Sustainable Hydrogels for Medical Applications: Biotechnological Innovations Supporting One Health
Abstract
1. Introduction
2. The Imperative for Hydrogel-Based Sustainable Therapeutic Strategies
3. Protein-Based Hydrogels Obtained Through Genetic Engineering
3.1. Collagen
3.2. Elastin-like Polypeptides
3.3. Silk-like Polymers
4. Polysaccharide-Based Hydrogels Obtained Through Microbial Fermentation
4.1. Bacterial Cellulose
4.2. Xanthan Gum
4.3. Hyaluronic Acid
5. Comparison Between Engineered Protein-Based and Microbial Polysaccharide-Based Hydrogels
6. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitt, S.J.; Gunn, A. The One Health Concept. Br. J. Biomed. Sci. 2024, 81, 12366. [Google Scholar] [CrossRef] [PubMed]
- Danasekaran, R. One Health: A Holistic Approach to Tackling Global Health Issues. Indian J. Community Med. 2024, 49, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Viet, H.; Lâm, S.; Alonso, S.; Unger, F.; Moodley, A.; Bett, B.; Fèvre, E.M.; Knight-Jones, T.; Mor, S.M.; Nguyen, H.T.T.; et al. Insights and future directions: Applying the One Health approach in international agricultural research for development to address food systems challenges. One Health 2025, 20, 101007. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, R.; Macabenta, F.; Bettencourt, G.; Feng, S. From Microbes to Molecules: Synthetic Biology Approaches for Advanced Materials Design. BioChem 2025, 5, 12. [Google Scholar] [CrossRef]
- Ginnan, N.; Crandall, S.G.; Imchen, M.; Dini-Andreote, F.; Miyashiro, T.I.; Singh, V.; Ganda, E.; Bordenstein, S.R. Ecologically expanding the One Health framework to unify the microbiome sciences. mBio 2025, 16, e03147-24. [Google Scholar] [CrossRef] [PubMed]
- Nowbuth, A.A.; Parmar, V.S. Design framework to develop sustainable innovations for addressing One Health challenges. One Health 2025, 20, 101031. [Google Scholar] [CrossRef] [PubMed]
- Nanda, D.; Behera, D.; Pattnaik, S.S.; Behera, A.K. Advances in natural polymer-based hydrogels: Synthesis, applications, and future directions in biomedical and environmental fields. Discov. Polym. 2025, 2, 6. [Google Scholar] [CrossRef]
- Fan, M.-H.; Pi, J.-K.; Zou, C.-Y.; Jiang, Y.-L.; Li, Q.-J.; Zhang, X.-Z.; Xing, F.; Nie, R.; Han, C.; Xie, H.-Q. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact. Mater. 2024, 38, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Guan, W.; Yu, G. Smart Hydrogels for Sustainable Agriculture. EcoMat 2025, 7, e70011. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Zhu, S.; Hu, X.; Liang, R. Recombinant fibrous protein biomaterials meet skin tissue engineering. Front. Bioeng. Biotechnol. 2024, 12, 1411550. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.; Anand, S.; Srivastava, P.; Mishra, A. Hyaluronic acid production by utilizing agro-industrial waste cane molasses. 3 Biotech 2022, 12, 208. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef] [PubMed]
- Sepe, F.; Valentino, A.; Marcolongo, L.; Petillo, O.; Calarco, A.; Margarucci, S.; Peluso, G.; Conte, R. Polysaccharide Hydrogels as Delivery Platforms for Natural Bioactive Molecules: From Tissue Regeneration to Infection Control. Gels 2025, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Z.; Jeon, J.; Jiang, B.; Subramani, S.V.; Li, J.; Zhang, F. Protein-Based Hydrogels and Their Biomedical Applications. Molecules 2023, 28, 4988. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Su, T.; Zhang, M.; Tong, X.; Pan, W.; Zeng, Q.; Shen, J. Sustainable, flexible and biocompatible hydrogels derived from microbial polysaccharides with tailorable structures for tissue engineering. Carbohydr. Polym. 2020, 237, 116160. [Google Scholar] [CrossRef] [PubMed]
- Chelu, M.; Calderon Moreno, J.M.; Musuc, A.M.; Popa, M. Natural Regenerative Hydrogels for Wound Healing. Gels 2024, 10, 547. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Asad, Z.; Agbna, G.; Saud, A.; Khan, A.; Zaidi, J. Progress and Innovations in Hydrogels for Sustainable Agriculture. Agronomy 2024, 14, 2815. [Google Scholar] [CrossRef]
- Song, M.; Wang, J.; He, J.; Kan, D.; Chen, K.; Lu, J. Synthesis of Hydrogels and Their Progress in Environmental Remediation and Antimicrobial Application. Gels 2022, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; UNEP United Nations Environment Programme; World Organisation for Animal Health. One Health Joint Plan of Action (2022–2026); World Health Organization: Rome, Italy, 2022; p. 86.
