Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications
Abstract
1. Introduction
2. Basics of Capacitive Fundamentals of Various Applications and Correlations Between Each Application and Carbon Aerogel Properties
2.1. Double-Layer Capacitors
2.2. Pseudo-Capacitors
3. Synthesis Protocols of Carbon Aerogels
3.1. Synthesis and Characterization of Pure Carbon Aerogel Materials
- Sol–gel process: The sol–gel process is the basic reaction for the formation of the three-dimensional skeleton precursor of the aerogel. Resorcinol (R) and formaldehyde (F) are stirred evenly under the action of an alkali catalyst (usually sodium carbonate) to fully carry out addition and condensation reactions, thereby forming a polymer with a network structure. Then, the polymer is placed in a closed container for aging treatment, and finally, the RF organic wet gel is obtained.
- 2.
- Solvent replacement and drying: After the aging process of the wet gel is completed, solvent replacement is carried out. A low-surface-tension solvent is used to replace the liquid in the pores to reduce the capillary stress, thereby preparing an aerogel with an intact structure. This is to avoid the structural collapse caused by shrinkage during the subsequent drying process. The solvents generally used for replacement are non-aqueous solvents (such as methanol, ethanol, isopropanol, and acetone, etc.), and the replacement is repeated several times until the inorganic solvent is completely replaced. After solvent replacement, the wet gel can be dried by various drying methods to obtain a solid aerogel.
- Drying treatment of the organic gel: Under atmospheric conditions, the conventional evaporation of the solvent may cause a drastic change in surface tension when the vapor–liquid interface is formed. The huge difference in the surface tension between the coexisting gas phase and liquid phase generates significant mechanical stress, leading to the collapse of the pore structure. To ensure the porous structure of the aerogel, the drying process needs to be carried out without affecting the microstructure of the wet gel. Depending on the gel system, methods such as subcritical, supercritical, freeze-drying, vacuum drying, and atmospheric drying can be selected [22,23,24,25,26,27].
- Atmospheric drying: Atmospheric drying represents the most common and scalable method for aerogel production, enabling large-scale manufacturing as evidenced by the successful synthesis of hydrophobic silica aerogels in the following example. This technique facilitated the creation of aerogels with functional properties critical for applications: Khedkar et al. [28] achieved super hydrophobicity (0~154°), low density (0.12 g/cm3), and a high surface area (792 m2/g), while in their subsequent research, Khedkar et al. [29] further demonstrated the tunability of physicochemical properties (density: 0.10–0.18 g/cm3; surface area: 538–802 m2/g) through pH variation during sol–gel processing.
- However, inherent limitations arise from nanoscale pore structures, where capillary forces during solvent evaporation induce significant microstructural stress. This results in partial network collapse and a reduced specific surface area, as observed in the variable textural properties in Khedkar’s 2020 study [29] (surface area reduction to 538 m2/g at suboptimal pH) and the thermal stability threshold (478 °C) in his 2019 study [28]. Despite these constraints, optimized conditions (e.g., pH = 5 in Khedkar’s 2020 study [29]) can yield aerogels with balanced performance in transparency, thermal stability (536 °C), and surface area (802 m2/g), validating the method’s practicality for industrial adoption despite structural compromises.
- Subcritical drying: Subcritical drying is carried out when the mechanical strength of the gel is sufficient to withstand the capillary pressure (sometimes under atmospheric pressure), which can avoid significant structural changes. Although air drying is faster, simpler, and cheaper than the supercritical or subcritical carbon dioxide extraction and drying process, it may lead to the shrinkage of the pore structure of the xerogel.
- Freeze-drying: The framework structure of the cryogel after freeze-drying remains relatively intact. Freeze-drying is to remove the solvent by sublimation after freezing the solvent to avoid the formation of the gas–liquid interface, but it may still lead to the shrinkage of the gel. Moreover, it is important to perform solvent exchange (such as replacing with tert-butanol) before freeze-drying the wet gel to prevent the gel structure from being damaged and large pores from being generated due to the expansion of the aqueous solution.
