity, only suitable for the detection of biological indicators | [42] |
4. Applications of PDEVs in Regenerative Medicine
4.1. Application of PDEVs in Promoting Wound Healing and Tissue Repair
4.1.1. Musculoskeletal System Diseases
Osteoarthritis
Osteoporosis
Sarcopenia
4.2. Application of PDEVs in Cardiovascular System Diseases
4.3. Application of PDEVs in Neurodegenerative Diseases
4.4. Application of PDEVs in Cancer
Disease | Source of PDEVs | Treating Diseases | Mechanisms of Treatment | References |
---|---|---|---|---|
Tissue repair and wound healing | Saponaria | Tissue repair | Reduced expression of pro-inflammatory genes promotes blood vessel formation in HUVECs | [46] |
Momordica charantia | Tissue repair | Promotes cell proliferation and inhibits apoptosis | [47] | |
Ginger | Tissue repair | Stimulation of the Wnt/β-catenin signaling pathway leads to an increased population of intestinal epithelial stem cells | [48] | |
Beta vulgaris | Tissue repair | Promotes vasculature-like network and inhibits fibroblast migration | [78] | |
Opuntia ficus-indica Fruit | Healing of a wound | Reduced pro-inflammatory cytokine activity and gene expression | [79] | |
Ginseng | Healing of a wound | Stimulate cell proliferation and migration, express wound healing-related genes, and promote angiogenesis | [80] | |
Pueraria lobata | Healing of a wound | Promote the polarization of M2 macrophages to exert their anti-inflammatory effect | [56] | |
Loquat Leaves | Tissue repair | Inhibit apoptosis of human skin fibroblasts; restore cell migration ability | [81] | |
Lemon | Tissue repair | Reduce fibroblast ROS | [82] | |
Wheat | Healing of a wound | Increase cell migration; reduce cell apoptosis | [83] | |
Cissus quadrangularis | Healing of a wound | Increase the migration ability of natural cells | [58] | |
Musculoskeletal system diseases | Spinach | Osteoarthritis | Increases intracellular ATP and NADPH levels under natural light and improves anabolism in degraded chondrocytes | [51] |
Tomato | Osteoarthritis | Increased expression of key soft markers (ACAN, SOX9, and COMP) and key proteins (COL2 and COLXI) in chondrocytes | [52] | |
Curcumin reinforces mesenchymal stem cells-derived EVs | Osteoarthritis | Significant upregulation of miR-143 and miR-124 expression and downregulation of NF-kB and ROCK1 expression in osteoarthritis cells | [53] | |
Ginseng | Osteoporosis | Inhibit the differentiation of osteoclasts | [45] | |
Pueraria lobata | Osteoporosis | Differentiation of mesenchymal stem cells and C2C12 cells into the osteogenic lineage | [56] | |
Chinese Yam | Osteoporosis | Promote the proliferation, differentiation, and mineralization of osteoblasts | [57] | |
Cissus quadrangularis | Osteoporosis | Promote the proliferation and differentiation of mesenchymal stem cells and C2C12 cells into the osteogenic lineage | [58] | |
Plum | Osteoporosis | Improve osteoblast differentiation and inhibit osteoclast activation | [59] | |
Apple | Osteoporosis | Enhance the osteogenic ability of MC3T3-E1 osteoblasts | [60] | |
Rhizoma Drynariae | Osteoporosis | Potentiated osteogenic differentiation of hBMSCs by targeting ERα | [61] | |
Gouqi | Sarcopenia | Improved cross-sectional area, grip strength, and AMPK/SIRT1/PGC1α pathway expression | [63] | |
