Metallothionein and Other Factors Influencing Cadmium-Induced Kidney Dysfunction: Review and Commentary
Abstract
1. Introduction
2. Role of Metallothioneins in Modifying the Toxicity of Cadmium
2.1. Cd Uptake
2.2. Cd Transport in Blood, Uptake in Tissues, and Distribution Among Organs
2.3. Metallothionein and Kidney Toxicity of Cadmium
3. Metallothionein-Related Biomarkers in Epidemiological Studies
3.1. Metallothionein-Related Biomarkers of Susceptibility to Cd Toxicity
3.2. Urinary Metallothionein as Biomarker in Epidemiological Studies
4. Other Factors Influencing Cadmium-Induced Kidney Dysfunction
4.1. Decreased Exposure
4.2. Zinc Status
4.3. Arsenic
5. Data Used by National and International Organizations
6. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landrigan, P.; Bose-O’Reilly, S.; Elbel, J.; Nordberg, G.; Lucchini, R.; Bartrem, C.; Grandjean, P.; Mergler, D.; Moyo, D.; Nemery, B.; et al. Reducing Disease and Death from Artisanal and Small-Scale Mining (ASM)—The urgent need for responsible mining in the context of growing global demand for minerals and metals for climate change mitigation. Environ. Health 2022, 21, 78. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F.; Bernard, A.; Diamond, G.; Duffus, J.H.; Illing, P.; Nordberg, M.; Bergdahl, I.A.; Jin, T.; Skerfving, S. Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure Appl. Chem. 2018, 90, 755–808. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Akesson, A.; Nogawa, K.; Nordberg, M. Chapter 7 Volume II Cadmium. In Handbook on the Toxicology of Metals, 5th ed.; Nordberg, G.F., Costa, M., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: London, UK, 2022; pp. 141–196. [Google Scholar]
- EFSA Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551. [CrossRef]
- ECHA 2020 European Chemicals Agency: Scientific report for evaluation of limit values for cadmium and its inorganic compounds at the workplace. Available online: https://echa.europa.eu (accessed on 23 July 2025).
- WHO World Health Organization. Environmental and Occupational Health Hazards Associated with Artisanal and Small-Scale Gold Mining: World Health Organization. Available online: https://apps.who.int/iris/handle/10665/247195 (accessed on 23 July 2025).
- Yabe, J.; Nakayama, S.M.M.; Ikenaka, Y.; Yohannes, Y.B.; Bortey-Sam, N.; Kabalo, A.N.; Ntapisha, J.; Mizukawa, H.; Umemura, T.; Ishizuka, M. Lead and cadmium excretion in feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia. Chemosphere 2018, 202, 48–55. [Google Scholar] [CrossRef] [PubMed]
- IARC International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100C: Arsenic, Metals, Fibres, and Dusts; IARC: Lyon, France, 2012; ISBN 978-92-832-1320-8. [Google Scholar]
- Winge, D.R.; Miklossy, K.A. Domain nature of metallothionein. J. Biol. Chem. 1982, 257, 3471–3476. [Google Scholar] [CrossRef]
- Krężel, A.; Maret, W. The Bioinorganic Chemistry of Mammalian Metallothioneins. Chem. Rev. 2021, 121, 14594–14648. [Google Scholar] [CrossRef]
- Margoshes, M.; Vallee, B.L. A cadmium protein from equine kidney cortex. J. Am. Chem. Soc. 1957, 79, 4813–4814. [Google Scholar] [CrossRef]
- Kägi, J.H.; Vallee, B.L. Metallothionein: A Cadmium- and Zinc-containing Protein from Equine Renal Cortex. J. Biol. Chem. 1960, 235, 3460–3465. [Google Scholar] [CrossRef]
- Aschner, M. The functional significance of brain metallothioneins. FASEB J. 1996, 10, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Palumaa, P.; Eriste, E.; Njunkova, O.; Pokras, L.; Jörnvall, H.; Sillard, R. Brain-specific metallothionein-3 has higher metal-binding capacity than ubiquitous metallothioneins and binds metals noncooperatively. Biochemistry 2002, 41, 6158–6163. [Google Scholar] [CrossRef] [PubMed]
