Artesunate Ameliorates SLE Atherosclerosis Through PPARγ-Driven Cholesterol Efflux Restoration and Disruption of Lipid Raft-Organized TLR9/MyD88 Signaling Pathway
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Urine Protein Analysis
2.3. Enzyme-Linked Immunosorbent Assay
2.4. Renal Histology Assay
2.5. Atherosclerotic Lesions
2.6. Cell Culture
2.6.1. Mouse Macrophage Cell Line
2.6.2. Bone Marrow-Derived Macrophages
2.7. Transfection of Small Interfering RNAs
2.8. Cell Counting Kit 8 (CCK8) Assay
2.9. Immunohistochemistry (IHC) Analysis
2.10. Network Pharmacology Analysis
2.11. RT-qPCR Analysis
2.12. Western Blot Analysis
2.13. Statistical Analysis
3. Results
3.1. ART Attenuates Lupus-like Manifestations in Pristane-Treated ApoE-/- Mice
3.2. ART Attenuated Atherosclerotic Plaque Formation in SLE-AS Mice
3.3. ART Suppressed Kidney Inflammation in SLE-AS Mice
3.4. ART Inhibited Macrophage Foam Cell Accumulation and Induced Cholesterol Efflux in MDFC In Vivo and In Vitro
3.5. ART Inhibited TLR9 Recruitment to Lipid Rafts and Suppressed the Inflammation Pathway
3.6. Network Pharmacology Analysis on ART Treatment of SLE-AS Disease
3.7. ART Inhibited Macrophage Foam Cell Formation by Upregulating the PPARγ-ABCA1/ABCG1/SR-B1 Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABCA1/ABCG1 | ATP-binding cassette transporters A1/G1 |
ApoE-/- | apolipoprotein E knockout |
ART | artesunate |
AS | atherosclerosis |
CVD | cardiovascular disease |
CCK-8 | cell counting kit |
FC | free cholesterol |
CT-XB | cholera toxin subunit |
ICAM-1 | intercellular cell adhesion molecule-1 |
MDFC | macrophage-derived foam cells |
MyD88 | myeloid differentiation primary-response protein 88 |
ox-LDL | oxidized low-density lipoprotein |
PPARγ | proliferator-activated receptor gamma |
SLE | systemic lupus erythematosus |
SR-B1 | scavenger receptor-B1 |
TLR9 | Toll-like receptor |
TRAF6 | tumor necrosis factor receptor-associated factor 6 |
VCAM-1 | vascular cell adhesion molecule-1 |
References
- Rekvig, O.P.; der Vlag, J. The pathogenesis and diagnosis of systemic lupus erythematosus: Still not resolved. Semin. Immunopathol. 2014, 36, 301–311. [Google Scholar] [CrossRef]
- Xipell, M.; Lledó, G.; Egan, A.; Tamirou, F.; Del Castillo, C.S.; Rovira, J.; Gómez-Puerta, J.; García-Herrera, A.; Cervera, R.; Kronbichler, A.; et al. From systemic lupus erythematosus to lupus nephritis: The evolving road to targeted therapies. Autoimmun. Rev. 2023, 22, 103404. [Google Scholar] [CrossRef] [PubMed]
- Jebari-Benslaiman, S.; Galicia-Garc, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Mart, C. Pathophysiology of atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef]
- Ambler, W.G.; Kaplan, M.J. Vascular damage in systemic lupus erythematosus. Nat. Rev. Nephrol. 2024, 20, 251–265. [Google Scholar] [CrossRef]
- Mauro, D.; Nerviani, A. Endothelial dysfunction in systemic lupus erythematosus: Pathogenesis, assessment and therapeutic opportunities. Rev. Recent. Clin. Trials 2018, 13, 192–198. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Wei, X.; Ma, J.; Long, K.; Ouyang, X.; Liu, N.; Li, Y.; He, L.; Dai, L.; et al. Elevated serum cholesterol levels are associated with proteinuria over 0.5 g/day in premenopausal women with systemic lupus erythematosus. Int. J. Immunopathol. Pharmacol. 2022, 36, 03946320221101287. [Google Scholar] [CrossRef]