Diseases of the cardiovascular system | Carthamus tinctorius L. | Atherosclerosis | Anti-inflammatory effects on ox-LDL-treated HUVECs via the miR166a-3p/CXCL12 pathway | [65] |
Pueraria lobata | Atherosclerosis | Inhibition of NF-κB and NLRP3 activation and suppression of pro-inflammatory and atherogenic gene expression | [56] | |
Carrot | Myocardial infarction | Inhibition of ROS production and suppression of oxidative stress-induced apoptosis in rat embryonic cardiomyocytes | [67] | |
Salvia miltiorrhiza | Myocardial ischemia | Enhancement of human umbilical vein endothelial cell viability and cell migration | [68] | |
Neurodegenerative disease | Carrot | Parkinson’s disease | Inhibition of ROS production and apoptosis in vitro | [67] |
Salvia Hairy Root | Parkinson’s disease | Inhibition of 6-hydroxydopamine autoxidation and pyrroloquinoline quinone formation and apoptosis | [70] | |
Panax notoginseng | Cerebral infarction | Activation of the pI3k/Akt pathway exerts therapeutic effects | [71] | |
Coffee | Liver fibrosis | Inhibition of hepatocellular carcinoma cell proliferation | [72] | |
Cancer | Ginseng | Melanoma | Delaying the progression of B16F10 melanoma under heat-induced conditions | [76] |
Ginger | Colorectal cancer | Inhibit the mRNA expression of TNF-α and cyclin D1 | [77] | |
Tea flower | Breast cancer | Inhibited the tumor growth in breast cancer | [84] | |
Morus nigra L. | Liver cancer | Induced apoptosis in Hepa1–6 cells | [85] |
5. Clinical Trials of PDEVs
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greening, D.W.; Xu, R.; Ji, H.; Tauro, B.J.; Simpson, R.J. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol. Biol. 2015, 1295, 179–209. [Google Scholar] [CrossRef]
- Li, A.; Zhao, Y.; Li, Y.; Jiang, L.; Gu, Y.; Liu, J. Cell-derived biomimetic nanocarriers for targeted cancer therapy: Cell membranes and extracellular vesicles. Drug Deliv. 2021, 28, 1237–1255. [Google Scholar] [CrossRef] [PubMed]
- Cosenza, S.; Ruiz, M.; Toupet, K.; Jorgensen, C.; Noel, D. Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci. Rep. 2017, 7, 16214. [Google Scholar] [CrossRef]
- Woith, E.; Melzig, M.F. Extracellular vesicles from fresh and dried plants—Simultaneous purification and visualization using gel electrophoresis. Int. J. Mol. Sci. 2019, 20, 357. [Google Scholar] [CrossRef]
- An, Q.; van Bel, A.J.; Huckelhoven, R. Do plant cells secrete exosomes derived from multivesicular bodies? Plant Signal. Behav. 2007, 2, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yuan, T.; Dad, H.A.; Shi, M.; Huang, Y.; Jiang, Z.; Peng, L. Plant exosomes as novel nanoplatforms for MicroRNA transfer stimulate neural differentiation of stem cells in vitro and in vivo. Nano Lett. 2021, 21, 8151–8159. [Google Scholar] [CrossRef]
- Cong, M.; Tan, S.; Li, S.; Gao, L.; Huang, L.; Zhang, H.; Qiao, H. Technology insight: Plant-derived vesicles-how far from the clinical biotherapeutics and therapeutic drug carriers? Adv. Drug Deliv. Rev. 2022, 182, 114108. [Google Scholar] [CrossRef]
- Lee, Y.; El Andaloussi, S.; Wood, M.J.A. Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 2012, 21, R125–R134. [Google Scholar] [CrossRef] [PubMed]