- Quaife, C.J.; Findley, S.D.; Erickson, J.C.; Froelick, G.J.; Kelly, E.J.; Zambrowicz, B.P.; Palmiter, R.D. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 1994, 33, 7250–7259. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, M.; Nordberg, G.F. Metallothionein and Cadmium Toxicology-Historical Review and Commentary. Biomolecules 2022, 12, 360. [Google Scholar] [CrossRef]
- Järup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Illing, A.C.; Shawki, A.; Cunningham, C.L.; Mackenzie, B. Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J. Biol. Chem. 2012, 287, 30485–30496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kikuchi, Y.; Nomiyama, T.; Kumagai, N.; Dekio, F.; Uemura, T.; Takebayashi, T.; Nishiwaki, Y.; Matsumoto, Y.; Sano, Y.; Hosoda, K.; et al. Uptake of cadmium in meals from the digestive tract of young non-smoking Japanese female volunteers. J. Occup. Health 2003, 45, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Ohba, K. Involvement of metal transporters in the intestinal uptake of cadmium. J. Toxicol. Sci. 2020, 45, 539–548. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Klaassen, C.D. Metallothionein-null and wild-type mice show similar cadmium absorption and tissue distribution following oral cadmium administration. Toxicol. Appl. Pharmacol. 2001, 175, 253–259. [Google Scholar] [CrossRef]
- Cherian, M.G.; Goyer, R.A.; Valberg, L.S. Gastrointestinal absorption and organ distribution of oral cadmium chloride and cadmium-metallothionein in mice. J. Toxicol. Environ. Health 1978, 4, 861–868. [Google Scholar] [CrossRef]
- Kenaga, C.; Cherian, M.G.; Cox, C.; Oberdörster, G. Metallothionein induction and pulmonary responses to inhaled cadmium chloride in rats and mice. Fundam. Appl. Toxicol. 1996, 30, 204–212. [Google Scholar] [CrossRef]
- Nordberg, M.; Nordberg, G.F. Distribution of metallothionein-bound cadmium and cadmium chloride in mice. Environ. Health Perspect. 1975, 12, 103–108. [Google Scholar] [CrossRef]
- Nordberg, M. Studies on metallothionein and cadmium. Environ. Res. 1978, 15, 381–404. [Google Scholar] [CrossRef]
- Johnson, D.R.; Foulkes, E.C. On the proposed role of metallothionein in the transport of cadmium. Environ. Res. 1980, 21, 360–365. [Google Scholar] [CrossRef]
- Fels, J.; Scharner, B.; Zarbock, R.; Zavala Guevara, I.P.; Lee, W.K.; Barbier, O.C.; Thévenod, F. Cadmium complexed with β2-microglobulin, albumin and lipocalin-2 rather than metallothionein cause megalin:cubilin dependent toxicity of the renal proximal tubule. Int. J. Mol. Sci. 2019, 20, 2379. [Google Scholar] [CrossRef]
- Thévenod, F.; Herbrechter, R.; Schlabs, C.; Pethe, A.; Lee, W.K.; Wolff, N.A.; Roussa, E. Role of the SLC22A17/lipocalin-2 receptor in renal endocytosis of proteins/metalloproteins: A focus on iron- and cadmium-binding proteins. Am. J. Physiol. Renal Physiol. 2023, 325, F564–F577. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Michelska, A.E. Distribution and retention of cadmium in metallothionein I and II null mice. Toxicol. Appl. Pharmacol. 1996, 136, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Gunn, S.A.; Gould, T.C. Selective accumulation of Cd115 by cortex of rat kidney. Proc. Soc. Exp. Biol. Med. 1957, 96, 820–823. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Habeebu, S.S.; Klaassen, C.D. Susceptibility of MT-Null Mice to Chronic CdCl2-Induced Nephrotoxicity Indicates That Renal Injury Is Not Mediated by the CdMT Complex. Toxicol. Sci. 1998, 46, 197–203. [Google Scholar]
