Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Visual Evaluation of Films
2.2. Physical and Mechanical Characterization of Hydrocolloid Films
2.2.1. Film Thickness and Folding Endurance
2.2.2. Mechanical Properties
2.3. In Vitro Wound Adhesion
2.4. Moisture Handling Properties
2.5. Analytical Characterization
2.5.1. Scanning Electron Microscopy (SEM)
2.5.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.3. XRD Results
2.6. Antibacterial Studies
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Formulation Method Development
4.2.1. Preparation of Blank Films
4.2.2. Preparation of Honey Loaded Hydrocolloid Films
4.3. Physical and Mechanical Characterization
4.3.1. Film Thickness and Folding Endurance
4.3.2. Mechanical (Tensile) Properties
4.3.3. In Vitro Wound Adhesion
4.4. Water Handling Properties
4.5. Analytical Characterization
4.5.1. Scanning Electron Microscopy (SEM)
4.5.2. Fourier Transform Infrared Spectroscopy (FTIR)
4.5.3. X-Ray Diffraction (XRD)
4.6. Antimicrobial Susceptibility Testing
4.6.1. McFarland Standard
4.6.2. Preparation of Inoculum
4.6.3. Inoculation of MH Plate for Disc Diffusion Susceptibility Test
4.6.4. Broth Dilution Test
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, S.-F.; Leow, H.-L. Development of biofilm-targeted antimicrobial wound dressing for the treatment of chronic wound infections. Drug Dev. Ind. Pharm. 2015, 41, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Getti, G.; Boateng, J. Medicated multi-targeted alginate-based dressings for potential treatment of mixed bacterial-fungal infections in diabetic foot ulcers. Int. J. Pharm. 2021, 606, 120903. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Scepankova, H.; Combarros-Fuertes, P.; Fresno, J.M.; Tornadijo, M.E.; Dias, M.S.; Pinto, C.A.; Saraiva, J.A.; Estevinho, L.M. Role of Honey in Advanced Wound Care. Molecules 2021, 26, 4784. [Google Scholar] [CrossRef] [PubMed]
- Tricou, L.; Guirguis, N.; Djebbar, S.; Freedman, B.R.; Matoori, S. Bee Better: The Role of Honey in Modern Wound Care. Adv. Ther. 2025, 8, 2400502. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Yupanqui Mieles, J.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022, 14, 1663. [Google Scholar] [CrossRef] [PubMed]
- Majtan, J. Honey: An immunomodulator in wound healing. Wound Repair Regen. 2014, 22, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Chrysostomou, D.; Pokorná, A.; Cremers, N.A.J.; Peters, L.J.F. Medical-Grade Honey Is a Versatile Wound Care Product for the Elderly. J. Aging Res. Lifestyle 2024, 13, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and Evaluation of Chitosan/PVA Based Hydrogel Films Loaded with Honey for Wound Healing Application. Gels 2022, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Lotfinia, F.; Norouzi, M.R.; Ghasemi-Mobarakeh, L.; Naeimirad, M. Anthocyanin/Honey-Incorporated Alginate Hydrogel as a Bio-Based pH-Responsive/Antibacterial/Antioxidant Wound Dressing. J. Funct. Biomater. 2023, 14, 72. [Google Scholar] [CrossRef] [PubMed]
- Fathollahipour, S.; Koosha, M.; Tavakoli, J.; Maziarfar, S.; Mehrabadi, J.F. Erythromycin Releasing PVA/sucrose and PVA/honey Hydrogels as Wound Dressings with Antibacterial Activity and Enhanced Bio-adhesion. Iran. J. Pharm. Res. IJPR 2020, 19, 448–464. [Google Scholar] [PubMed]
- Tavakoli, J.; Tang, Y. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Mater. Sci. Eng. C 2017, 77, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Koosha, M.; Aalipour, H.; Sarraf Shirazi, M.J.; Jebali, A.; Chi, H.; Hamedi, S.; Wang, N.; Li, T.; Moravvej, H. Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study. J. Funct. Biomater. 2021, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.Z.K.; Lukman, S.K.; Lai, C.-H.; Zain, N.M.; Saidin, S. Stingless bee honey incorporated cellulose hydrogel/poly(lactic-co-glycolic acid) patch as an alternative treatment for aphthous stomatitis. Cell. Chem. Technol. 2021, 55, 539–603. [Google Scholar] [CrossRef]