- An, Q.; Huckelhoven, R.; Kogel, K.; van Bel, A.J.E. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell. Microbiol. 2006, 8, 1009–1019. [Google Scholar] [CrossRef]
- Alenquer, M.; Amorim, M.J. Exosome biogenesis, regulation, and function in viral infection. Viruses 2015, 7, 5066–5083. [Google Scholar] [CrossRef]
- Hanson, P.I.; Cashikar, A. Multivesicular body morphogenesis. Annu. Rev. Cell Dev. Biol. 2012, 28, 337–362. [Google Scholar] [CrossRef]
- Mathieu, M.; Martin-Jaular, L.; Lavieu, G.; Thery, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 2019, 21, 9–17. [Google Scholar] [CrossRef]
- Shao, M.; Jin, X.; Chen, S.; Yang, N.; Feng, G. Plant-derived extracellular vesicles -a novel clinical anti-inflammatory drug carrier worthy of investigation. Biomed. Pharmacother. 2023, 169, 115904. [Google Scholar] [CrossRef]
- Cui, Y.; Cao, W.; He, Y.; Zhao, Q.; Wakazaki, M.; Zhuang, X.; Gao, J.; Zeng, Y.; Gao, C.; Ding, Y.; et al. A whole-cell electron tomography model of vacuole biogenesis in arabidopsis root cells. Nat. Plants 2019, 5, 95–105. [Google Scholar] [CrossRef]
- Hatsugai, N.; Iwasaki, S.; Tamura, K.; Kondo, M.; Fuji, K.; Ogasawara, K.; Nishimura, M.; Hara-Nishimura, I. A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev. 2009, 23, 2496–2506. [Google Scholar] [CrossRef] [PubMed]
- Duke, L.C.; Cone, A.S.; Sun, L.; Dittmer, D.P.; Meckes, D.G.J.; Tomko, R.J.J. Tetraspanin CD9 alters cellular trafficking and endocytosis of tetraspanin CD63, affecting CD63 packaging into small extracellular vesicles. J. Biol. Chem. 2025, 301, 108255. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Moita, C.; van Niel, G.; Kowal, J.; Vigneron, J.; Benaroch, P.; Manel, N.; Moita, L.F.; Thery, C.; Raposo, G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 2013, 126, 5553–5565. [Google Scholar] [CrossRef] [PubMed]
- Raiborg, C.; Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009, 458, 445–452. [Google Scholar] [CrossRef]
- Baietti, M.F.; Zhang, Z.; Mortier, E.; Melchior, A.; Degeest, G.; Geeraerts, A.; Ivarsson, Y.; Depoortere, F.; Coomans, C.; Vermeiren, E.; et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 2012, 14, 677–685. [Google Scholar] [CrossRef]
- Liegeois, S.; Benedetto, A.; Garnier, J.; Schwab, Y.; Labouesse, M. The v0-ATPase mediates apical secretion of exosomes containing hedgehog-related proteins in caenorhabditis elegans. J. Cell Biol. 2006, 173, 949–961. [Google Scholar] [CrossRef]
- Jensen, W.A. The ultrastructure and histochemistry of the synergids of cotton. Am. J. Bot. 1965, 52, 238–256. [Google Scholar] [CrossRef] [PubMed]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Vaiaki, E.M.; Falasca, M. Comparative analysis of the minimal information for studies of extracellular vesicles guidelines: Advancements and implications for extracellular vesicle research. Semin. Cancer Biol. 2024, 101, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.K.; Mun, J.Y. Sample preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. 2018, 131, 56482. [Google Scholar] [CrossRef]
- Tatischeff, I.; Larquet, E.; Falcon-Perez, J.M.; Turpin, P.; Kruglik, S.G. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and raman tweezers microspectroscopy. J. Extracell. Vesicles 2012, 1, 19179. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, H.; Shi, W.; Chen, L.; Chen, T.; Chen, G.; Wang, W.; Lan, J.; Huang, Z.; Zhang, J.; et al. Aloe derived nanovesicle as a functional carrier for indocyanine green encapsulation and phototherapy. J. Nanobiotechnol. 2021, 19, 439. [Google Scholar] [CrossRef]