- Conte, R.; Valentino, A.; Romano, S.; Margarucci, S.; Petillo, O.; Calarco, A. Stimuli-Responsive Nanocomposite Hydrogels for Oral Diseases. Gels 2024, 10, 478. [Google Scholar] [CrossRef] [PubMed]
- Wada, O.Z.; Olawade, D.B. Recent occurrence of pharmaceuticals in freshwater, emerging treatment technologies, and future considerations: A review. Chemosphere 2025, 374, 144153. [Google Scholar] [CrossRef] [PubMed]
- Valentino, A.; Yazdanpanah, S.; Conte, R.; Calarco, A.; Peluso, G. Smart Nanocomposite Hydrogels as Next-Generation Therapeutic and Diagnostic Solutions. Gels 2024, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Choi, W.-S.; Jeong, J.-O. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024, 10, 693. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ge, X.; Liu, L.; Xu, W.; Shao, R. Challenges and opportunities of silk protein hydrogels in biomedical applications. Mater. Adv. 2022, 3, 2291–2308. [Google Scholar] [CrossRef]
- Kaur, R.; Pathak, L.; Vyas, P. Biobased polymers of plant and microbial origin and their applications—A review. Biotechnol. Sustain. Mater. 2024, 1, 13. [Google Scholar] [CrossRef]
- Lu, P.; Ruan, D.; Huang, M.; Tian, M.; Zhu, K.; Gan, Z.; Xiao, Z. Harnessing the potential of hydrogels for advanced therapeutic applications: Current achievements and future directions. Signal Transduct. Target. Ther. 2024, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Wang, J.; Liu, L.; Gong, C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chin. Chem. Lett. 2023, 35, 109225. [Google Scholar] [CrossRef]
- Baig, M.; Wong, L.K.; Zia, A.W.; Wu, H. Development of biomedical hydrogels for rheumatoid arthritis treatment. Asian J. Pharm. Sci. 2024, 19, 100887. [Google Scholar] [CrossRef] [PubMed]
- Hadar, D.; Strugach, D.S.; Amiram, M. Conjugates of Recombinant Protein-Based Polymers: Combining Precision with Chemical Diversity. Adv. NanoBiomed Res. 2022, 2, 2100142. [Google Scholar] [CrossRef]
- Chambre, L.; Martín-Moldes, Z.; Parker, R.N.; Kaplan, D.L. Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv. Drug Deliv. Rev. 2020, 160, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Rollett, A.; Kaplan, D.L. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin. Drug Deliv. 2015, 12, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Park, S.; Park, Y.; Eun, H.; Lee, S.Y. Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis. Trends Biotechnol. 2020, 38, 745–765. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.G.; Faulk, B.; Kaparthi, B.; Irion, A.R.; Fong, B.L.; Bayless, K.; Bondos, S.E. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024, 25, 4639–4662. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cabello, J.; Reguera, J.; Girotti, A.; Arias, F.J.; Alonso, M. Genetic Engineering of Protein-Based Polymers: The Example of Elastin-like Polymers. Adv. Polym. Sci. 2005, 200, 119–167. [Google Scholar]
- Tunuhe, A.; Zheng, Z.; Rao, X.; Yu, H.; Ma, F.; Zhou, Y.; Xie, S. Protein-based materials: Applications, modification and molecular design. BioDesign Res. 2025, 7, 100004. [Google Scholar] [CrossRef]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [PubMed]
- Naomi, R.; Ridzuan, P.M.; Bahari, H. Current Insights into Collagen Type I. Polymers 2021, 13, 2642. [Google Scholar] [CrossRef] [PubMed]
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef] [PubMed]
- Copes, F.; Pien, N.; Van Vlierberghe, S.; Boccafoschi, F.; Mantovani, D. Collagen-Based Tissue Engineering Strategies for Vascular Medicine. Front. Bioeng. Biotechnol. 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.C.; Costa, E.C.; Filipe, H.A.L.; Saraiva, S.M.; Jacinto, T.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P. Animal-derived products in science and current alternatives. Biomater. Adv. 2023, 151, 213428. [Google Scholar] [CrossRef] [PubMed]
- Felician, F.F.; Xia, C.; Qi, W.; Xu, H. Collagen from Marine Biological Sources and Medical Applications. Chem. Biodivers. 2018, 15, e1700557. [Google Scholar] [CrossRef] [PubMed]
- Deng, A.; Yang, Y.; Du, S.; Yang, X.; Pang, S.; Wang, X.; Yang, S. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 119, 111555. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fan, D.; Shang, L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: A short review. Biomed. Mater. 2020, 16, 012001. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Zhou, C.; Tong, L.; Han, X.; Zou, Y.; Dong, Z.; Liang, J.; Chen, Y.; Fan, Y. Injectable hydrogels of recombinant human collagen type III and chitosan with antibacterial and antioxidative activities for wound healing. J. Mater. Chem. B 2023, 11, 4131–4142. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ma, X.; Zhang, F.; Li, L.; Deng, J.; Xue, W.; Zhu, C.; Fan, D. New strategy for expression of recombinant hydroxylated human collagen α1(III) chains in Pichia pastoris GS115. Biotechnol. Appl. Biochem. 2015, 62, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Suarez Muñoz, M.; Confalonieri, D.; Walles, H.; van Dongen, E.; Dandekar, G. Recombinant Collagen I Peptide Microcarriers for Cell Expansion and Their Potential Use As Cell Delivery System in a Bioreactor Model. J. Vis. Exp. 2018, 132, e57363. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cabello, J.; Reguera, J.; Prieto, S.; Alonso, M. Chapter 6. Protein-Based Smart Polymers. In Smart Polymers: Applications in Biotechnology and Biomedicine; CRC Press: Boca Raton, FL, USA, 2007; pp. 177–209. [Google Scholar]
- Xu, L.; Liu, Y.; Tang, L.; Xiao, H.; Yang, Z.; Wang, S. Preparation of Recombinant Human Collagen III Protein Hydrogels with Sustained Release of Extracellular Vesicles for Skin Wound Healing. Int. J. Mol. Sci. 2022, 23, 6289. [Google Scholar] [CrossRef] [PubMed]