- Kang, N.; Liu, X.; You, X.; Sun, W.; Haneef, K.; Sun, X.; Liu, W. Aberrant B-cell activation in systemic lupus erythematosus. Kidney Dis. 2022, 8, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Xiang, W.; Yi, R.; Huang, X.; Lin, Q.; He, X. Neutralizing interferon-α blocks inflammation-mediated vascular injury via PI3K and AMPK in systemic lupus erythematosus. Immunology 2021, 164, 372–385. [Google Scholar] [CrossRef]
- Janani, C.; Kumari, B.D.R. PPAR gamma gene—A review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [Google Scholar] [CrossRef]
- Zhang, M.; Hou, L.; Tang, W.; Lei, W.; Lin, H.; Wang, Y.; Long, H.; Lin, S.; Chen, Z.; Wang, G.; et al. Oridonin attenuates atherosclerosis by inhibiting foam macrophage formation and inflammation through FABP4/PPARγ signalling. J. Cell. Mol. Med. 2023, 27, 4155–4170. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Huang, H.; Li, Y.; Wang, Y.; Zheng, Y.; Liang, J.; Zhang, S.; Liu, M.; Fang, Z. Yin-xing-tong-mai decoction attenuates atherosclerosis via activating PPARγ-LXRα-ABCA1/ABCG1 pathway. Pharmacol. Res. 2021, 169, 105639. [Google Scholar] [CrossRef]
- Ma, X.; Li, S.-F.; Qin, Z.-S.; Ye, J.; Zhao, Z.-L.; Fang, H.-H.; Yao, Z.-W.; Gu, M.-N.; Hu, Y.-W. Propofol up-regulates expression of ABCA1, ABCG1, and SR-B1 through the PPARγ/LXRα signaling pathway in THP-1 macrophage-derived foam cells. Cardiovasc. Pathol. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Feng, X.; Chen, W.; Xiao, L.; Gu, F.; Huang, J.; Tsao, B.P.; Sun, L. Artesunate inhibits type I interferon-induced production of macrophage migration inhibitory factor in patients with systemic lupus erythematosus. Lupus 2017, 26, 62–72. [Google Scholar] [CrossRef]
- Gu, J.; Xu, Y.; Hua, D.; Chen, Z. Role of artesunate in autoimmune diseases and signaling pathways. Immunotherapy 2023, 15, 1183–1193. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, J.; Cheng, A.; Liu, Y.; Guo, J.; Li, X.; Chen, M.; Hu, D.; Wu, J. Artesunate-binding FABP5 promotes apoptosis in lung cancer cells via the PPARγ-SCD pathway. Int. Immunopharmacol. 2024, 143, 113381. [Google Scholar] [CrossRef]
- Chen, J.; Bai, Y.; He, X.; Xiao, W.; Chen, L.; Wong, Y.K.; Wang, C.; Gao, P.; Cheng, G.; Xu, L.; et al. The spatiotemporal transcriptional profiling of murine brain during cerebral malaria progression and after artemisinin treatment. Nat. Commun. 2025, 16, 1540. [Google Scholar] [CrossRef]
- Chen, L.; Wang, J.; Ren, Y.; Ma, Y.; Liu, J.; Jiang, H.; Liu, C. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. Phytomedicine 2024, 126, 155382. [Google Scholar] [CrossRef]
- Dang, W.-Z.; Li, H.; Jiang, B.; Nandakumar, K.S.; Liu, K.-F.; Liu, L.-X.; Yu, X.-C.; Tan, H.-J.; Zhou, C. Therapeutic effects of artesunate on lupus-prone MRL/lpr mice are dependent on T follicular helper cell differentiation and activation of JAK2–STAT3 signaling pathway. Phytomedicine 2019, 62, 152965. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, J.; Zhu, J.; Yang, G.; Tian, J.; Zhao, Y.; Wang, Y. Artesunate Provides Neuroprotection against Cerebral Ischemia–Reperfusion Injury via the TLR-4/NF-κB Pathway in Rats. Biol. Pharm. Bull. 2021, 44, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.E.; Cheng, C.; Peh, H.Y.; Xu, F.; Tannenbaum, S.R.; Ong, C.N.; Wong, W.S.F. Anti-malarial drug artesunate ameliorates oxidative lung damage in experimental allergic asthma. Free Radic. Biol. Med. 2012, 53, 498–507. [Google Scholar] [CrossRef]