- Li, X.; Liang, Z.; Du, J.; Wang, Z.; Mei, S.; Li, Z.; Zhao, Y.; Zhao, D.; Ma, Y.; Ye, J.; et al. Erratum to: Herbal decoctosome is a novel form of medicine. Sci. China Life Sci. 2020, 63, 1428. [Google Scholar] [CrossRef]
- Baruah, H.; Sarma, A.; Basak, D.; Das, M. Exosome: From biology to drug delivery. Drug Deliv. Transl. Res. 2024, 14, 1480–1516. [Google Scholar] [CrossRef]
- You, J.Y.; Kang, S.J.; Rhee, W.J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact. Mater. 2021, 6, 4321–4332. [Google Scholar] [CrossRef]
- Lobb, R.J.; Becker, M.; Wen, S.W.; Wong, C.S.F.; Wiegmans, A.P.; Leimgruber, A.; Moller, A. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 2015, 4, 27031. [Google Scholar] [CrossRef] [PubMed]
- Batrakova, E.V.; Kim, M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 2015, 219, 396–405. [Google Scholar] [CrossRef]
- Kalarikkal, S.P.; Prasad, D.; Kasiappan, R.; Chaudhari, S.R.; Sundaram, G.M. Author correction: A cost-effective polyethylene glycol-based method for the isolation of functional edible nanoparticles from ginger rhizomes. Sci. Rep. 2024, 14, 16145. [Google Scholar] [CrossRef] [PubMed]
- Kocholata, M.; Maly, J.; Martinec, J.; Auer Malinska, H. Plant extracellular vesicles and their potential in human health research, the practical approach. Physiol. Res. 2022, 71, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Leng, Y.; Yang, L.; Zhu, H.; Li, D.; Pan, S.; Yuan, F. Stability of blueberry extracellular vesicles and their gene regulation effects in intestinal caco-2 cells. Biomolecules 2023, 13, 1412. [Google Scholar] [CrossRef]
- Richter, M.; Fuhrmann, K.; Fuhrmann, G. Evaluation of the storage stability of extracellular vesicles. J. Vis. Exp. 2019, 147, e59584. [Google Scholar] [CrossRef]
- Javdani-Mallak, A.; Salahshoori, I. Environmental pollutants and exosomes: A new paradigm in environmental health and disease. Sci. Total Environ. 2024, 925, 171774. [Google Scholar] [CrossRef]
- Jang, J.; Jeong, H.; Jang, E.; Kim, E.; Yoon, Y.; Jang, S.; Jeong, H.; Jang, G. Isolation of high-purity and high-stability exosomes from ginseng. Front. Plant Sci. 2022, 13, 1064412. [Google Scholar] [CrossRef]
- Suharta, S.; Barlian, A.; Hidajah, A.C.; Notobroto, H.B.; Ana, I.D.; Indariani, S.; Wungu, T.D.K.; Wijaya, C.H. Plant-derived exosome-like nanoparticles: A concise review on its extraction methods, content, bioactivities, and potential as functional food ingredient. J. Food Sci. 2021, 86, 2838–2850. [Google Scholar] [CrossRef]
- Gamez-Valero, A.; Monguio-Tortajada, M.; Carreras-Planella, L.; Franquesa, M.L.; Beyer, K.; Borras, F.E. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci. Rep. 2016, 6, 33641. [Google Scholar] [CrossRef]
- Busatto, S.; Vilanilam, G.; Ticer, T.; Lin, W.; Dickson, D.W.; Shapiro, S.; Bergese, P.; Wolfram, J. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells 2018, 7, 273. [Google Scholar] [CrossRef]