- Kolour, A.K.; Ghoraishizadeh, S.; Zaman, M.S.; Alemzade, A.; Banavand, M.; Esmaeili, J.; Shahrousvand, M. Janus films wound dressing comprising electrospun gelatin/PCL nanofibers and gelatin/honey/curcumin thawed layer. ACS Appl. Bio Mater. 2024, 7, 8642–8655. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, G.S.; dos Santos, N.R.R.; Pereira, I.C.S.; Andrade Júnior, A.J.D.; Lima, E.M.B.; Minguita, A.P.; Rosado, L.H.G.; Moreira, A.P.D.; Middea, A.; Prudencio, E.R.; et al. Layered cryogels laden with Brazilian honey intended for wound care. Polimeros 2020, 30, e2020031. [Google Scholar] [CrossRef]
- Sasikala, L.; Rathinamoorthy, R.; Dhurai, B. Optimization of process conditions for chitosan-manuka honey film as wound contact layer for wound dressings. Wound Med. 2018, 23, 11–21. [Google Scholar] [CrossRef]
- Rathinamoorthy, R.; Sasikala, L. In vivo—Wound healing studies of Leptospermum scoparium honey loaded chitosan bioactive wound dressing. Wound Med. 2019, 26, 100162. [Google Scholar] [CrossRef]
- Boateng, J.; Diunase, K.N. Comparing the Antibacterial and Functional Properties of Cameroonian and Manuka Honeys for Potential Wound Healing—Have We Come Full Cycle in Dealing with Antibiotic Resistance? Molecules 2015, 20, 16068–16084. [Google Scholar] [CrossRef] [PubMed]
- Mohd Zohdi, R.; Abu Bakar Zakaria, Z.; Yusof, N.; Mohamed Mustapha, N.; Abdullah, M.N.H. Gelam (Melaleuca spp.) Honey-Based Hydrogel as Burn Wound Dressing. Evid.-Based Complement. Altern. Med. 2012, 2012, 843025. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, B.; Zhang, B. Characterization of composite hydrocolloid film based on sodium cellulose sulfate and cassava starch. J. Food Eng. 2014, 125, 105–111. [Google Scholar] [CrossRef]
- Jalea, R.U.; Vasquez, A.; Gayares, H.; Raca, J.R. A prospective randomized comparative study between hydrocolloid dressing and conventional silver sulfadiazine dressing for superficial partial thickness burns. J. Am. Coll. Surg. 2011, 213, S118. [Google Scholar] [CrossRef]
- Amruth, P.; Joy, J.M.; Visnuvinayagam, S.; Remya, S.; Mathew, S. Development of κ-carrageenan-based transparent and absorbent biodegradable films for wound dressing applications. Int. J. Biol. Macromol. 2024, 282, 137084. [Google Scholar]
- Kallakas, H.; Kattamanchi, T.; Kilumets, C.; Tarasova, E.; Krasnou, I.; Savest, N.; Ahmadian, I.; Kers, J.; Krumme, A. Tensile and surface wettability properties of the solvent cast cellulose fatty acid ester films. Polymers 2023, 15, 2677. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; Kokabi, M.; Hassan, Z.M. Nanoclay Enhanced the Mechanical Properties of Poly(Vinyl Alcohol)/Chitosan/Montmorillonite Nanocomposite Hydrogel as Wound Dressing. Procedia Mater. Sci. 2015, 11, 152–156. [Google Scholar] [CrossRef]
- Kavoosi, G.; Dadfar, S.M.M.; Purfard, A.M. Mechanical, Physical, Antioxidant, and Antimicrobial Properties of Gelatin Films Incorporated with Thymol for Potential Use as Nano Wound Dressing. J. Food Sci. 2013, 78, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Boateng, J. Calcium alginate-based Antimicrobial Film Dressings for Potential Healing of Infected Foot Ulcers. Ther. Deliv. 2018, 9, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Sasikala, L.; Durai, B. Development and Evaluation of Chitosan Honey Hydrogel Sheets as Wound Dressing. Int. J. Pharma Bio Sci. 2015, 6, 26–37. [Google Scholar]