- Munyemana, J.C.; He, H.; Fu, C.; Fan, Y.; Sun, X.; Xiao, J. Recombinant Collagen-Templated Biomineralized Synthesis of Biocompatible pH-Responsive Porous Calcium Carbonate Nanospheres. ACS Omega 2023, 8, 30879–30887. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Bao, Y.; Li, W.; Guan, D.; Yin, Y.; Xiao, Y.; Zhu, S.; Sun, Y.; Xia, Z. Collaborative Enhancement of Diabetic Wound Healing and Skin Regeneration by Recombinant Human Collagen Hydrogel and hADSCs. Adv. Healthc. Mater. 2024, 13, e2401012. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiu, H.; Xu, Y.; Gao, Y.; Tan, P.; Zhao, R.; Liu, Z.; Tang, Y.; Zhu, X.; Bao, C.; et al. The biological effect of recombinant humanized collagen on damaged skin induced by UV-photoaging: An in vivo study. Bioact. Mater. 2022, 11, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Meng, X.; Guo, Z. Elastin Structure, Synthesis, Regulatory Mechanism and Relationship With Cardiovascular Diseases. Front. Cell Dev. Biol. 2021, 9, 596702. [Google Scholar] [CrossRef] [PubMed]
- Mecham, R.P. Methods in elastic tissue biology: Elastin isolation and purification. Methods 2008, 45, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Urry, D.W.; Parker, T.M.; Reid, M.C.; Gowda, D.C. Biocompatibility of the Bioelastic Materials, Poly(GVGVP) and Its γ-Irradiation Cross-Linked Matrix: Summary of Generic Biological Test Results. J. Bioact. Compat. Polym. 1991, 6, 263–282. [Google Scholar] [CrossRef]
- Morelli, M.A.; DeBiasi, M.; DeStradis, A.; Tamburro, A.M. An Aggregating Elastin-Like Pentapeptide. J. Biomol. Struct. Dyn. 1993, 11, 181–190. [Google Scholar] [CrossRef] [PubMed]
- McPherson, D.T.; Xu, J.; Urry, D.W. Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expr. Purif. 1996, 7, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.E.; Chilkoti, A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat. Biotechnol. 1999, 17, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, N.K.; Yingling, Y.G.; Hall, C.K. LCST Behavior is Manifested in a Single Molecule: Elastin-Like polypeptide (VPGVG)n. Biomacromolecules 2016, 17, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Massodi, I.; Bidwell, G.L., 3rd; Raucher, D. Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery. J. Control. Release 2005, 108, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, I.C.; Milligan, J.J.; Chilkoti, A. Genetically Encoded Elastin-Like Polypeptides for Drug Delivery. Adv. Healthc. Mater. 2021, 10, e2100209. [Google Scholar] [CrossRef] [PubMed]
- Conrad, U.; Plagmann, I.; Malchow, S.; Sack, M.; Floss, D.M.; Kruglov, A.A.; Nedospasov, S.A.; Rose-John, S.; Scheller, J. ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol. J. 2011, 9, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, G.; Liu, X.; Gao, W. Enhancing Pharmacokinetics, Tumor Accumulation, and Antitumor Efficacy by Elastin-Like Polypeptide Fusion of Interferon Alpha. Adv. Mater. 2015, 27, 7320–7324. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Wang, G.; Liu, X.; Wang, Z.; Wang, J.; Gao, W. Spatiotemporal combination of thermosensitive polypeptide fused interferon and temozolomide for post-surgical glioblastoma immunochemotherapy. Biomaterials 2021, 264, 120447. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Vaikari, V.P.; Lam, A.T.; Zhang, Y.; MacKay, J.A.; Alachkar, H. Anti-FLT3 nanoparticles for acute myeloid leukemia: Preclinical pharmacology and pharmacokinetics. J. Control. Release 2020, 324, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Manzari, M.T.; Anderson, G.R.; Lin, K.H.; Soderquist, R.S.; Çakir, M.; Zhang, M.; Moore, C.E.; Skelton, R.N.; Fèvre, M.; Li, X.; et al. Genomically informed small-molecule drugs overcome resistance to a sustained-release formulation of an engineered death receptor agonist in patient-derived tumor models. Sci. Adv. 2019, 5, eaaw9162. [Google Scholar] [CrossRef] [PubMed]
- Peddi, S.; Roberts, S.K.; MacKay, J.A. Nanotoxicology of an Elastin-like Polypeptide Rapamycin Formulation for Breast Cancer. Biomacromolecules 2020, 21, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Dragojevic, S.; Mackey, R.; Raucher, D. Evaluation of Elastin-Like Polypeptides for Tumor Targeted Delivery of Doxorubicin to Glioblastoma. Molecules 2019, 24, 3242. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Champion, J.A. Photocrosslinked, Tunable Protein Vesicles for Drug Delivery Applications. Adv. Healthc. Mater. 2021, 10, e2001810. [Google Scholar] [CrossRef] [PubMed]
- Kelly, G.; Milligan, J.J.; Mastria, E.M.; Kim, S.; Zelenetz, S.R.; Dobbins, J.; Cai, L.Y.; Li, X.; Nair, S.K.; Chilkoti, A. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J. Control. Release 2022, 343, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Natsume, K.; Nakamura, J.; Sato, K.; Ohtsuki, C.; Sugawara-Narutaki, A. Biological properties of self-assembled nanofibers of elastin-like block polypeptides for tissue-engineered vascular grafts: Platelet inhibition, endothelial cell activation and smooth muscle cell maintenance. Regen. Biomater. 2022, 10, rbac111. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wang, S.; Huang, W.; Bai, W. A potential bilayer skin substitute based on electrospun silk-elastin-like protein nanofiber membrane covered with bacterial cellulose. Colloids Surf. B Biointerfaces 2024, 234, 113677. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Xiong, F.; Yu, W.; Wang, T.; Xiong, J.; Zhou, L.; Hu, F.; Ye, X.; Liang, X. Construction of a Collagen-like Protein Based on Elastin-like Polypeptide Fusion and Evaluation of Its Performance in Promoting Wound Healing. Molecules 2023, 28, 6773. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; Edson, C.; Tian, D.; Fink, T.D.; Cianciotti, K.; Gross, R.A.; Bae, C.; Zha, R.H. Rapid Synthesis of Silk-Like Polymers Facilitated by Microwave Irradiation and Click Chemistry. Biomacromolecules 2021, 22, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Stafstrom, C.E. Adenosine Prevents Kindled Seizures—An Effect as Smooth as Silk. Epilepsy Curr. 2010, 10, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.; Salgueiro, S.P. From small to large-scale: A review of recombinant spider silk and collagen bioproduction. Discov. Mater. 2022, 2, 3. [Google Scholar] [CrossRef]