- Supercritical drying: If the specific surface area of the aerogel is to be further increased, supercritical drying is currently the best choice [30]. Supercritical drying can maintain the network structure of the aerogel well. The process of supercritical drying involves filling the air with liquid CO2, exchanging the solvent for a low-surface-tension solvent such as CO2, and making it enter the supercritical state to minimize the mechanical stress on the pore walls. The aerogel prepared by this method has outstanding characteristics but is sensitive to synthesis conditions, and the high-pressure time is long. Although supercritical drying with an organic solvent such as acetone can shorten the time, the shrinkage degree and density of the aerogel are larger and the color is darker, and the shrinkage rate is sensitive to the depressurization rate.
- 3.
- Carbonization: The carbonization of organic aerogel [31] requires calcining the dried aerogel at a high temperature under an inert atmosphere or vacuum conditions (Table 1) to remove the oxygen-containing and hydrogen-containing functional groups in it and convert it into the corresponding carbon aerogel. During the carbonization process, conditions such as carbonization temperature, heating rate, and carbonization time need to be strictly controlled. Kim et al. [32] increased the final carbonization temperature and decreased the heating rate in an N2 environment, effectively controlling the density of the carbon aerogel (0.6 g/cm3) to remain unchanged and maximizing its electrical conductivity (≈50 S/cm).
- 4.
- Activation treatment: The activation treatment of carbon aerogel can optimize its pore structure and surface morphology, improve its performance, and thus meet specific application requirements. The number of micro- and mesopores of the carbon aerogel material can be increased through physical or chemical activation treatment methods. In fact, any activation method applied to activated carbon can in principle be applied to the activation treatment of carbon aerogel. Commonly used activation methods include physical activation (generally carbon dioxide activation [35]) and chemical activation (generally KOH activation [36]). Commonly used treatment methods are shown in Table 2, including the steam activation method, carbon dioxide activation method, phosphoric acid activation method, potassium hydroxide activation method, zinc chloride activation method, etc. [37]. Carbon dioxide activation can maintain the mesopore structure of carbon aerogel microspheres, which is beneficial for the ingress and egress of ions or electrons inside, while KOH activation is conducive to the formation of micropores in carbon aerogel and can increase its electrochemically active surface area. These activation methods can effectively improve the electrochemical performance of carbon aerogel, and the specific capacity of the activated carbon aerogel increases several times.
- 5.
- Purification and impurity removal: Carbon aerogels derived from different carbon sources, such as biomass (e.g., watermelon rind, lignin) or synthetic precursors, often contain impurities, including (1) inorganic residues (catalysts (KOH) and activators (ZnCl2)); (2) organic tar (byproducts of incomplete carbonization); and (3) ash content (silicates/metals from biomass). Common impurity removal methods include the solvent exchange step mentioned earlier (e.g., ethanol), which not only reduces surface tension but also utilizes organic solvents to remove organic residues. Another method involves acid washing the prepared carbon materials with hydrochloric acid solution, which helps remove metal ions and silica, as well as reduce the ash content, which is critical for electrochemical performance.
- 6.
- Characterization: Instrumental techniques are commonly employed to characterize carbon aerogels, evaluating their various properties and structural features. The advantages and limitations of representative characterization methods are summarized in Table 3 below.
3.2. Modification of Carbon Aerogel Materials
3.2.1. Heteroatom Doping (N, P, S, etc.)
- Atomic Size and Spatial Occupancy: Heteroatoms (e.g., P, S) exhibit larger atomic radii than carbon (P: 195 pm, S: 180 pm vs. C: 170 pm), leading to steric hindrance during doping. For instance, phosphorus doping initially expands micropores or generates mesopores by occupying additional spatial volume [48], but excessive P loading exerts compressive stress on the carbon skeleton, causing pore wall collapse. Sulfur doping, particularly via high-temperature pyrolysis, induces up to 80% volumetric expansion due to sulfur sublimation, which disrupts the porous network [49]. Structural defects (e.g., vacancies, edge sites) formed during high-temperature carbonization facilitate micro/mesopore creation initially, but excessive doping (e.g., sulfur-induced expansion) can conversely collapse or block pores [49].