- Hong, J.; Zhang, M.; He, Y.; Jin, Y.; He, Q.; Zhang, Y.; Shi, X.; Tian, W.; Wen, C.; Chen, J. Qinghao-Biejia Herb Pair Alleviates Pristane-Induced Lupus-Like Disease and Associated Renal and Aortic Lesions in ApoE-/- Mice. Front. Pharmacol. 2022, 13, 897669. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Qiu, H.; He, Y.; Zhang, M.; Pan, X.; Wang, Y.; Shi, X.; Wen, C.; Chen, J. Qinghao-Biejia herb pair attenuates SLE atherosclerosis by regulating macrophage polarization via ABCA1/G1-mediated cholesterol efflux. J. Ethnopharmacol. 2024, 334, 118545. [Google Scholar] [CrossRef]
- Groh, L.; Keating, S.T.; Joosten, L.A.B.; Netea, M.G.; Riksen, N.P. Monocyte and macrophage immunometabolism in atherosclerosis. In Seminars in Immunopathology; Springer Nature: Berlin/Heidelberg, Germany, 2018; pp. 203–214. [Google Scholar] [CrossRef]
- Chowdhury, S.M.; Zhu, X.; Aloor, J.J.; Azzam, K.M.; Gabor, K.A.; Ge, W.; Addo, K.A.; Tomer, K.B.; Parks, J.S.; Fessler, M.B. Proteomic analysis of ABCA1-null macrophages reveals a role for stomatin-like protein-2 in raft composition and toll-like receptor signaling. Mol. Cell. Proteom. 2015, 14, 1859–1870. [Google Scholar] [CrossRef] [PubMed]
- Yvan-Charvet, L.; Wang, N.; Tall, A.R.; HDL, R.O. ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 139–143. [Google Scholar] [CrossRef]
- Karikó, K.; Weissman, D.; Welsh, F.A. Inhibition of toll-like receptor and cytokine signaling—A unifying theme in ischemic tolerance. J. Cereb. Blood Flow. Metab. 2004, 24, 1288–1304. [Google Scholar] [CrossRef]
- Powers, K.A.; Szászi, K.; Khadaroo, R.G.; Tawadros, P.S.; Marshall, J.C.; Kapus, A.; Rotstein, O.D. Oxidative stress generated by hemorrhagic shock recruits Toll-like receptor 4 to the plasma membrane in macrophages. J. Exp. Med. 2006, 203, 1951–1961. [Google Scholar] [CrossRef]
- Zhu, X.; Owen, J.S.; Wilson, M.D.; Li, H.; Griffiths, G.L.; Thomas, M.J.; Hiltbold, E.M.; Fessler, M.B.; Parks, J.S. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J. Lipid Res. 2010, 51, 3196–3206. [Google Scholar] [CrossRef]
- Majdalawieh, A.; Ro, H.-S. PPARγ1 and LXRα face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nuc. Recept. Signal. 2010, 8, e08004. [Google Scholar] [CrossRef]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, X.; Zhang, W.; Zhang, X.; Wang, M.; Ji, F. Mechanistic insight into premature atherosclerosis and cardiovascular complications in systemic lupus erythematosus. J. Autoimmun. 2022, 132, 102863. [Google Scholar] [CrossRef]
- Teixeira, V.; Tam, L.-S. Novel insights in systemic lupus erythematosus and atherosclerosis. Front. Med. 2018, 4, 262. [Google Scholar] [CrossRef]
- Braun, N.A.; Wade, N.S.; Wakeland, E.K.; Major, A.S. Accelerated atherosclerosis is independent of feeding high fat diet in systemic lupus erythematosus–susceptible LDLr-/- mice. Lupus 2008, 17, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Stanic, A.K.; Stein, C.M.; Morgan, A.C.; Fazio, S.; Linton, M.F.; Wakeland, E.K.; Olsen, N.J.; Major, A.S. Immune dysregulation accelerates atherosclerosis and modulates plaque composition in systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 2006, 103, 7018–7023. [Google Scholar] [CrossRef]
- Wade, N.S.; Stevenson, B.G.; Dunlap, D.S.; Major, A.S. The lupus susceptibility locus Sle3 is not sufficient to accelerate atherosclerosis in lupus-susceptible low density lipoprotein receptor-deficient mice. Lupus 2010, 19, 34–42. [Google Scholar] [CrossRef]
- Chen, X.; Cui, R.; Li, R.; Lin, H.; Huang, Z.; Lin, L. Development of pristane induced mice model for lupus with atherosclerosis and analysis of TLR expression. Clin. Exp. Rheumatol. 2016, 34, 600–608. [Google Scholar]