- Megeed, Z.; Cappello, J.; Ghandehari, H. Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv. Drug Deliv. Rev. 2002, 54, 1075–1091. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Charati, M.B.; Kiick, K.L. Elastomeric polypeptide-based biomaterials. Polym. Chem. 2010, 1, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, J.R.; Bhattacharyya, J.; Vargo, K.B.; Hassouneh, W.; Hammer, D.A.; Chilkoti, A. Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation. Angew. Chem. 2013, 52, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Colino, A.; Arias, F.J.; Alonso, M.; Rodríguez-Cabello, J.C. Amphiphilic Elastin-Like Block Co-Recombinamers Containing Leucine Zippers: Cooperative Interplay between Both Domains Results in Injectable and Stable Hydrogels. Biomacromolecules 2015, 16, 3389–3398. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.X.; Xu, Q.; Hu, X.; Qin, G.; Kaplan, D.L. Tunable self-assembly of genetically engineered silk--elastin-like protein polymers. Biomacromolecules 2011, 12, 3844–3850. [Google Scholar] [CrossRef] [PubMed]
- Florczak, A.; Deptuch, T.; Lewandowska, A.; Penderecka, K.; Kramer, E.; Marszalek, A.; Mackiewicz, A.; Dams-Kozlowska, H. Functionalized silk spheres selectively and effectively deliver a cytotoxic drug to targeted cancer cells in vivo. J. Nanobiotechnology 2020, 18, 177. [Google Scholar] [CrossRef] [PubMed]
- Herold, H.M.; Döbl, A.; Wohlrab, S.; Humenik, M.; Scheibel, T. Designed Spider Silk-Based Drug Carrier for Redox- or pH-Triggered Drug Release. Biomacromolecules 2020, 21, 4904–4912. [Google Scholar] [CrossRef] [PubMed]
- Mulinti, P.; Shreffler, J.; Hasan, R.; Dea, M.; Brooks, A.E. Infection Responsive Smart Delivery of Antibiotics Using Recombinant Spider Silk Nanospheres. Pharmaceutics 2021, 13, 1358. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Ju, G.; Cai, X.; Cai, Y.; Li, C.; Ma, S.; Cao, Y. Nanofibrous Membrane Dressings Loaded With Sodium Hydrogen Sulfide/Endothelial Progenitor Cells Promote Wound Healing. Front. Bioeng. Biotechnol. 2021, 9, 657549. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, D.; Thatikonda, N.; Nilebäck, L.; Widhe, M.; Hedhammar, M.; Mandal, B.B. Recombinant Spider Silk Functionalized Silkworm Silk Matrices as Potential Bioactive Wound Dressings and Skin Grafts. ACS Appl. Mater. Interfaces 2018, 10, 23560–23572. [Google Scholar] [CrossRef] [PubMed]
- Chouhan, D.; Mandal, B.B. Silk biomaterials in wound healing and skin regeneration therapeutics: From bench to bedside. Acta Biomater. 2020, 103, 24–51. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, V.J.; Scheibel, T. Spider Silk Fusion Proteins for Controlled Collagen Binding and Biomineralization. ACS Biomater. Sci. Eng. 2020, 6, 5599–5608. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.G.; Torres-Rendon, J.G.; Leal-Egaña, A.; Walther, A.; Schlaad, H.; Cölfen, H.; Scheibel, T.R. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering. Materials 2016, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Dinjaski, N.; Plowright, R.; Zhou, S.; Belton, D.J.; Perry, C.C.; Kaplan, D.L. Osteoinductive recombinant silk fusion proteins for bone regeneration. Acta Biomater. 2017, 49, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Ravanetti, F.; Borghetti, P.; Zoboli, M.; Veloso, P.M.; De Angelis, E.; Ciccimarra, R.; Saleri, R.; Cacchioli, A.; Gazza, F.; Machado, R.; et al. Biomimetic approach for an articular cartilage patch: Combination of decellularized cartilage matrix and silk-elastin-like-protein (SELP) hydrogel. Ann. Anat. Anat. Anz. 2023, 250, 152144. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Sujani, S.; Singh, N.; Al-Alawachi, S.F. Biomimetic Materials for Regenerative Medicine: Design and Applications. E3S Web Conf. 2024, 505, 04002. [Google Scholar] [CrossRef]
- Mahmoud, Y.A.-G.; El-Naggar, M.E.; Abdel-Megeed, A.; El-Newehy, M. Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers 2021, 13, 4136. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Bhende, M.; Goel, A. A review: Polysaccharide-based hydrogels and their biomedical applications. Polym. Bull. 2024, 81, 8573–8594. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H.; Ray, R.R. Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int. J. Mol. Sci. 2021, 22, 2984. [Google Scholar] [CrossRef] [PubMed]
- Portela, R.; Leal, C.R.; Almeida, P.L.; Sobral, R.G. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol. 2019, 12, 586–610. [Google Scholar] [CrossRef] [PubMed]
- Esa, F.; Tasirin, S.; Abd Rahman, N. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar] [CrossRef]
- Gorriz, C.; Ribeiro, F.; Guedes, J.; Fernandes, P. A Biomechanical Approach for Bone Regeneration inside Scaffolds. Procedia Eng. 2015, 110, 82–89. [Google Scholar] [CrossRef]
- Cao, S.; Li, Q.; Zhang, S.; Liu, K.; Yang, Y.; Chen, J. Oxidized bacterial cellulose reinforced nanocomposite scaffolds for bone repair. Colloids Surf. B Biointerfaces 2022, 211, 112316. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, X.; Liu, Z.; Li, Z.; Li, D.; Yan, H.; Lin, Q. Development of alginate-chitosan composite scaffold incorporation of bacterial cellulose for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 296–307. [Google Scholar] [CrossRef]
- Li, Y.; Xun, X.; Xu, Y.; Zhan, A.; Gao, E.; Yu, F.; Wang, Y.; Luo, H.; Yang, C. Hierarchical porous bacterial cellulose scaffolds with natural biomimetic nanofibrous structure and a cartilage tissue-specific microenvironment for cartilage regeneration and repair. Carbohydr. Polym. 2022, 276, 118790. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, C.; Cai, Q.; Bao, X.; Tang, L.; Ao, H.; Liu, J.; Jin, M.; Zhou, Y.; Wan, Y.; et al. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Biomed. Mater. 2020, 15, 035022. [Google Scholar] [CrossRef] [PubMed]
- Oran, D.; Unal, S.; Gunduz, O. Evaluation of bacterial cellulose/quince seed mucilage composite scaffold for wound dressing. Emergent Mater. 2022, 5, 315–321. [Google Scholar] [CrossRef]