- Paterna, A.; Rao, E.; Adamo, G.; Raccosta, S.; Picciotto, S.; Romancino, D.; Noto, R.; Touzet, N.; Bongiovanni, A.; Manno, M. Isolation of extracellular vesicles from microalgae: A renewable and scalable bioprocess. Front. Bioeng. Biotechnol. 2022, 10, 836747. [Google Scholar] [CrossRef]
- Tayebi, M.; Zhou, Y.; Tripathi, P.; Chandramohanadas, R.; Ai, Y. Exosome purification and analysis using a facile microfluidic hydrodynamic trapping device. Anal. Chem. 2020, 92, 10733–10742. [Google Scholar] [CrossRef]
- Chen, N.; Sun, J.; Zhu, Z.; Cribbs, A.P.; Xiao, B. Edible plant-derived nanotherapeutics and nanocarriers: Recent progress and future directions. Expert Opin. Drug Deliv. 2022, 19, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Perut, F.; Roncuzzi, L.; Avnet, S.; Massa, A.; Zini, N.; Sabbadini, S.; Giampieri, F.; Mezzetti, B.; Baldini, N. Strawberry-derived exosome-like nanoparticles prevent oxidative stress in human mesenchymal stromal cells. Biomolecules 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Yoo, J.H.; Kim, J.; Min, S.J.; Heo, D.N.; Kwon, I.K.; Moon, H. Ginseng-derived exosome-like nanovesicles extracted by sucrose gradient ultracentrifugation to inhibit osteoclast differentiation. Nanoscale 2023, 15, 5798–5808. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, J.H. Isolation of aloe saponaria-derived extracellular vesicles and investigation of their potential for chronic wound healing. Pharmaceutics 2022, 14, 1905. [Google Scholar] [CrossRef]
- Cui, W.; Ye, C.; Wang, K.; Yang, X.; Zhu, P.; Hu, K.; Lan, T.; Huang, L.; Wang, W.; Gu, B.; et al. Momordica. Charantia-derived extracellular vesicles-like nanovesicles protect cardiomyocytes against radiation injury via attenuating DNA damage and mitochondria dysfunction. Front. Cardiovasc. Med. 2022, 9, 864188. [Google Scholar] [CrossRef]
- Zhu, H.; He, W. Ginger: A representative material of herb-derived exosome-like nanoparticles. Front. Nutr. 2023, 10, 1223349. [Google Scholar] [CrossRef]
- Mao, X.; Li, T.; Qi, W.; Miao, Z.; Zhu, L.; Zhang, C.; Jin, H.; Pan, H.; Wang, D. Advances in the study of plant-derived extracellular vesicles in the skeletal muscle system. Pharmacol. Res. 2024, 204, 107202. [Google Scholar] [CrossRef]
- Loeser, R.F.; Goldring, S.R.; Scanzello, C.R.; Goldring, M.B. Osteoarthritis: A disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697–1707. [Google Scholar] [CrossRef]
- Chen, P.; Liu, X.; Gu, C.; Zhong, P.; Song, N.; Li, M.; Dai, Z.; Fang, X.; Liu, Z.; Zhang, J.; et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature 2022, 612, 546–554. [Google Scholar] [CrossRef]
- Yildirim, M.; Unsal, N.; Kabatas, B.; Eren, O.; Sahin, F. Effect of solanum lycopersicum and citrus limon-derived exosome-like vesicles on chondrogenic differentiation of adipose-derived stem cells. Appl. Biochem. Biotechnol. 2024, 196, 203–219. [Google Scholar] [CrossRef]
- Qiu, B.; Xu, X.; Yi, P.; Hao, Y. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the mir-124/NF-kb and mir-143/ROCK1/TLR9 signalling pathways. J. Cell. Mol. Med. 2020, 24, 10855–10865. [Google Scholar] [CrossRef]