- Dorian, C.; Gattone, V.H., 2nd; Klaasen, C.D. Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein (CdMT) by the proximal convoluted tubules--A light microscopic autoradiography study with 109CdMT. Toxicol. Appl. Pharmacol. 1992, 114, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Dorian, C.; Gattone, V.H., 2nd; Klaassen, C.D. Accumulation and degradation of the protein moiety of cadmium-metallothionein (CdMT) in the mouse kidney. Toxicol. Appl. Pharmacol. 1992, 117, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Shaikh, Z.A. Renal cortical mitochondrial dysfunction upon cadmium metallothionein administration to Sprague-Dawley rats. J. Toxicol. Environ. Health A 2001, 63, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Sudo, J.; Hayashi, T.; Terui, J.; Soyama, M.; Fukata, M.; Kakuno, K. Kinetics of Cd2+ in plasma, liver and kidneys after single intravenous injection of Cd-metallothionein-II. Eur. J. Pharmacol. 1994, 270, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Onodera, A.; Tani, M.; Michigami, T.; Yamagata, M.; Min, K.S.; Tanaka, K.; Nakanishi, T.; Kimura, T.; Itoh, N. Role of megalin and the soluble form of its ligand RAP in Cd-metallothionein endocytosis and Cd-metallothionein-induced nephrotoxicity In Vivo. Toxicol. Lett. 2012, 212, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Sabolić, I.; Breljak, D.; Skarica, M.; Herak-Kramberger, C.M. Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 2010, 23, 897–926. [Google Scholar] [CrossRef]
- Thévenod, F.; Wolff, N.A. Iron transport in the kidney: Implications for physiology and cadmium nephrotoxicity. Metallomics 2016, 8, 17–42. [Google Scholar] [CrossRef]
- Norden, A.G.; Sharratt, P.; Cutillas, P.R.; Cramer, R.; Gardner, S.C.; Unwin, R.J. Quantitative amino acid and proteomic analysis: Very low excretion of polypeptides > 750 Da in normal urine. Kidney Int. 2004, 66, 1994–2003. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Okamoto, R.; Sun, X.L.; Kido, T.; Nogawa, K.; Suwazono, Y.; Nakagawa, H.; Sakurai, M. Association between urinary metallothionein concentration and causes of death among cadmium-exposed residents in Japan: A 35-year follow-up study. Environ. Health Prev. Med. 2025, 30, 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Phelps, K.R. The pathogenesis of albuminuria in cadmium nephropathy. Curr. Res. Toxicol. 2024, 6, 100140. [Google Scholar]
- Li, Y.; Huang, Y.S.; He, B.; Liu, R.; Qu, G.; Yin, Y.; Shi, J.; Hu, L.; Jiang, G. Cadmium-binding proteins in human blood plasma. Ecotoxicol. Environ. Saf. 2020, 188, 109896. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Garvey, J.S.; Chang, C.C. Metallothionein in plasma and urine of cadmium workers. Environ. Res. 1982, 28, 179–182. [Google Scholar] [CrossRef]
- Nakajima, K.; Kodaira, T.; Kato, M.; Nakazato, K.; Tokita, Y.; Kikuchi, H.; Sekine, H.; Suzuki, K.; Nagamine, T. Development of an enzyme-linked immunosorbent assay for metallothionein-I and -II in plasma of humans and experimental animals. Clin. Chim. Acta 2010, 411, 758–761. [Google Scholar] [CrossRef]
- Milnerowicz, H.; Bizoń, A. Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta. Biochim. Pol. 2010, 57, 99–104. [Google Scholar] [CrossRef]
- Chen, L.; Jin, T.; Huang, B.; Nordberg, G.; Nordberg, M. Critical exposure level of cadmium for elevated urinary metallothionein—An occupational population study in China. Toxicol. Appl. Pharmacol. 2006, 215, 93–99. [Google Scholar] [CrossRef]