- Thermal Stress during High-Temperature Carbonization: Heteroatom doping often involves high-temperature processes (e.g., >600 °C for N-doping with urea), where heteroatoms induce structural defects that initially promote pore formation [49]. However, excessive doping enhances thermal instability, causing uneven shrinkage of the carbon matrix. For example, Song et al. [14] found that deviating from a 1:2 Co2+/Fe3+ ratio in N-CoFe2O4 composites led to uneven thermal expansion, resulting in pore collapse.
- Redox Reactions and Functional Group Interactions: Heteroatoms alter the carbon matrix’s electronic distribution, promoting oxygen-containing functional groups (e.g., carboxyls, phenols) [50]. During activation (e.g., KOH treatment), these groups undergo redox reactions, generating gaseous byproducts (CO, CO2) that exert internal pressure on pores. For instance, KOH activation of N-doped carbon aerogels at 800 °C produces H2O and CO2, which may collapse micropores if gas evolution exceeds pore diffusion capacity [40].
- Synergistic Effects with Activation Processes: Chemical activation (e.g., KOH) combined with heteroatom doping exacerbates pore collapse. KOH etching preferentially removes carbon atoms adjacent to heteroatom sites, weakening pore walls. Li et al. [51] showed that PPy-grafted N-doped carbon aerogels under KOH activation had 15% lower pore volume than undoped counterparts due to combined etching and heteroatom-induced stress. Moderate nitrogen doping increases specific surface area via micropore generation, but excessive doping or synergistic activation can reverse this effect [49].
3.2.2. Conductive Polymer Grafting
- Framework Degradation: Repeated swelling/contraction weakens the polymer–carbon aerogel interface, leading to delamination. Zhang et al. [72] found that PPy/CA composites with >50 wt% PPy showed 20% capacitance decay after 10,000 cycles due to structural fatigue.
- Pore Blocking: Polymer aggregation in mesopores (10–50 nm) reduces ion accessibility. Khammar et al. [73] observed that low PANI loadings (<20 wt%) blocked micropores in CX aerogels, decreasing the specific surface area from 1200 to 850 m2/g.
3.2.3. Carbon Aerogel/Transition Metal Compound Composites
3.3. Comparison of Different Preparation Methods
3.4. Reproducibility in Synthesis of Carbon Aerogels
3.4.1. Key Parameters and Reproducibility Challenges in Synthesis Processes
3.4.2. Impacts of Raw Material Sources and Pretreatment
3.4.3. Reproducibility Bottlenecks in Modification Processes
3.5. Stability of Carbon Aerogel Materials
4. Application of Carbon Aerogel
4.1. Electrochemistry
4.1.1. Supercapacitors
4.1.2. Capacitive Deionization
4.1.3. Electrocatalysis
4.2. Water Treatment
4.2.1. Oil/Water Separation
4.2.2. Removal of Heavy Metal Ions
4.3. Other Applications
4.3.1. Flame Retardancy and Thermal Insulation
4.3.2. Microwave Absorption
4.3.3. Carbon Capture
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- González, A.; Goikolea, E.; Barrena, J.A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206. [Google Scholar] [CrossRef]