- Xue, F.; Zhao, Z.; Gu, Y.; Han, J.; Ye, K.; Zhang, Y. 7,8-dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. Elife 2021, 10, e64872. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Yang, J.; Wang, J.; Li, T.; Wang, E.; Zhang, D.; Liu, X.; Zhou, C. The role and applications of extracellular vesicles in osteoporosis. Bone Res. 2024, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Deng, M.; Huang, X.; Xie, D.; Gao, X.; Chen, J.; Shi, Z.; Lu, J.; Lin, H.; Li, P. Pueraria lobata-derived exosome-like nanovesicles alleviate osteoporosis by enhacning autophagy. J. Control. Release 2023, 364, 644–653. [Google Scholar] [CrossRef]
- Hwang, J.; Park, Y.; Kim, H.; Kim, D.; Lee, S.; Lee, C.; Lee, S.; Kim, J.; Lee, S.; Kim, H.M.; et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice. J. Control. Release 2023, 355, 184–198. [Google Scholar] [CrossRef]
- Gupta, R.; Gupta, S.; Gupta, P.; Nussler, A.K.; Kumar, A. Establishing the callus-based isolation of extracellular vesicles from cissus quadrangularis and elucidating their role in osteogenic differentiation. J. Funct. Biomater. 2023, 14, 540. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Kim, H.; Hwang, J.; Eom, J.; Kim, D.; Park, J.; Tae, H.; Lee, S.; Yoo, J.; Kim, J.; et al. Plum-derived exosome-like nanovesicles induce differentiation of osteoblasts and reduction of osteoclast activation. Nutrients 2023, 15, 2107. [Google Scholar] [CrossRef]
- Sim, Y.; Seo, H.; Kim, D.; Lee, S.; Kwon, J.; Kwun, I.; Jung, C.; Kim, J.; Lim, J.; Kim, D.; et al. The effect of apple-derived nanovesicles on the osteoblastogenesis of osteoblastic MC3t3-e1 cells. J. Med. Food 2023, 26, 49–58. [Google Scholar] [CrossRef]
- Zhao, Q.; Feng, J.; Liu, F.; Liang, Q.; Xie, M.; Dong, J.; Zou, Y.; Ye, J.; Liu, G.; Cao, Y.; et al. Rhizoma drynariae-derived nanovesicles reverse osteoporosis by potentiating osteogenic differentiation of human bone marrow mesenchymal stem cells via targeting ERalpha signaling. Acta Pharm. Sin. B 2024, 14, 2210–2227. [Google Scholar] [CrossRef]
- Sayer, A.A.; Cooper, R.; Arai, H.; Cawthon, P.M.; Ntsama Essomba, M.; Fielding, R.A.; Grounds, M.D.; Witham, M.D.; Cruz-Jentoft, A.J. Sarcopenia. Nat. Rev. Dis. Primers 2024, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, S.; Zhang, Z.; Tang, M.; Meng, Z.; Peng, Z.; Liao, Y.; Yang, X.; Nussler, A.K.; Liu, L.; et al. Gouqi-derived nanovesicles (GqDNVs) inhibited dexamethasone-induced muscle atrophy associating with AMPK/SIRT1/PGC1alpha signaling pathway. J. Nanobiotechnol. 2024, 22, 276. [Google Scholar] [CrossRef] [PubMed]
- Zeitouni, M.; Clare, R.M.; Chiswell, K.; Abdulrahim, J.; Shah, N.; Pagidipati, N.P.; Shah, S.H.; Roe, M.T.; Patel, M.R.; Jones, W.S. Risk factor burden and long-term prognosis of patients with premature coronary artery disease. J. Am. Heart Assoc. 2020, 9, e017712. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Lin, F.; Wang, W.; Dai, G.; Ke, X.; Wu, G. Investigating the therapeutic effects and mechanisms of carthamus tinctorius l.-Derived nanovesicles in atherosclerosis treatment. Cell Commun. Signal. 2024, 22, 178. [Google Scholar] [CrossRef]
- Sharma, S.; Mahanty, M.; Rahaman, S.G.; Mukherjee, P.; Dutta, B.; Khan, M.I.; Sankaran, K.R.; He, X.; Kesavalu, L.; Li, W.; et al. Avocado-derived extracellular vesicles loaded with ginkgetin and berberine prevent inflammation and macrophage foam cell formation. J. Cell. Mol. Med. 2024, 28, e18177. [Google Scholar] [CrossRef]