- Roles, H.; Lauwerys, R.; Buchet, J.P.; Bernard, A.; Garvey, J.S.; Linton, H.J. Significance of urinary metallothionein in workers exposed to cadmium. Int. Arch. Occup. Environ. Health 1983, 52, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Tohyama, C.; Shaikh, Z.A.; Nogawa, K.; Kobayashi, E.; Honda, R. Elevated urinary excretion of metallothionein due to environmental cadmium exposure. Toxicology 1981, 20, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F. Chelating Agents and Cadmium Toxicity—Problems and Prospects. Environ. Health Perspect. 1984, 54, 213–218. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Goyer, R.; Nordberg, M. Comparative toxicity of cadmium-metallothionein and cadmium chloride on mouse kidney. Arch. Pathol. 1975, 99, 192–197. [Google Scholar] [PubMed]
- Squibb, K.S.; Ridlington, J.W.; Carmichael, N.G.; Fowler, B.A. Early cellular effects of circulating cadmium-thionein on kidney proximal tubules. Environ. Health Perspect. 1979, 28, 287–296. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Squibb, K.S.; Pritchard, J.B.; Fowler, B.A. Cadmium-Metallothionein nephropathy: Relationships between ultrastructural/biochemical alterations and intracellular cadmium binding. J. Pharmacol. Exp. Ther. 1984, 229, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Tohyama, C.; Sano, K.; Kawamura, R.; Kubota, K. Autoradiographical studies on the localization of metallothionein in proximal tubular cells of the rat kidney. Arch. Toxicol. 1983, 53, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Cain, K.; Webb, M. Cadmium-metallothionein-induced nephropathy: A morphological and autoradiographic study of cadmium distribution, the development of tubular damage and subsequent cell regeneration. J. Appl. Toxicol. 1983, 3, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F.; Jin, T.; Nordberg, M. Subcellular targets of cadmium nephrotoxicity: Cadmium binding to renal membrane proteins in animals with or without protective metallothionein synthesis. Environ. Health Perspect. 1994, 102, 191–194. [Google Scholar]
- Liu, J.; Klaassen, C.D. Absorption and Distribution of Cadmium in Metallothionein-I Transgenic Mice. Toxicol. Sci. 1996, 29, 294–300. [Google Scholar] [CrossRef]
- Elinder, C.G.; Nordberg, M.; Palm, B.; Björck, L.; Jönsson, L. Cadmium, zinc and copper in kidney metallothionein—Relation to kidney toxicity. Environ. Res. 1987, 42, 553–562. [Google Scholar] [CrossRef]
- Fowler, B.A.; Nordberg, G.F. The renal toxicity of cadmium metallothionein: Morphometric and X-ray microanalytical studies. Toxicol. Appl. Pharmacol. 1978, 46, 609–623. [Google Scholar] [CrossRef]
- Cirovic, A.; Cirovic, A.; Yimthiang, S.; Vesey, D.A.; Satarug, S. Modulation of Adverse Health Effects of Environmental Cadmium Exposure by Zinc and Its Transporters. Biomolecules 2024, 14, 650. [Google Scholar] [CrossRef]
- Klaassen, C.D.; Liu, J.; Diwan, B.A. Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharmacol. 2009, 238, 215–220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cai, S.W.; Yue, L.; Hu, Z.N.; Zhong, X.Z.; Ye, Z.L.; Xu, H.D.; Liu, Y.R.; Ji, R.D.; Zhang, W.H.; Zhang, F.Y. Cadmium exposure and health effects among residents in an irrigation area with ore dressing wastewater. Sci. Total Environ. 1990, 90, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Yue, L.; Shang, Q.; Nordberg, G. Cadmium exposure among residents in an area contaminated by irrigation water in China. Bull. World Health Organ. 1995, 73, 359–367. [Google Scholar] [PubMed] [PubMed Central]
- Cai, S.; Yue, L.; Jin, T.; Nordberg, G. Renal dysfunction from cadmium contamination of irrigation water: Dose-response analysis in a Chinese population. Bull. World Health Organ. 1998, 76, 153–159. [Google Scholar] [PubMed] [PubMed Central]