- He, Y.; Tian, W.; Zhang, M.; Qiu, H.; Li, H.; Shi, X.; Song, S.; Wen, C.; Chen, J. Jieduquyuziyin prescription alleviates SLE complicated by atherosclerosis via promoting cholesterol efflux and suppressing TLR9/MyD88 activation. J. Ethnopharmacol. 2023, 309, 116283. [Google Scholar] [CrossRef]
- Freitas, E.C.; de Oliveira, M.S.; Monticielo, O.A. Pristane-induced lupus: Considerations on this experimental model. Clin. Rheumatol. 2017, 36, 2403–2414. [Google Scholar] [CrossRef] [PubMed]
- Marais, A.D. Apolipoprotein E and atherosclerosis. Curr. Atheroscler. Rep. 2021, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.G.; March, Z.M.; Stephenson, R.A.; Narayan, P.S. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol. Metab. 2023, 34, 430–445. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Paone, S.; Baxter, A.A.; Mayfosh, A.J.; Phan, T.K.; Chan, E.; Peter, K.; Poon, I.K.H.; Thomas, S.R.; Hulett, M.D. Heparanase promotes the onset and progression of atherosclerosis in apolipoprotein E gene knockout mice. Atherosclerosis 2024, 392, 117519. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.G.; Wang, X.H.; Liu, D.H. Progression of atherosclerosis in ApoE-knockout mice fed on a high-fat diet. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3863–3867. [Google Scholar] [PubMed]
- Reiss, A.B.; Jacob, B.; Ahmed, S.; Carsons, S.E.; DeLeon, J. Understanding accelerated atherosclerosis in systemic lupus erythematosus: Toward better treatment and prevention. Inflammation 2021, 44, 1663–1682. [Google Scholar] [CrossRef]
- Bäck, M.; Yurdagul, A.; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and therapeutic opportunities. Nat. Rev. Cardiol. 2019, 16, 389–406. [Google Scholar] [CrossRef]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef]
- Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL, and atherosclerosis. Mediat. Inflamm. 2013, 2013, 152786. [Google Scholar] [CrossRef]
- Pu, S.; Liu, Y.; Liang, S.; Liu, P.; Qian, H.; Wu, Q.; Wang, Y. The metabolic changes of artesunate and ursolic acid on Syrian golden hamsters fed with the high-fat diet. Molecules 2020, 25, 1392. [Google Scholar] [CrossRef]
- Ramos-Vara, J.A.; Miller, M.A. When Tissue Antigens and Antibodies Get Along: Revisiting the Technical Aspects of Immunohistochemistry-The Red, Brown, and Blue Technique. Vet. Pathol. 2014, 51, 42–87. [Google Scholar] [CrossRef]
- Groenen, A.G.; Halmos, B.; Tall, A.R.; Westerterp, M. Cholesterol efflux pathways, inflammation, and atherosclerosis. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 426–439. [Google Scholar] [CrossRef]
- Wang, N.; Westerterp, M. ABC transporters, cholesterol efflux, and implications for cardiovascular diseases. In Lipid Transfer in Lipoprotein Metabolism and Cardiovascular Disease; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 67–83. [Google Scholar] [CrossRef]
- Westerterp, M.; Murphy, A.J.; Wang, M.; Pagler, T.A.; Vengrenyuk, Y.; Kappus, M.S.; Gorman, D.J.; Nagareddy, P.R.; Zhu, X.; Abramowicz, S.; et al. Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice. Circ. Res. 2013, 112, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Bekkering, S.; Quintin, J.; Joosten, L.A.B.; Van Der Meer, J.W.M.; Netea, M.G.; Riksen, N.P. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1731–1738. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guan, J.; Wang, W.; Hou, C.; Zhou, L.; Ma, J.; Cheng, Y.; Jiao, S.; Zhou, Z. TRAF3-interacting JNK-activating modulator promotes inflammation by stimulating translocation of Toll-like receptor 4 to lipid rafts. J. Biol. Chem. 2019, 294, 2744–2756. [Google Scholar] [CrossRef]
- Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46–50. [Google Scholar] [CrossRef]
- Sun, Y.; Ishibashi, M.; Seimon, T.; Lee, M.; Sharma, S.M.; Fitzgerald, K.A.; Samokhin, A.O.; Wang, Y.; Sayers, S.; Aikawa, M.; et al. Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K. Circ. Res. 2009, 104, 455–465. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, J.-Y.; Timmins, J.M.; Brown, J.M.; Boudyguina, E.; Mulya, A.; Gebre, A.K.; Willingham, M.C.; Hiltbold, E.M.; Mishra, N.; et al. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J. Biol. Chem. 2008, 283, 22930–22941. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Cui, Z.-Y.; Huang, X.-F.; Zhang, D.-D.; Guo, R.-J.; Han, M. Inflammation and atherosclerosis: Signaling pathways and therapeutic intervention. Signal Transduct. Target. Ther. 2022, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Takada, I.; Makishima, M. Peroxisome proliferator-activated receptor agonists and antagonists: A patent review (2014–present). Expert Opin. Ther. Pat. 2020, 30, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wagner, N.; Wagner, K.-D. The role of PPARs in disease. Cells 2020, 9, 2367. [Google Scholar] [CrossRef]
- Wang, S.; Dougherty, E.J.; Danner, R.L. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol. Res. 2016, 111, 76–85. [Google Scholar] [CrossRef]
Gene | Forward Sequence | Reverse Sequence |
---|---|---|
GAPDH | 5′-AGGTCGGTGTGAACGGATTTG-3′ | 5′-TGTAGACCATGTAGTTGAGGTCA-3′ |
IL-6 | 5′-GGCCTTCCCTACTTCACAAG-3′ | 5′-ATTTCCACGATTTCCCAGAG-3′ |
TNF-α | 5′-GACTAGCCAGGAGGGAGAACAGA-3′ | 5′-CCTGGTTGGCTGCTTGCTT-3′ |
IL-1β | 5′-CAACCAACAAGTGATATTCTCCATG-3′ | 5′-GATCCACACTCTCCAGCTGCA-3′ |
ABCA1 | 5′-GCATTGTCAAGGAGGGGAGAT-3′ | 5′-CTTCAGGTCAGGGTTGGAGC-3′ |
ABCG1 | 5′-GTCTGAACTGCCCTACCTACCA-3′ | 5′-AAAGAAACGCCTTCACATCG-3′ |
PPAR-γ | 5′-CCCACAGAGAAGGAAGACCA-3′ | 5′-ACCACAGCACAGGACATTCA-3′ |
SR-B1 | 5′-GCAAATTTGGCCTGTTTGTT-3′ | 5′-GATCTTGCTGAGTCCGTTCC-3′ |
ICAM-1 | 5′-TTCACACTGAATGCCAGCTC-3′ | 5′-GTCTGCTGAGACCCCTCTTG-3′ |
VCAM-1 | 5′-GCCCATCCTCTGTGACTCAT-3′ | 5’-AGGCCACAGGTATTTTGTCG-3’ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Pan, X.; He, Y.; Sun, K.; Wang, Z.; Tian, W.; Qiu, H.; Wang, Y.; Wen, C.; Chen, J. Artesunate Ameliorates SLE Atherosclerosis Through PPARγ-Driven Cholesterol Efflux Restoration and Disruption of Lipid Raft-Organized TLR9/MyD88 Signaling Pathway. Biomolecules 2025, 15, 1078. https://doi.org/10.3390/biom15081078
Zhang M, Pan X, He Y, Sun K, Wang Z, Tian W, Qiu H, Wang Y, Wen C, Chen J. Artesunate Ameliorates SLE Atherosclerosis Through PPARγ-Driven Cholesterol Efflux Restoration and Disruption of Lipid Raft-Organized TLR9/MyD88 Signaling Pathway. Biomolecules. 2025; 15(8):1078. https://doi.org/10.3390/biom15081078
Chicago/Turabian StyleZhang, Miao, Xinyu Pan, Yuanfang He, Kairong Sun, Zhiyu Wang, Weiyu Tian, Haonan Qiu, Yiqi Wang, Chengping Wen, and Juan Chen. 2025. "Artesunate Ameliorates SLE Atherosclerosis Through PPARγ-Driven Cholesterol Efflux Restoration and Disruption of Lipid Raft-Organized TLR9/MyD88 Signaling Pathway" Biomolecules 15, no. 8: 1078. https://doi.org/10.3390/biom15081078
APA StyleZhang, M., Pan, X., He, Y., Sun, K., Wang, Z., Tian, W., Qiu, H., Wang, Y., Wen, C., & Chen, J. (2025). Artesunate Ameliorates SLE Atherosclerosis Through PPARγ-Driven Cholesterol Efflux Restoration and Disruption of Lipid Raft-Organized TLR9/MyD88 Signaling Pathway. Biomolecules, 15(8), 1078. https://doi.org/10.3390/biom15081078