- Kim, D.K.; Rhee, W.J. Antioxidative effects of carrot-derived nanovesicles in cardiomyoblast and neuroblastoma cells. Pharmaceutics 2021, 13, 1203. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, J.; Zhu, Y.; Dong, M.; Wang, J. Establishing salvia miltiorrhiza-derived exosome-like nanoparticles and elucidating their role in angiogenesis. Molecules 2024, 29, 1599. [Google Scholar] [CrossRef]
- Saudou, F.; Humbert, S. The biology of huntingtin. Neuron 2016, 89, 910–926. [Google Scholar] [CrossRef]
- Vestuto, V.; Conte, M.; Vietri, M.; Mensitieri, F.; Santoro, V.; Di Muro, A.; Alfieri, M.; Moros, M.; Miranda, M.R.; Amante, C.; et al. Multiomic profiling and neuroprotective bioactivity of salvia hairy root-derived extracellular vesicles in a cellular model of parkinson’s disease. Int. J. Nanomed. 2024, 19, 9373–9393. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, R.; Wang, A.; Li, Y.; Zhang, M.; Kim, J.; Zhu, Y.; Wang, Q.; Zhang, Y.; Wei, Y.; et al. Panax notoginseng: Derived exosome-like nanoparticles attenuate ischemia reperfusion injury via altering microglia polarization. J. Nanobiotechnol. 2023, 21, 416. [Google Scholar] [CrossRef] [PubMed]
- Kantarcioglu, M.; Yildirim, G.; Akpinar Oktar, P.; Yanbakan, S.; Ozer, Z.B.; Yurtsever Sarica, D.; Tasdelen, S.; Bayrak, E.; Akin Bali, D.F.; Ozturk, S.; et al. Coffee-derived exosome-like nanoparticles: Are they the secret heroes? Turk. J. Gastroenterol. 2023, 34, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; He, D.; Cheng, Y. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine 2021, 80, 153402. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Kaul, S.C.; Wadhwa, R. Cucurbitacin b and cancer intervention: Chemistry, biology and mechanisms (review). Int. J. Oncol. 2018, 52, 19–37. [Google Scholar] [CrossRef]
- Del Pozo-Acebo, L.; Lopez De Las Hazas, M.; Tome-Carneiro, J.; Del Saz-Lara, A.; Gil-Zamorano, J.; Balaguer, L.; Chapado, L.A.; Busto, R.; Visioli, F.; Davalos, A. Therapeutic potential of broccoli-derived extracellular vesicles as nanocarriers of exogenous miRNAs. Pharmacol. Res. 2022, 185, 106472. [Google Scholar] [CrossRef]
- Han, X.; Wei, Q.; Lv, Y.; Weng, L.; Huang, H.; Wei, Q.; Li, M.; Mao, Y.; Hua, D.; Cai, X.; et al. Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Mol. Ther. 2022, 30, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340. [Google Scholar] [CrossRef]
- Mahdipour, E. Beta vulgaris juice contains biologically active exosome-like nanoparticles. Tissue Cell 2022, 76, 101800. [Google Scholar] [CrossRef]
- Valentino, A.; Conte, R.; Bousta, D.; Bekkari, H.; Di Salle, A.; Calarco, A.; Peluso, G. Extracellular vesicles derived from opuntia ficus-indica fruit (OFI-EVs) speed up the normal wound healing processes by modulating cellular responses. Int. J. Mol. Sci. 2024, 25, 7103. [Google Scholar] [CrossRef]
- Yang, S.; Lu, S.; Ren, L.; Bian, S.; Zhao, D.; Liu, M.; Wang, J. Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing. J. Ginseng Res. 2023, 47, 133–143. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Xu, C.; Li, X. Biological activities of extracts from loquat (Eriobotrya japonica Lindl.): A review. Int. J. Mol. Sci. 2016, 17, 1983. [Google Scholar] [CrossRef] [PubMed]