- Nordberg, M.; Nordberg, G.; Jin, T. Editorial: Health impacts of cadmium exposure and its prevention. BioMetals 2004, 17, 483–484. [Google Scholar]
- Zhu, G.; Wang, H.; Shi, Y.; Weng, S.; Jin, T.; Kong, Q.; Nordberg, G.F. Environmental cadmium exposure and forearm bone density. Biometals 2004, 17, 499–503. [Google Scholar] [CrossRef]
- Zeng, X.; Jin, T.; Jiang, X.; Kong, Q.; Ye, T.; Nordberg, G.F. Effects on the prostate of environmental cadmium exposure--a cross-sectional population study in China. Biometals 2004, 17, 559–565. [Google Scholar] [CrossRef]
- Jin, T.; Kong, Q.; Ye, T.; Wu, X.; Nordberg, G.F. Renal dysfunction of cadmium-exposed workers residing in a cadmium-polluted environment. Biometals 2004, 17, 513–518. [Google Scholar] [CrossRef]
- Jin, T.; Wu, X.; Tang, Y.; Nordberg, M.; Bernard, A.; Ye, T.; Kong, Q.; Lundstrom, N.G.; Nordberg, G.F. Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China. Biometals 2004, 17, 525–530. [Google Scholar] [CrossRef]
- Lu, J.; Jin, T.; Nordberg, G.; Nordberg, M. Metallothionein gene expression in peripheral lymphocytes from cadmium-exposed workers. Cell Stress Chaperones 2001, 6, 97–104. [Google Scholar] [CrossRef]
- Lu, J.; Jin, T.; Nordberg, G.F.; Nordberg, M. The application of metallothionein (MT) gene expression in peripheral blood lymphocytes (PBLs) as a biomarker of cadmium exposure. BioMetals 2004, 17, 569–570. [Google Scholar] [CrossRef]
- Hildebrand, C.E.; Cram, L.S. Distribution of cadmium in human blood cultured in low levels of CdCl2: Accumulation of cadmium in lymphocytes and preferential binding to metallothionein. Proc. Soc. Exp. Biol. Med. 1979, 161, 438–443. [Google Scholar] [CrossRef]
- Harley, C.B.; Menon, C.R.; Rachubinski, R.A.; Nieboer, E. Metallothionein mRNA and protein induction by cadmium in peripheral blood leucocytes. Biochem. J. 1989, 262, 873–879. [Google Scholar] [CrossRef]
- Lu, J.; Jin, T.; Nordberg, G.; Nordberg, M. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium. Toxicol. Appl. Pharmacol. 2005, 206, 150–156. [Google Scholar] [CrossRef]
- Chang, X.; Jin, T.; Chen, L.; Nordberg, M.; Lei, L. Metallothionein I isoform mRNA expression in peripheral lymphocytes as a biomarker for occupational Cadmium exposure. J. Exp. Biol. Med. 2009, 234, 666–672. [Google Scholar] [CrossRef]
- Chen, L.; Lei, L.; Jin, T.; Nordberg, M.; Nordberg, G.F. Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population. Diabetes Care 2006, 29, 2682–2687. [Google Scholar] [CrossRef]
- Shaikh, Z.A.; Tohyama, C. Urinary Metallothionein as an Indicator of Cadmium Body Burden and of Cadmium-Induced Nephrotoxicity. Environ. Health Perspect. 1984, 54, 171–174. [Google Scholar] [CrossRef]
- Prozialeck, W.C.; Edwards, J.R. Early biomarkers of cadmium exposure and nephrotoxicity. Biometals 2010, 23, 793–809. [Google Scholar] [CrossRef] [PubMed]
- Tohyama, C.; Shaikh, Z.A.; Nogawa, K.; Kobayashi, E.; Honda, R. Urinary metallothionein as a new index of renal dysfunction in "Itai-Itai" disease patients and other Japanese women environmentally exposed to cadmium. Arch. Toxicol. 1982, 50, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F.; Jin, T.; Kong, Q.; Ye, T.; Cai, S.; Wang, Z.; Zhuang, F.; Wu, X. Biological monitoring of cadmium exposure and renal effects in a population group residing in a polluted area in China. Sci. Total Environ. 1997, 199, 111–114. [Google Scholar] [CrossRef]
- Jin, T.; Nordberg, M.; Frech, W.; Dumont, X.; Bernard, A.; Ye, T.; Kong, Q.; Wang, Z.; Li, P.; Lundström, N.-G.; et al. Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). BioMetals 2002, 15, 397–410. [Google Scholar] [CrossRef]