- Balistreri, G.N.; Campbell, I.R.; Li, X.; Amorim, J.; Zhang, S.; Nance, E.; Roumeli, E. Bacterial cellulose nanoparticles as a sustainable drug delivery platform for protein-based therapeutics. RSC Appl. Polym. 2024, 2, 172–183. [Google Scholar] [CrossRef]
- Zahel, P.; Bruggink, V.; Hülsmann, J.; Steiniger, F.; Hofstetter, R.K.; Heinzel, T.; Beekmann, U.; Werz, O.; Kralisch, D. Exploring Microemulsion Systems for the Incorporation of Glucocorticoids into Bacterial Cellulose: A Novel Approach for Anti-Inflammatory Wound Dressings. Pharmaceutics 2024, 16, 504. [Google Scholar] [CrossRef] [PubMed]
- Bombaldi de Souza, R.; Bombaldi de Souza, F.C.; Westin, C.; Barbosa, R.; Moraes, Â. Xanthan Gum for Regenerative Medicine. In Polysaccharides of Microbial Origin; Springer: Cham, Switzerland, 2021; pp. 1–29. [Google Scholar]
- Thai Phuong Thao, N.; Phuong Hien, L.; Thi-Hiep, N. A review on injectable hydrogels from xanthan gum for biomedical applications. Vietnam J. Sci. Technol. Eng. 2022, 64, 53–62. [Google Scholar] [CrossRef]
- Petri, D.F.S. Xanthan gum: A versatile biopolymer for biomedical and technological applications. Appl. Polym. 2015, 132, 42035. [Google Scholar] [CrossRef]
- Kummar, S.; Dull, N.; Helsper, S.; Liberatore, M. Effect of shear rate, temperature, and salts on the viscosity and viscoelasticity of semi-dilute and entangled xanthan gum. J. Appl. Polym. Sci. 2024, 142, e56372. [Google Scholar] [CrossRef]
- Hahn, J.; Koch, D.; Niehaus, K.; Ortseifen, V. Analysis of Gum proteins involved in xanthan biosynthesis throughout multiple cell fractions in a “single-tube”. J. Proteom. 2022, 257, 104513. [Google Scholar] [CrossRef] [PubMed]
- Souw, P.; Demain, A.L. Nutritional Studies on Xanthan Production by Xanthomonas campestris NRRL B1459. Appl. Environ. Microbiol. 1979, 37, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.; Lopes Lessa, V.; Silva, B.; Carvalho, M.A.; Schnitzler, E.; Lacerda, L. Xanthan gum: Properties, production conditions, quality and economic perspective. J. Food Nutr. Res. 2015, 54, 185–194. [Google Scholar]
- García-Ochoa, F.; Santos, V.E.; Casas, J.A.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef] [PubMed]
- Mesomo, M.; Silva, M.F.; Boni, G.; Padilha, F.F.; Mazutti, M.; Mossi, A.; de Oliveira, D.; Cansian, R.L.; Di Luccio, M.; Treichel, H. Xanthan gum produced by Xanthomonas campestris from cheese whey: Production optimisation and rheological characterisation. Sci. Food Agric. 2009, 89, 2440–2445. [Google Scholar] [CrossRef]
- Ferreira, D.d.S.; de Souza Costa, L.A.; Campos, M.I.; Bispo, M.D.; Krause, L.C.; Hernández Macedo, M.L.; Lopez, J.A. Production of xanthan gum from soybean biodiesel: A preliminary study. BMC Proc. 2014, 8, P174. [Google Scholar] [CrossRef]
- Dai, X.; Gao, G.; Wu, M.; Wei, W.; Qu, J.; Li, G.; Ma, T. Construction and application of a Xanthomonas campestris CGMCC15155 strain that produces white xanthan gum. MicrobiologyOpen 2019, 8, e00631. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.B.; Kundlastsch, G.E.; Cruz, R.D.; Batista, B.; Ribeiro, M.P.A.; Novo-Mansur, M.T.M.; da Silva, A.J. Xanthan gum production in Xanthomonas campestris is increased by favoring the biosynthesis of its monomers. Bioresour. Technol. 2025, 416, 131808. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.-H.; Yang, J.; Li, B.; Jiang, Y.-W.; Lu, X.; Chen, Z. Biodegradable and injectable polymer–liposome hydrogel: A promising cell carrier. Polym. Chem. 2016, 7, 2037–2044. [Google Scholar] [CrossRef]
- Chen, Y.; Le, Y.; Yang, J.; Yang, Y.; Feng, X.; Cai, J.; Shang, Y.; Sugiarto, S.; Wei, Q.; Kai, D.; et al. 3D Bioprinted Xanthan Hydrogels with Dual Antioxidant and Chondrogenic Functions for Post-traumatic Cartilage Regeneration. ACS Biomater. Sci. Eng. 2024, 10, 1661–1675. [Google Scholar] [CrossRef] [PubMed]
- Zuliani, C.; Damas, I.; Cursino, K.; Westin, C.; Moraes, Â.; Coimbra, I. Chondrogenesis of human amniotic fluid stem cells in Chitosan-Xanthan scaffold for cartilage tissue engineering. Sci. Rep. 2021, 11, 3063. [Google Scholar] [CrossRef] [PubMed]
- Dyondi, D.; Webster, T.J.; Banerjee, R. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int. J. Nanomed. 2013, 8, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, R.M.; da Rocha, D.N.; Bombaldi de Souza, R.F.; Santos, J.L.; Ferreira, J.R.M.; Moraes, Â.M. Cell-Friendly Chitosan-Xanthan Gum Membranes Incorporating Hydroxyapatite Designed for Periodontal Tissue Regeneration. Pharmaceutics 2023, 15, 705. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, E.; Parsons, J.; Turng, L.-S. Design, synthesis, and characterization of polymer-hydrogel composite vascular grafts using double-expanded polytetrafluoroethylene to achieve enhanced mechanical and biological properties. Polym. Eng. Sci. 2025, 65, 2893–2908. [Google Scholar] [CrossRef]
- Bellini, M.Z.; Caliari-Oliveira, C.; Mizukami, A.; Swiech, K.; Covas, D.T.; Donadi, E.A.; Oliva-Neto, P.; Moraes, Â.M. Combining xanthan and chitosan membranes to multipotent mesenchymal stromal cells as bioactive dressings for dermo-epidermal wounds. J. Biomater. Appl. 2015, 29, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Miguel, S.P.; Araujo, A.R.T.S.; de Jesús Valle, M.J.; Sánchez Navarro, A.; Correia, I.J.; Ribeiro, M.P.; Coutinho, P. Xanthan Gum–Konjac Glucomannan Blend Hydrogel for Wound Healing. Polymers 2020, 12, 99. [Google Scholar] [CrossRef] [PubMed]
- Ramburrun, P.; Kumar, P.; Ndobe, E.; Choonara, Y.E. Gellan-Xanthan Hydrogel Conduits with Intraluminal Electrospun Nanofibers as Physical, Chemical and Therapeutic Cues for Peripheral Nerve Repair. Int. J. Mol. Sci. 2021, 22, 1555. [Google Scholar] [CrossRef] [PubMed]
- Deidda, V.; Ventisette, I.; Langione, M.; Giammarino, L.; Pioner, J.M.; Credi, C.; Carpi, F. 3D-Printable Gelatin Methacrylate-Xanthan Gum Hydrogel Bioink Enabling Human Induced Pluripotent Stem Cell Differentiation into Cardiomyocytes. J. Funct. Biomater. 2024, 15, 297. [Google Scholar] [CrossRef] [PubMed]
- Laurent, T.C.; Fraser, J.R.E. Hyaluronan. FASEB J. 1992, 6, 2397–2404. [Google Scholar] [CrossRef] [PubMed]