- Qian, H.; Kucernak, A.R.; Greenhalgh, E.S.; Bismarck, A.; Shaffer, M.S. Multifunctional structural supercapacitor composites based on carbon aerogel modified high performance carbon fiber fabric. ACS Appl. Mater. Interfaces 2013, 5, 6113–6122. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, A.B.; MAssefi FKiamehr MAlizadeh, R. Ternary nanocomposite of conductive polymer/chitosan biopolymer/metal organic framework: Synthesis, characterization and electrochemical performance as effective electrode materials in pseudocapacitors. Inorg. Chem. Commun. 2020, 115, 107885. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Casalongue, H.S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.P.; Cygan, P.J.; Jow, T.R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. Cheminform 1995, 142, 2699. [Google Scholar] [CrossRef]
- Zheng, J.P. Proton insertion into ruthenium oxide film prepared by pulsed laser deposition. J. Electrochem. Soc. 1996, 143, 1068–1069. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, S.W.; Kim, S.K.; Han, S.; Gatineau, J. Growth of RuO2 Thin Films by Pulsed-Chemical Vapor Deposition Using RuO4 Precursor and 5% H2 Reduction Gas. Chem. Mater. 2010, 22, 5700–5706. [Google Scholar] [CrossRef]
- Fang, D.L.; Wu, B.C.; Mao, A.Q.; Yan, Y.; Zheng, C.H. Supercapacitive properties of ultra-fine MnO2 prepared by a solid-state coordination reaction. J. Alloys Compd. 2010, 507, 526–530. [Google Scholar] [CrossRef]
- Wang, S.Y.; Ho, K.C.; Kuo, S.L. Investigation on Capacitance Mechanisms of Fe3O4 Electrochemical Capacitors. J. Electrochem. Soc. 2006, 153, A75. [Google Scholar] [CrossRef]
- Liu, Q.; Nayfeh, M.H.; Yau, S.T. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes. J. Power Sources 2010, 195, 7480–7483. [Google Scholar] [CrossRef]
- Toita, S.; Inoue, K. Improved electrical and thermal properties of polypyrrole prepared by the repetition of a combination of chemical polymerization and 2-naphthalenesulfonic acid treatment. Synth. Met. 2010, 160, 516–518. [Google Scholar] [CrossRef]
- Katz, H.E.; Searson, R.C.; Poehler, R.O. Batteries and charge storage devices based on electronically conducting polymers. J. Mater. Res. 2010, 25, 1561–1574. [Google Scholar] [CrossRef]
- Song, G.; Gai, L.; Yang, K.; Wang, X.; An, Q.; Xiao, Z.; Zhai, S. A versatile N-doped honeycomb-like carbonaceous aerogels loaded with bimetallic sulfide and oxide for superior electromagnetic wave absorption and supercapacitor applications. Carbon 2021, 181, 335–347. [Google Scholar] [CrossRef]
- Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L. The aerocapacitor: An electrochemical double-layer energy-storage device. J. Electrochem. Soc. 1993, 140, 446. [Google Scholar] [CrossRef]
- Li, W.C.; Lu, A.H.; Guo, S.C. Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde. Carbon 2001, 39, 1989–1994. [Google Scholar] [CrossRef]
- Zhang, R.; Li, W.; Li, K.; Lu, C.; Zhan, L.; Ling, L. Effect of concentration of reactants on porosity of hydrogels, organic and carbon aerogels. Microporous Mesoporous Mater. 2004, 72, 167–173. [Google Scholar] [CrossRef]
- Tamon, H.; Ishizaka, H.; Mikami, M.; Okazaki, M. Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 1997, 35, 791–796. [Google Scholar] [CrossRef]
- Elkhatat, A.M.; Al-Muhtaseb, S.A. Advances in Tailoring Resorcinol-Formaldehyde Organic and Carbon Gels. Adv. Mater. 2011, 23, 2887–2903. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Reichenauer, G.; Fricke, J. Carbon aerogels derived from cresol–resorcinol–formaldehyde for supercapacitors. Carbon 2002, 40, 2955–2959. [Google Scholar] [CrossRef]
- Yamamoto, T.; Nishimura, T.; Suzuki, T.; Tamon, H. Effect of drying conditions on mesoporosity of carbon precursors prepared by sol-gel polycondensation and freeze drying. Carbon 2001, 39, 2374–2376. [Google Scholar] [CrossRef]