- Liang, Y.; Lei, L.; Nilsson, J.; Li, H.; Nordberg, M.; Bernard, A.; Nordberg, G.F.; Bergdahl, I.A.; Jin, T. Renal Function after Reduction in Cadmium Exposure: An 8-Year Follow-up of Residents in Cadmium-Polluted Areas. Environ. Health Perspect. 2012, 120, 223–228. [Google Scholar] [CrossRef]
- Järup, L.; Berglund, M.; Elinder, C.G.; Nordberg, G.; Vahter, M. Health effects of cadmium exposure—Review of the literature and a risk estimate. Scand J. Work Environ. Health 1998, 24 (Suppl S1), 1–51. [Google Scholar]
- Zhang, W.L.; Yu, D.; Zhai, M.M.; Qi, S. Cadmium Exposure and Its Health Effects: A 19-Year Follow-Up Study of a Polluted Area in China. Sci. Total Environ. 2014, 470–471, 224–228. [Google Scholar] [CrossRef]
- Bernard, A.; Lauwerys, R.; Amor, A.O. Loss of glomerular polyanion correlated with albuminuria in experimental cadmium nephropathy. Arch. Toxicol. 1992, 66, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Bernard, A.M.; Amor, A.O.; Lauwerys, R.R. Decrease of erythrocyte and glomerular membrane negative charges in chronic cadmium poisoning. Br. J. Ind. Med. 1988, 45, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, A.; Bernard, A.M.; Lauwerys, R.R. Disturbance of sialic acid metabolism by chronic cadmium exposure and its relation to proteinuria. Toxicol. Appl. Pharmacol. 1991, 108, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Hotz, P.; Buchet, J.P.; Bernard, A.; Lison, D.; Lauwerys, R. Renal effects of low-level environmental cadmium exposure: 5-year follow-up of a subcohort from the Cadmibel study. Lancet 1999, 354, 1508–1513. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F.; Gerhardsson, L.; Mumtaz, M.; Ruiz, P.; Fowler, B.A. Chapter 14-Interactions and mixtures in metal toxicology. In Handbook on the Toxicology of Metals, 5th ed.; Nordberg, G.F., Costa, M., Eds.; Academic Press/Elsevier: Amsterdam, The Netherlands, 2022; Volume I. [Google Scholar]
- Luo, T.; Song, S.; Wang, S.; Jiang, S.; Zhou, B.; Song, Q.; Shen, L.; Wang, X.; Song, H.; Shao, C. Mechanistic insights into cadmium-induced nephrotoxicity: NRF2-Driven HO-1 activation promotes ferroptosis via iron overload and oxidative stress in vitro. Free Radic. Biol. Med. 2025, 235, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Z.; Zhu, G.; Nordberg, G.F.; Ding, X.; Jin, T. The Association Between Renal Tubular Dysfunction and Zinc Level in a Chinese Population Environmentally Exposed to Cadmium. Biol. Trace Elem. Res. 2018, 186, 114–121. [Google Scholar] [CrossRef]
- Lin, Y.S.; Ho, W.C.; Caffrey, J.L.; Sonawane, B. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity. Environ. Res. 2014, 134, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Shih, H.M.; Wu, P.C.; Pan, C.F.; Lin, Y.H.; Wu, C.J. Plasma selenium and zinc alter associations between nephrotoxic metals and chronic kidney disease: Results from NHANES database 2011–2018. Ann. Acad. Med. Singap. 2023, 52, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Lopez, D.; Rodgers, A.; Murray, C. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Belay, A.; Gashu, D.; Joy, E.J.M.; Lark, R.M.; Chagumaira, C.; Likoswe, B.H.; Zerfu, D.; Ander, E.L.; Young, S.D.; Bailey, E.H.; et al. Zinc deficiency is highly prevalent and spatially dependent over short distances in Ethiopia. Sci. Rep. 2021, 11, 6510. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization (WHO). Arsenic and Arsenic Compounds. Environmental Health Criteria no 224; World Health Organization: Geneva, Switzerland, 2001. Available online: www.who.int (accessed on 23 July 2025).