- Urzi, O.; Cafora, M.; Ganji, N.R.; Tinnirello, V.; Gasparro, R.; Raccosta, S.; Manno, M.; Corsale, A.M.; Conigliaro, A.; Pistocchi, A.; et al. Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/nrf2 signaling pathway. iScience 2023, 26, 107041. [Google Scholar] [CrossRef] [PubMed]
- Sui, H.; Wang, F.; Weng, Z.; Song, H.; Fang, Y.; Tang, X.; Shen, X. A wheat germ-derived peptide YDWPGGRN facilitates skin wound-healing processes. Biochem. Biophys. Res. Commun. 2020, 524, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zu, M.; Gong, H.; Ma, Y.; Sun, J.; Ran, S.; Shi, X.; Zhang, J.; Xiao, B. Tea leaf-derived exosome-like nanotherapeutics retard breast tumor growth by pro-apoptosis and microbiota modulation. J. Nanobiotechnol. 2023, 21, 6. [Google Scholar] [CrossRef]
- Gao, Q.; Chen, N.; Li, B.; Zu, M.; Ma, Y.; Xu, H.; Zhu, Z.; Reis, R.L.; Kundu, S.C.; Xiao, B. Natural lipid nanoparticles extracted from Morus nigra L. Leaves for targeted treatment of hepatocellular carcinoma via the oral route. J. Nanobiotechnol. 2024, 22, 4. [Google Scholar] [CrossRef]
- Edible Plant Exosome Ability to Prevent Oral Mucositis Associated with Chemoradiation Treatment of Head and Neck Cancer. ClinicalTrials.gov Identifier (NCT Number): NCT01668849. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT01668849 (accessed on 1 January 2022).
- Study Investigating the Ability of Plant Exosomes to Deliver Curcumin to Normal and Colon Cancer Tissue. ClinicalTrials.gov Identifier (NCT Number): NCT01294072. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT01294072 (accessed on 1 January 2022).
- Wang, F.; Feng, J.; Jin, A.; Shao, Y.; Shen, M.; Ma, J.; Lei, L.; Liu, L. Extracellular Vesicles for Disease Treatment. Int. J. Nanomed. 2025, 20, 3303–3337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Wang, H.; Yin, H.; Bennett, C.; Zhang, H.-g.; Guo, P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci. Rep. 2018, 8, 14644. [Google Scholar] [CrossRef] [PubMed]
PDEVs | Disease | Clinical Phase | Outcome | References |
---|---|---|---|---|
Grape-derived EVs | Head and neck cancer | Phase I | Effectiveness of grape-derived EVs in reducing oral mucositis in patients undergoing chemoradiotherapy for head and neck cancer. | [86] |
Curcumin | Colon cancer tissue | Phase I | Delivery of Curcumin to Normal and Colon Cancer Tissues by PDEVs. | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Y.; Zhang, J.; Sun, B.; Wang, X.; Wang, R.; Tian, S.; Miao, M. A New Perspective on Regenerative Medicine: Plant-Derived Extracellular Vesicles. Biomolecules 2025, 15, 1095. https://doi.org/10.3390/biom15081095
Zuo Y, Zhang J, Sun B, Wang X, Wang R, Tian S, Miao M. A New Perspective on Regenerative Medicine: Plant-Derived Extracellular Vesicles. Biomolecules. 2025; 15(8):1095. https://doi.org/10.3390/biom15081095
Chicago/Turabian StyleZuo, Yuan, Jinying Zhang, Bo Sun, Xinxing Wang, Ruiying Wang, Shuo Tian, and Mingsan Miao. 2025. "A New Perspective on Regenerative Medicine: Plant-Derived Extracellular Vesicles" Biomolecules 15, no. 8: 1095. https://doi.org/10.3390/biom15081095
APA StyleZuo, Y., Zhang, J., Sun, B., Wang, X., Wang, R., Tian, S., & Miao, M. (2025). A New Perspective on Regenerative Medicine: Plant-Derived Extracellular Vesicles. Biomolecules, 15(8), 1095. https://doi.org/10.3390/biom15081095