- Kogan, G.; Soltés, L.; Stern, R.; Gemeiner, P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 2007, 29, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Di Mola, A.; Landi, M.R.; Massa, A.; D’Amora, U.; Guarino, V. Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int. J. Mol. Sci. 2022, 23, 4372. [Google Scholar] [CrossRef] [PubMed]
- Falcone, S.J.; Palmeri, D.M.; Berg, R.A. Rheological and cohesive properties of hyaluronic acid. J. Biomed. Mater. Res. Part A 2006, 76, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Wang, X.; Qin, L.; Guo, Z.; Li, D. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro. Biochem. Biophys. Res. Commun. 2015, 465, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Turley, E.A.; Noble, P.W.; Bourguignon, L.Y. Signaling properties of hyaluronan receptors. J. Biol. Chem. 2002, 277, 4589–4592. [Google Scholar] [CrossRef] [PubMed]
- Murado, M.A.; Montemayor, M.I.; Cabo, M.L.; Vázquez, J.A.; González, M.P. Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod. Process. 2012, 90, 491–498. [Google Scholar] [CrossRef]
- de Oliveira, J.D.; Carvalho, L.S.; Gomes, A.M.V.; Queiroz, L.R.; Magalhães, B.S.; Parachin, N.S. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Factories 2016, 15, 119. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.F.; Blank, L.M.; McLaughlin, R.; Nielsen, L.K. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 2005, 66, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Ucm, R.; Aem, M.; Lhb, Z.; Kumar, V.; Taherzadeh, M.J.; Garlapati, V.K.; Chandel, A.K. Comprehensive review on biotechnological production of hyaluronic acid: Status, innovation, market and applications. Bioengineered 2022, 13, 9645–9661. [Google Scholar] [CrossRef] [PubMed]
- Conte, R.; De Luca, I.; Valentino, A.; Cerruti, P.; Pedram, P.; Cabrera-Barjas, G.; Moeini, A.; Calarco, A. Hyaluronic Acid Hydrogel Containing Resveratrol-Loaded Chitosan Nanoparticles as an Adjuvant in Atopic Dermatitis Treatment. J. Funct. Biomater. 2023, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xue, H.; Zeng, H.; Dai, M.; Tang, C.; Liu, L. 3D printed scaffolds based on hyaluronic acid bioinks for tissue engineering: A review. Biomater. Res. 2023, 27, 137. [Google Scholar] [CrossRef] [PubMed]
- Guarino, V.; Cirillo, V.; Ambrosio, L. Bicomponent electrospun scaffolds to design extracellular matrix tissue analogs. Expert Rev. Med. Devices 2016, 13, 83–102. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, S.; Spriano, S.; Scalia, A.C.; Cochis, A.; Rimondini, L.; Cruz-Maya, I.; Guarino, V.; Varesano, A.; Vineis, C. Topographical and Biomechanical Guidance of Electrospun Fibers for Biomedical Applications. Polymers 2020, 12, 2896. [Google Scholar] [CrossRef] [PubMed]
- Petrova, V.A.; Chernyakov, D.D.; Poshina, D.N.; Gofman, I.V.; Romanov, D.P.; Mishanin, A.I.; Golovkin, A.S.; Skorik, Y.A. Electrospun Bilayer Chitosan/Hyaluronan Material and Its Compatibility with Mesenchymal Stem Cells. Materials 2019, 12, 2016. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Baranov, M.; Olekhnovich, R.; Uspenskaya, M. Electrosprayed Nanoparticles Based on Hyaluronic Acid: Preparation and Characterization. Technologies 2020, 8, 71. [Google Scholar] [CrossRef]
- Antich, C.; de Vicente, J.; Jiménez, G.; Chocarro, C.; Carrillo, E.; Montañez, E.; Gálvez-Martín, P.; Marchal, J.A. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater. 2020, 106, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Chhillar, A.; Jaiswal, A. Hyaluronic Acid-Based Self-Healing Hydrogels for Diabetic Wound Healing. Adv. Healthc. Mater. 2025, 14, e2404255. [Google Scholar] [CrossRef] [PubMed]
- Atoufi, Z.; Kamrava, S.K.; Davachi, S.M.; Hassanabadi, M.; Saeedi Garakani, S.; Alizadeh, R.; Farhadi, M.; Tavakol, S.; Bagher, Z.; Hashemi Motlagh, G. Injectable PNIPAM/Hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: Synthesis, characterization, drug release and cell culture study. Int. J. Biol. Macromol. 2019, 139, 1168–1181. [Google Scholar] [CrossRef] [PubMed]
- Barbucci, R.; Lamponi, S.; Borzacchiello, A.; Ambrosio, L.; Fini, M.; Torricelli, P.; Giardino, R. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 2002, 23, 4503–4513. [Google Scholar] [CrossRef] [PubMed]
- Svarca, A.; Grava, A.; Dubnika, A.; Ramata-Stunda, A.; Narnickis, R.; Aunina, K.; Rieksta, E.; Boroduskis, M.; Jurgelane, I.; Locs, J.; et al. Calcium Phosphate/Hyaluronic Acid Composite Hydrogels for Local Antiosteoporotic Drug Delivery. Front. Bioeng. Biotechnol. 2022, 10, 917765. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hu, J.; Wang, J.; Zhang, J.; Wang, L.; Zhang, C. The Role of Hydrogel in Cardiac Repair and Regeneration for Myocardial Infarction: Recent Advances and Future Perspectives. Bioengineering 2023, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.; Holloway, J.L.; Stabenfeldt, S.E. Hyaluronic Acid Biomaterials for Central Nervous System Regenerative Medicine. Cells 2020, 9, 2113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, X.; Hu, H.; Xu, F.-J. Stimulus-responsive polysaccharide-based hydrogels: From design to biomedical applications. Precis. Med. Eng. 2024, 1, 100001. [Google Scholar] [CrossRef]
- Trombino, S.; Sole, R.; Di Gioia, M.L.; Procopio, D.; Curcio, F.; Cassano, R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023, 28, 2107. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Yang, M.; Liu, M.; Jin, Y.; Wang, Y.; Yang, R.; Wang, Y.; Zhang, K.; Fu, Q. Review on Additives in Hydrogels for 3D Bioprinting of Regenerative Medicine: From Mechanism to Methodology. Pharmaceutics 2023, 15, 1700. [Google Scholar] [CrossRef] [PubMed]
- Yates, M.; Barlow, C. Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resour. Conserv. Recycl. 2013, 78, 54–66. [Google Scholar] [CrossRef]
Device | Applications | Key Features | Reference |
---|---|---|---|