- World Health Organization (WHO). Arsenic. Available online: https://www.who.int/news-room/fact-sheets/detail/arsenic (accessed on 7 December 2022).
- Berg, M.; Tran, H.C.; Nguyen, T.C.; Pham, H.V.; Schertenleib, R.; Giger, W. Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environ. Sci. Technol. 2001, 35, 2621–2626. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, J.; Berg, M. Global threat of arsenic in groundwater. Science 2020, 368, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Jin, T.; Zhang, A. Risk assessment on renal dysfunction caused by co-exposure to arsenic and cadmium using benchmark dose calculation in a Chinese population. Biometals 2004, 17, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, G.F.; Jin, T.; Hong, F.; Zhang, A.; Buchet, J.P.; Bernard, A. Biomarkers of cadmium and arsenic interactions. Toxicol. Appl. Pharmacol. 2005, 206, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Buchet, J.P.; Heilier, J.F.; Bernard, A.; Lison, D.; Jin, T.; Wu, X.; Kong, Q.; Nordberg, G. Urinary protein excretion in humans exposed to arsenic and cadmium. Int. Arch. Occup. Environ. Health 2003, 76, 111–120. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Habeebu, S.M.; Waalkes, P.; Klaassen, C.D. Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionenin -I/II null mice. Toxicolpgy 2000, 147, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.P.; Mazzella, M.J.; Malin, A.J.; Hair, G.M.; Busgang, S.A.; Saland, J.M.; Curtin, P. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12–19 in NHANES 2009–2014. Environ. Int. 2019, 131, 104993. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, Y.; Meng, W.; Kuang, H.; Chen, X.; Zhu, X.; Wang, L.; Tan, H.; Xu, Y.; Ding, P.; Xiang, M.; et al. Association of urinary exposure to multiple metal(loid)s with kidney function from a national cross-sectional study. Sci. Total Environ. 2023, 882, 163100. [Google Scholar] [CrossRef] [PubMed]
- WHO/IPCS. Cadmium—Environmental Health Criteria. WHO: Geneva, Switzerland, 1992; Volume 134, pp. 1–280. [Google Scholar]
- Kjellstrom, T.; Nordberg, G.F. A kinetic model of cadmium metabolism in the human being. Environ. Res. 1978, 16, 248–269. [Google Scholar] [CrossRef]
- Choudhury, H.; Harvey, T.; Thayer, W.C.; Lockwood, T.F.; Stiteler, W.M.; Goodrum, P.E.; Hassett, J.M.; Diamond, G.L. Urinary cadmium elimination as a biomarker of exposure for evaluating a cadmium dietary exposure-Biokinetics model. J. Toxicol. Environ. Health Part A 2001, 63, 321–350. [Google Scholar] [CrossRef]
- Diamond, G.L.; Thayer, W.C.; Choudhury, H. Pharmacokinetics/pharmacodynamics (PK/PD) modeling of risks of kidney toxicity from exposure to cadmium: Estimates of dietary risks in the U.S. population. J. Toxicol. Environ. Health Part A 2003, 66, 2141–2164. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA; U.S. Department of Health and Human Services: Washington, DC, USA, 2012; pp. 1–430. [Google Scholar]