- Mohammed, A.A.B.A.; Hasan, Z.; Omran, A.A.B.; Elfaghi, A.M.; Khattak, M.A.; Ilyas, R.A.; Sapuan, S.M. Effects of various plasticizers in different concentrations on physical, thermal, mechanical and structural properties of wheat start-based films. Polymers 2023, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Boateng, J.S.; Pawar, H.V.; Tetteh, J. Evaluation of in vitro wound adhesion characteristics of composite film and wafer-based dressings using texture analysis and FTIR spectroscopy: A chemometrics factor analysis approach. RSC Adv. 2015, 5, 107064–107075. [Google Scholar] [CrossRef]
- Afzali, M.; Esfandiaribayat, N.; Boateng, J. Medicated and multifunctional composite alginate-collagen-hyaluronate based scaffolds prepared using two different crosslinking approaches show potential for healing of chronic wounds. Drug Deliv. Transl. Res. 2025, 15, 2483–2508. [Google Scholar] [CrossRef] [PubMed]
- Boateng, J.S.; Stevens, H.N.E.; Eccleston, G.M.; Auffret, A.D.; Humphrey, M.J.; Matthews, K.H. Development and mechanical characterization of solvent-cast polymeric films as potential drug delivery systems to mucosal surfaces. Drug Dev. Ind. Pharm. 2009, 35, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Zaher, K.; El Kolli, M.; Riahi, F.; Doufnoune, R. Preparation and Characterization of Hydrocolloid Biopolymer-Based Films for Dressing Applications. Int. J. Polym. Mater. 2009, 58, 665–680. [Google Scholar] [CrossRef]
Formulation | HPMC: Gelatin | HPMC (mg) | Gelatin (mg) | Water (mL) |
---|---|---|---|---|
1% Film | ||||
BLA1 | 1:1 | 250 | 250 | 50 |
BLA2 | 3:1 | 375 | 125 | 50 |
BLA3 | 1:3 | 125 | 375 | 50 |
2% film | ||||
BLA4 | 1:1 | 500 | 500 | 50 |
BLA5 | 3:1 | 750 | 250 | 50 |
BLA6 | 1:3 | 250 | 750 | 50 |
Formulation | HPMC: Gelatin Ratio | HPMC (mg) | Gelatin (mg) | Honey (mg) | Water (mL) |
---|---|---|---|---|---|
CWH1 | 3:1 | 250 | 750 | 75 | 50 |
CWH2 | 125 | ||||
CWH3 | 250 | ||||
CWH4 | 375 | ||||
CSH5 | 3:1 | 250 | 750 | 75 | 50 |
CSH6 | 125 | ||||
CSH7 | 250 | ||||
CSH8 | 375 | ||||
MH9 | 3:1 | 250 | 750 | 75 | 50 |
MH10 | 125 | ||||
MH11 | 250 | ||||
MH12 | 375 |
Formulation | EWC (%) (±SD) | WVTR (gm2 Day−1) (±SD) |
---|---|---|
CWH1 | 47.5 ± 2.3 * | 900 ± 212 ** |
CWH2 | 63.4 ± 1.5 * | 759 ± 117 ** |
CWH3 | 65.0 ± 5.9 * | 879 ± 527 ** |
CWH4 | 72.0 ± 3.0 * | 759 ± 27 ** |
CSH5 | 31.7 ± 1.6 ns | 754 ± 118 ** |
CSH6 | 45.6 ± 3.0 * | 405 ± 127 * |
CSH7 | 63.8 ± 2.6 * | 568 ± 150 * |
CSH8 | 64.1 ± 1.8 * | 576 ± 102 * |
MH9 | 32.9 ± 1.6 ns | 536 ± 87 ** |
MH10 | 53.7 ± 1.9 | 352 ± 67 ns |
MH11 | 63.5 ± 1.2 * | 298 ± 37 ns |
MH12 | 68.1 ± 2.0 * | 479 ± 95 * |
BLA2 | 38.3 ± 1.8 | 320 ± 60 |
Formulation | ZOI ± SD (mm) | ||
---|---|---|---|
S. aureus | P. aeruginosa | E. coli | |
BLA2 | 0.0 | 0.0 | 0.0 |
CWH1 | 3.1 ± 0.1 | 2.5 ± 0.2 | 2.1 ± 0.1 |
CWH2 | 3.6 ± 0.1 | 3.0 ± 0.2 | 2.8 ± 0.1 |
CWH3 | 5.8 ± 0.2 | 5.5 ± 0.1 | 5.5 ± 0.2 |
CWH4 | 6.5 ± 0.1 | 6.0 ± 0.2 | 5.5 ± 0.2 |
CSH5 | 2.1 ± 0.2 | 2.0 ± 0.3 | 2.0 ± 0.1 |
CSH6 | 3.3 ± 0.1 | 2.9 ± 0.1 | 2.5 ± 0.1 |
CSH7 | 4.5 ± 0.1 | 3.8 ± 0.1 | 3.5 ± 0.2 |
CSH8 | 6.1 ± 0.2 | 5.5 ± 0.1 | 5.5 ± 0.1 |
MH9 | 2.4 ± 0.2 | 2.2 ± 0.2 | 2.1 ± 0.2 |
MH10 | 3.4 ± 0.1 | 3.2 ± 0.3 | 3.1 ± 0.1 |
MH11 | 5.0 ± 0.1 | 4.5 ± 0.2 | 4.3 ± 0.1 |
MH12 | 6.0 ± 0.1 | 5.7 ± 0.1 | 5.5 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boateng, J.; Khan, S. Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties. Gels 2025, 11, 557. https://doi.org/10.3390/gels11070557
Boateng J, Khan S. Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties. Gels. 2025; 11(7):557. https://doi.org/10.3390/gels11070557
Chicago/Turabian StyleBoateng, Joshua, and Sana Khan. 2025. "Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties" Gels 11, no. 7: 557. https://doi.org/10.3390/gels11070557
APA StyleBoateng, J., & Khan, S. (2025). Composite HPMC-Gelatin Films Loaded with Cameroonian and Manuka Honeys Show Antibacterial and Functional Wound Dressing Properties. Gels, 11(7), 557. https://doi.org/10.3390/gels11070557