Previous Issue
Volume 11, June
 
 

Gels, Volume 11, Issue 7 (July 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
21 pages, 1252 KiB  
Article
Research and Performance Evaluation of Low-Damage Plugging and Anti-Collapse Water-Based Drilling Fluid Gel System Suitable for Coalbed Methane Drilling
by Jian Li, Zhanglong Tan, Qian Jing, Wenbo Mei, Wenjie Shen, Lei Feng, Tengfei Dong and Zhaobing Hao
Gels 2025, 11(7), 473; https://doi.org/10.3390/gels11070473 (registering DOI) - 20 Jun 2025
Abstract
Coalbed methane (CBM), a significant unconventional natural gas resource, holds a crucial position in China’s ongoing energy structure transformation. However, the inherent low permeability, high brittleness, and strong sensitivity of CBM reservoirs to drilling fluids often lead to severe formation damage during drilling [...] Read more.
Coalbed methane (CBM), a significant unconventional natural gas resource, holds a crucial position in China’s ongoing energy structure transformation. However, the inherent low permeability, high brittleness, and strong sensitivity of CBM reservoirs to drilling fluids often lead to severe formation damage during drilling operations, consequently impairing well productivity. To address these challenges, this study developed a novel low-damage, plugging, and anti-collapse water-based drilling fluid gel system (ACWD) specifically designed for coalbed methane drilling. Laboratory investigations demonstrate that the ACWD system exhibits superior overall performance. It exhibits stable rheological properties, with an initial API filtrate loss of 1.0 mL and a high-temperature, high-pressure (HTHP) filtrate loss of 4.4 mL after 16 h of hot rolling at 120 °C. It also demonstrates excellent static settling stability. The system effectively inhibits the hydration and swelling of clay and coal, significantly reducing the linear expansion of bentonite from 5.42 mm (in deionized water) to 1.05 mm, and achieving high shale rolling recovery rates (both exceeding 80%). Crucially, the ACWD system exhibits exceptional plugging performance, completely sealing simulated 400 µm fractures with zero filtrate loss at 5 MPa pressure. It also significantly reduces core damage, with an LS-C1 core damage rate of 7.73%, substantially lower than the 19.85% recorded for the control polymer system (LS-C2 core). Field application in the JX-1 well of the Ordos Basin further validated the system’s effectiveness in mitigating fluid loss, preventing wellbore instability, and enhancing drilling efficiency in complex coal formations. This study offers a promising, relatively environmentally friendly, and cost-effective drilling fluid solution for the safe and efficient development of coalbed methane resources. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

18 pages, 3205 KiB  
Article
Influences of Reservoir Conditions on the Performance of Cellulose Nanofiber/Laponite-Reinforced Supramolecular Polymer Gel-Based Lost Circulation Materials
by Liyao Dai, Jinsheng Sun, Kaihe Lv, Yingrui Bai, Jianlong Wang, Chaozheng Liu and Mei-Chun Li
Gels 2025, 11(7), 472; https://doi.org/10.3390/gels11070472 (registering DOI) - 20 Jun 2025
Abstract
Lost circulation during drilling has significantly hindered the safe and efficient development of oil and gas resources. Supramolecular polymer gel–based lost circulation materials have shown significant potential for application due to their unique molecular structures and superior performance. Herein, a high–performance supramolecular polymer [...] Read more.
Lost circulation during drilling has significantly hindered the safe and efficient development of oil and gas resources. Supramolecular polymer gel–based lost circulation materials have shown significant potential for application due to their unique molecular structures and superior performance. Herein, a high–performance supramolecular polymer gel was developed, and the influence of reservoir conditions on the performance of the supramolecular polymer gel was investigated in detail. The results identified an optimal formulation for the preparation of supramolecular polymer gel comprising 15 wt% acrylamide, 3 wt% 2-acrylamide-2-methylpropanesulfonic acid, 2.6 wt% divinylbenzene, 5 wt% polyvinyl alcohol, 0.30 wt% cellulose nanofibers, and 3 wt% laponite. The performance of the gel-forming suspension and the resulting supramolecular polymer gel was influenced by various factors, including temperature, density, pH, and the intrusion of drilling fluid, saltwater, and crude oil. Nevertheless, the supramolecular polymer gels consistently exhibited high strength under diverse environmental conditions, as confirmed by rheological measurements. Moreover, the gels exhibited strong plugging performance across various fracture widths and in permeable formations, with maximum breakthrough pressures exceeding 6 MPa. These findings establish a theoretical foundation and practical approach for the field application of supramolecular polymer gels in complex geological formations, demonstrating their effectiveness in controlling lost circulation under challenging downhole conditions. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

Previous Issue
Back to TopTop