- Yun, S.; Luo, H.; Gao, Y. Ambient-pressure drying synthesis of large resorcinol–formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J. Mater. Chem. A 2014, 2, 14542–14549. [Google Scholar] [CrossRef]
- Saliger, R.; Fischer, U.; Herta, C.; Fricke, J. High surface area carbon aerogels for supercapacitors. J. Non-Cryst. Solids 1998, 225, 81–85. [Google Scholar] [CrossRef]
- Kehrle, J.; Purkait, T.; Kaiser, S.; Raftopoulos, K.N.; Winnacker, M.; Ludwig, T.; Aghajamali, M.; Hanzlik, M.; Rodewald, K.; Helbich, T. Superhydrophobic Silicon Nanocrystal-Silica Aerogel Hybrid Materials: Synthesis, Properties, and Sensing Application. Langmuir 2018, 34, 4888–4896. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dai, Z.; Wu, J.; Zhao, N.; Xu, J. Vacuum-Dried Robust Bridged Silsesquioxane Aerogels. Adv. Mater. 2013, 25, 4494–4497. [Google Scholar] [CrossRef] [PubMed]
- Achari, V.S.; Lopez, R.M.; Rajalekshmi, A.S.; Jayasree, S.; Sekkar, V. Scavanging Nitrophenol from aquatic effluents with triethyl amine catalyzed ambient pressure dried Carbon Aerogel. J. Environ. Chem. Eng. 2020, 8, 103670. [Google Scholar] [CrossRef]
- Lei, C.; Hu, Z.; Zhang, Y.; Yang, H.; Li, J.; Hu, S. Tailoring structural and physical properties of polymethylsilsesquioxane aerogels by adjusting NH3·H2O concentration. Microporous Mesoporous Mater. 2018, 258, 236–243. [Google Scholar] [CrossRef]
- Khedkar, M.V.; Somvanshi, S.B.; Humbe, A.V.; Jadhav, K.M. Surface modified sodium silicate based superhydrophobic silica aerogels prepared via ambient pressure drying process. J. Non-Cryst. Solids 2019, 511, 140–146. [Google Scholar] [CrossRef]
- Khedkar, M.V.; Jadhav, S.A.; Somvanshi, S.B.; Kharat, P.B.; Jadhav, K.M. Physicochemical properties of ambient pressure dried surface modified silica aerogels: Effect of pH variation. SN Appl. Sci. 2020, 2, 696. [Google Scholar] [CrossRef]
- Zu, G.; Shen, J.; Zou, L.; Wang, F.; Zhang, Y. Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 2016, 99, 203–211. [Google Scholar] [CrossRef]
- Hanzawa, Y.; Hatori, H.; Yoshizawa, N.; Yamada, Y. Structural changes in carbon aerogels with high temperature treatment. Carbon 2002, 40, 575–581. [Google Scholar] [CrossRef]
- Kim, S.J.; Hwang, S.W.; Hyun, S.H. Preparation of carbon aerogel electrodes for supercapacitor and their electrochemical characteristics. J. Mater. Sci. 2005, 40, 725–731. [Google Scholar] [CrossRef]
- Lyu, L.; Seong, K.-d.; Ko, D.; Choi, J.; Lee, C.; Hwang, T.; Cho, Y.; Jin, X.; Zhang, W.; Pang, H.; et al. Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Mater. Chem. Front. 2019, 3, 2543–2570. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, X.S. Biomass-derived carbon electrode materials for supercapacitors. Sustain. Energy Fuels 2017, 1, 1265–1281. [Google Scholar] [CrossRef]
- Fang, B.; Wei, Y.Z.; Maruyama, K.; Kumagai, M. High capacity supercapacitors based on modified activated carbon aerogel. J. Appl. Electrochem. 2005, 35, 229–233. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Huang, Q. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J. Power Sources 2006, 158, 784–788. [Google Scholar] [CrossRef]
- Lozano-Castelló, D.; Calo, J.M.; Cazorla-Amorós, D.; Linares-Solano, A. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 2007, 45, 2529–2536. [Google Scholar] [CrossRef]