Collagen (RCPhC1) modified with MA, NB, and SH | 3D-printed tissue scaffolds | Suitable for two-photon polymerization (2PP); supports cell adhesion and proliferation in vitro; sub-micrometer resolution | [49] |
Collagen (rhCol III) + MSC-EVs hydrogel | Wound healing and inflammation control | Modulates macrophage polarization (M2); reduces IL-6; increases Ki67, CD31, and α-SMA; supports angiogenesis and tissue repair (in vitro + in vivo) | [50] |
Recombinant collagen + CaCO3 nanoparticles | Drug delivery systems | pH-responsive drug release; porous spherical nanostructure; high drug-loading; good biocompatibility; tunable crystallinity | [51] |
Collagen (rhCol III) hydrogel + hADSCs | Diabetic wound healing | Prolongs stem cell survival; enhances retention and regeneration; improves healing in diabetic mouse models | [52] |
Recombinant humanized type III collagen | Skin regeneration (photoaged skin) | Increases collagen content; improves elasticity; reduces dermal thickening; safe and customizable for regenerative applications | [53] |
Device | Applications | Key Features | Reference |
---|---|---|---|
Elastin-like peptide (ELP)-TNF antibody | Anti-inflammatory/anti-tumor | Increased molecular weight; prolonged half-life (from 28 min to 11.4 h); depot formation | [63] |
IFN-α-ELP fusion | Anti-tumor therapy | 30-fold extended half-life; preserved bioactivity; enhanced tumor accumulation | [64] |
IFN-α-ELP | Glioblastoma immune-chemotherapy post-surgery | Zero-order release; improved pharmacokinetics; brain penetration; anti-tumor immune response | [65] |
FLT3-ELP fusion | Targeted therapy for AML | Sustained activity; FLT3 receptor targeting; efficacy in vitro and in vivo | [66] |
CD99-ELP antibody fusion | AML treatment | Targeted CD99 on AML cells; notable antileukemic effects | [55] |
ELP-DRA (hexavalent DR5 agonist) | Cancer therapy | Depot-forming; once-weekly dosing; improved bioavailability | [67] |
ELP-Rapa nanoparticles | HR+ breast cancer | Non-covalent drug binding; integrin-mediated uptake; reduced systemic toxicity | [68] |
ELP-CPP-Dox conjugate | Glioblastoma drug delivery | Thermal responsiveness; CPP-facilitated uptake; pH-sensitive linker for targeted drug release | [58] |
UV-crosslinked ELP vesicles | HeLa cell cytotoxicity testing | pAzF for UV-induced crosslinking; thermal-triggered self-assembly; lower transition temp; improved delivery | [70] |
ELP-K12 + CpG + 131I | Metastatic breast cancer immunoradiotherapy | CpG depot formation; 3-week sustained release; radiolabeled with 131I; long retention at tumor site | [71] |
REDV-ELP nanofibers | Small-diameter vascular grafts | Reduced platelet adhesion; enhanced endothelial/smooth muscle cell interactions | [72] |
Elastin-silk recombinant + cellulose | Skin regeneration/wound healing | Bilayer skin substitute; mechanical strength; antibacterial properties | [73] |
Collagen-elastin recombinant scaffold | Skin regeneration | Durable membrane; supports regeneration and healing | [74] |
Device | Applications | Key Features | Reference |
---|---|---|---|
H2.1-MS1 silk gel with DOX | Her2-positive breast cancer treatment | Targeted delivery; reduced tumor size; low toxicity; preserved body weight in mice | [83] |
Silk eADF4(C16)-DOX via hydrazine linker | pH-sensitive drug release | Stable at pH 7.4; complete release at pH 4; intracellular activation within 16 h | [84] |
Spider silk copolymer with thrombin-sensitive linker | Targeted antibiotic delivery for S. aureus infections | Enzyme-responsive release; effective antibacterial activity in vitro and in vivo | [85] |
Silk (rMaSp)/NaHS nanofibrous membrane | Wound healing | Sustained H2S release; good hemocompatibility; enhanced healing with EPCs | [86] |
Silk fibroin hydrogel + recombinant spidroins with fibronectin, FGF, AMP | Skin substitutes and wound dressings | Enhanced cell adhesion; antimicrobial; bilayered tissue formation | [76] |
Spidroins with fibronectin motif on silk fibroin hydrogel | Burn wound treatment | Enhanced regeneration; fibronectin-mediated cellular interaction | [87] |
Spider silk–SIBLING hybrid gel | Tendon–bone interface engineering | Improved mineralization; specific cell adhesion; bone protein motifs | [89] |
Silk eADF4(C16) hydrogel scaffold | Bone tissue engineering | Calcium-binding; increased ALP activity; MSC osteogenic differentiation | [90] |
Spider silk–VTK chimera hydrogel | Osteogenesis and stem cell therapy | HA-binding domain; hMSC differentiation into osteoblasts | [91] |
Silk dECM + SELP hydrogel | Cartilage tissue regeneration | Mechanical resilience; bioadhesion; supports cell differentiation | [92] |
Device | Applications | Key Features | Reference |
---|---|---|---|
BC/CS/nHA hydrogel scaffold | Bone tissue engineering | Enhanced mechanical strength, improved degradation profile, superior water retention, high cell proliferation, confirmed bone formation in vivo | [100] |
BC/CS/Alg hydrogel scaffold | Bone tissue engineering | Dense fibrous network, good swelling and degradation behavior, excellent apatite formation, protein adsorption, and controlled release | [101] |
BC/DCECM scaffold (NHS/EDC crosslinked) | Cartilage regeneration | Strong chondrocyte adhesion/proliferation, enhanced cartilage regeneration in vivo, high elasticity, water retention, shape-memory, mimics natural cartilage | [102] |
BC/PVA composite | Corneal stroma replacement | Improved optical clarity, water retention, morphology, porosity; in vivo biocompatibility and transparency maintenance | [103] |
BC/quince seed mucilage scaffold | Wound healing, tissue repair | Enhanced swelling properties, improved fibroblast adhesion and proliferation | [104] |
BCNPs (BC nanoparticles) | Drug delivery systems | Biodegradable, thermally stable (up to 90 °C), increased crystallinity with time, sustained BSA release | [105] |
BC with glucocorticoid microemulsions | Transdermal drug delivery | Uniform microstructure, high permeation through Strat-M®, preserved anti-inflammatory activity, stable formulations | [106] |
Device | Applications | Key Features | Reference |
---|---|---|---|