Characteristic/Indicator | Nonpolluted | Moderately Polluted | Highly Polluted | |||
---|---|---|---|---|---|---|
1998 | 2006 | 1998 | 2006 | 1998 | 2006 | |
n (% male) | 91 (36.8) | 131 (33.6) | 190 (33.0) | |||
Median age (years) in 1998 | 53.0 | 46 | 46.5 | |||
BCd (µg/L) | 1.31 (0.75–2.19) | 0.87 (0.57–1.46) * | 3.78 (2.50–6.50) | 1.80 (1.27–2.75) * | 8.90 (4.97–13.6) | 3.31 (2.25–5.15) * |
UCd (µg/g creatinine) | 1.79 (1.07–3.63) | 2.31 (1.42–3.84) | 3.62 (2.52–6.05) | 3.79 (2.66–6.13) | 11.6 (7.61–18.7) | 8.97 (5.87–13.1) * |
NAG (U/g creatinine) | 1.80 (0.89–3.99) | 7.92 (5.65–10.7) * | 4.12 (2.02–11.3) | 8.15 (5.77–10.7) * | 7.64 (4.44–14.2) | 11.8 (7.25–17.8) * |
β2-Microglobulin (mg/g creatinine) | 0.12 (0.07–0.24) | 0.16 (0.09–0.26) | 0.16 (0.10–0.31) | 0.28 (0.17–0.44) * | 0.28 (0.14–0.50) | 0.42 (0.20–0.79) * |
Albumin (mg/g creatinine) | 3.08 (1.40–6.40) | 2.84 (1.13–4.71) * | 4.47 (2.10–9.30) | 3.83 (1.33–9.44) | 5.38 (2.48–11.9) | 3.22 (1.28–7.22) * |
n | Odds Ratio (95% CI) | ||
---|---|---|---|
UCd (µg/g cr) | 84 | Reference (<3.6) | 1 |
82 | 3.6–8.7 | 1.32 (0.56–3.16) | |
81 | 8.7–16.9 | 2.83 (1.26–6.36) | |
84 | ≥16.9 | 4.29 (1.93–9.56) | |
BCd (µg/L) | 83 | Reference (<1.85) | 1 |
83 | 1.85–7.34 | 1.46 (0.51–4.14) | |
83 | 7.34–14.89 | 6.30 (2.51–16.11) | |
82 | ≥14.89 | 10.42 (4.14–26.21) | |
Zn/Cd | 83 | Reference (<100.0) | 1 |
88 | 100.0–200.0 | 0.47 (0.24–0.89) | |
81 | 200.0–600.0 | 0.16 (0.07–0.36) | |
79 | ≥600.0 | 0.06 (0.02–0.16) | |
SZn (mg/L) | 111 | Reference (<1.14) | 1 |
171 | 1.14–1.62 | 0.66 (0.39–1.14) | |
49 | ≥1.62 | 0.38 (0.12–1.23) | |
HZn (mg/g) | 42 | Reference (<0.12) | 1 |
48 | 0.12–0.14 | 0.57 (0.18–1.83) | |
58 | ≥0.14 | 0.12 (0.03–0.49) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nordberg, G.F.; Nordberg, M. Metallothionein and Other Factors Influencing Cadmium-Induced Kidney Dysfunction: Review and Commentary. Biomolecules 2025, 15, 1083. https://doi.org/10.3390/biom15081083
Nordberg GF, Nordberg M. Metallothionein and Other Factors Influencing Cadmium-Induced Kidney Dysfunction: Review and Commentary. Biomolecules. 2025; 15(8):1083. https://doi.org/10.3390/biom15081083
Chicago/Turabian StyleNordberg, Gunnar F., and Monica Nordberg. 2025. "Metallothionein and Other Factors Influencing Cadmium-Induced Kidney Dysfunction: Review and Commentary" Biomolecules 15, no. 8: 1083. https://doi.org/10.3390/biom15081083
APA StyleNordberg, G. F., & Nordberg, M. (2025). Metallothionein and Other Factors Influencing Cadmium-Induced Kidney Dysfunction: Review and Commentary. Biomolecules, 15(8), 1083. https://doi.org/10.3390/biom15081083