XG-based liposomal hydrogel | Injectable drug delivery, regenerative therapy | Biodegradable, chemically crosslinked via Schiff base reaction, stable, biocompatible | [119] |
XGMA hydrogel scaffold (3D printed) | Post-traumatic cartilage therapy | Enhanced printability, viscoelasticity, antioxidant activity, chondrogenic potential | [120] |
XG/chitosan hybrid hydrogel + hAF-MSCs + TGF-β3 | Cartilage regeneration | Promotes ECM formation and chondrogenic differentiation, high bioactivity | [121] |
XG/GG injectable hydrogel + CS NPs + bFGF/BMP7 | Bone regeneration | Enhanced osteoblast proliferation/differentiation, high ALP activity, calcium deposition | [122] |
XG/CS/hydroxyapatite gel membrane | Guided bone regeneration, periodontal repair | Improved bioactivity, mechanical strength, mucoadhesive, osteoconductive, antimicrobial | [123] |
XG/alginate hydrogel | Vascular graft enhancement | Improved biocompatibility, mechanical properties, endothelialization of ePTFE grafts | [124] |
XG/CS membrane | Skin wound healing | Supports stromal cell proliferation, dermo-epidermal regeneration, suitable for chronic wounds/burns | [125] |
XG/KGM thermo-reversible hydrogel | Wound healing (smart dressing) | High hydrophilicity, moisture retention, exudate absorption, supports cell migration/proliferation | [126] |
Gellan-XG hydrogel conduit + electrospun nanofibers + NGF/NAC/MgO | Peripheral nerve regeneration | Supports sciatic nerve repair (10 mm gap), reduces atrophy, enhances functional recovery | [127] |
XG/GelMA composite bioink | Cardiac tissue regeneration | Mimics cardiac modulus, supports hiPSC differentiation into cardiomyocytes, spontaneous contractions | [128] |
Device | Applications | Key Features | Reference |
---|---|---|---|
HA-based hydrogel scaffolds | Bone, nerve, brain, muscle regeneration; cell delivery | Biocompatible, supports engineered tissue implantation and cell viability | [140] |
HA complex gel structures (EHD, 3D printing) | Tissue engineering | Fabricated via EHD/3D bioprinting, customizable architecture | [141] |
HA-based hydrogel fibers (electrospinning) | Controlled drug delivery, tissue engineering | Controlled fiber morphology, injectable forms, scalable | [142] |
HA/Chitosan membranes (needle-free electrospinning) | Biomedical coatings, wound healing | Excellent stability, enhanced biocompatibility | [143] |
HA microparticles/microgels (electrospraying) | Drug delivery, tissue mimicry | Enables controlled release, cell encapsulation for niche recreation | [144] |
HA-based bioinks (3D bioprinting) | Customized tissue scaffolds | Printable, biocompatible, combined with other biopolymers | [145] |
HA-based gels and wound dressings | Wound healing (acute/chronic) | Maintains moist environment, promotes angiogenesis and re-epithelialization | [146] |
Thermoresponsive HA-NIPAM hydrogels | Osteoarthritis treatment | Injectable, in situ gelling, supports cartilage ECM synthesis | [147] |
HA injections (viscosupplementation) | Knee osteoarthritis | Restores synovial fluid properties, reduces inflammation and stiffness | [148] |
HA/CaP or HA/BMP composite hydrogels | Bone regeneration | Osteoconductive, promotes vascularization and osteogenesis | [149] |
Injectable HA hydrogels + MSCs | Myocardial regeneration | Supports MSC adhesion, survival, and differentiation | [150] |
HA scaffolds | Nerve regeneration | Stimulates axonal regrowth and functional recovery in SCI models | [151] |
HA-based bioinks (photocrosslinkable) | Tissue/organoid printing | Tunable rheology, viable 3D constructs, enables personalized medicine | [151] |
Hydrogel Type | Origin | Biocompatibility | Mechanical Properties | Degradation Rate | Key Applications | Limitations |
---|---|---|---|---|---|---|
Recombinant Collagen | Recombinant (E. coli, yeast) | Excellent (widely validated in vivo) | Moderate (can be tuned) | Slow to moderate | Skin regeneration, wound healing | Potential cost, thermal instability |
Elastin-like Polypeptides (ELPs) | Recombinant (E. coli) | Excellent | Highly elastic, tunable | Slow | Drug delivery, vascular tissue | Complex design, scale-up challenges |
Silk-like Polymers (Spider Silk, SELPs) | Recombinant (E. coli, yeast) | Very good | High tensile strength | Slow | Bone, nerve, and skin regeneration | Limited biodegradability control |
Bacterial Cellulose (BC) | Microbial (A. xylinum) | Excellent | High (wet state strength) | Very slow | Wound dressing, bone/cartilage repair | Poor degradability, no cell-adhesion motifs |
Xanthan Gum (XG) | Microbial (X. campestris) | Good (in vitro and in vivo) | Soft, easily modifiable | Moderate to fast | Injectable scaffolds, nerve tissue | Low mechanical strength alone |
Hyaluronic Acid (HA) | Microbial (recombinant or native) | Excellent (clinical use) | Soft, viscoelastic | Fast (hours–days) | Osteoarthritis, cartilage, ophthalmic | Rapid clearance, needs modification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, S.; Yazdanpanah, S.; Petillo, O.; Conte, R.; Sepe, F.; Peluso, G.; Calarco, A. Sustainable Hydrogels for Medical Applications: Biotechnological Innovations Supporting One Health. Gels 2025, 11, 559. https://doi.org/10.3390/gels11070559
Romano S, Yazdanpanah S, Petillo O, Conte R, Sepe F, Peluso G, Calarco A. Sustainable Hydrogels for Medical Applications: Biotechnological Innovations Supporting One Health. Gels. 2025; 11(7):559. https://doi.org/10.3390/gels11070559
Chicago/Turabian StyleRomano, Silvia, Sorur Yazdanpanah, Orsolina Petillo, Raffaele Conte, Fabrizia Sepe, Gianfranco Peluso, and Anna Calarco. 2025. "Sustainable Hydrogels for Medical Applications: Biotechnological Innovations Supporting One Health" Gels 11, no. 7: 559. https://doi.org/10.3390/gels11070559
APA StyleRomano, S., Yazdanpanah, S., Petillo, O., Conte, R., Sepe, F., Peluso, G., & Calarco, A. (2025). Sustainable Hydrogels for Medical Applications: Biotechnological Innovations Supporting One Health. Gels, 11(7), 559. https://doi.org/10.3390/gels11070559