- Qin, L.; Hou, Z.; Lu, S.; Liu, S.; Liu, Z.; Jiang, E. Porous Carbon derived from Pine Nut Shell prepared by Steam Activation for Supercapacitor Electrode Material. Int. J. Electrochem. Sci. 2019, 14, 8907–8918. [Google Scholar] [CrossRef]
- Lei, E.; Li, W.; Ma, C.; Xu, Z.; Liu, S. CO2-activated porous self-templated N-doped carbon aerogel derived from banana for high-performance supercapacitors. Appl. Surf. Sci. 2018, 457, 477–486. [Google Scholar]
- Lin, G.; Ma, R.; Zhou, Y.; Liu, Q.; Dong, X.; Wang, J. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim. Acta 2018, 261, 49–57. [Google Scholar] [CrossRef]
- Yang, V.; Senthil, R.A.; Pan, J.; Khan, A.; Osman, S.; Wang, L.; Jiang, W.; Sun, Y. Highly ordered hierarchical porous carbon derived from biomass waste mangosteen peel as superior cathode material for high performance supercapacitor. J. Electroanal. Chem. 2019, 855, 113616. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, C.; Lin, B.; Huang, Q. Surface modified and activated waste bone char for rapid and efficient VOCs adsorption. Chemosphere 2020, 256, 127054. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, Y.; Zhang, Y.; Liu, S.; Wang, C.; Chen, W.; Liu, C.; Chen, Z.; Zhang, Y. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 2020, 297, 122381. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.A.; Chen, C.; Zhu, Z. Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells. J. Colloid Interface Sci. 2019, 538, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, H.; Ramyea, R.; Maruthu, A.; Kandasamy, K.; Michalska, M.; Kandasamy, S.K. Synthesis methods of carbonaceous materials from different bio-wastes as electrodes for supercapacitor and its electrochemistry—A review. Bioresour. Technol. Rep. 2022, 19, 101187. [Google Scholar] [CrossRef]
- Wu, C.W.; Li, P.H.; Wei, Y.M.; Yang, C.; Wu, W.J. Review on the preparation and application of lignin-based carbon aerogels. RSC Adv. 2022, 12, 10755–10765. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cheng, M.; Liu, Q.; Wang, R.; Wei, Y.; Ma, W.; Hu, J.; Wei, T.; Ling, Y.; Liu, B.; et al. Bimetallic Bi–Sn micro-/nanospheres@cellulose nanocrystal derived carbon aerogel composite anode for high-performance Mg-ion batteries. Compos. Commun. 2023, 39, 101553. [Google Scholar] [CrossRef]
- Hou, H.; Shao, L.; Zhang, Y.; Zou, G.; Chen, J.; Ji, X. Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries. Adv. Sci. 2017, 4, 1600243. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhou, M.; Li, H.; Wang, K.; Cheng, S.; Jiang, K. A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ. Sci. 2015, 8, 2916–2921. [Google Scholar] [CrossRef]
- Wei, X.; Wan, S.; Gao, S. Self-assembly-template engineering nitrogen-doped carbon aerogels for high-rate supercapacitors. Nano Energy 2016, 28, 206–215. [Google Scholar] [CrossRef]
- Li, Y.J.; Ni, X.Y.; Shen, J.; Liu, D.; Zhou, X.W. Preparation and performance of polypyrrole/nitric acid activated Carbon aerogel nanocomposite materials for supercapacitors. Acta Phys. Chim. Sin. 2016, 32, 493–502. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power Sources 2020, 480, 228830. [Google Scholar] [CrossRef]
- Guo, D.H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Titirici, M.M.; White, R.J.; Zhao, L. Nitrogen-doped Hydrothermal Carbons. Green 2012, 2, 25–40. [Google Scholar] [CrossRef]
- Hu, Y.; Tong, X.; Zhuo, H.; Zhong, L.; Peng, X.; Wang, S.; Sun, R. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO2 adsorption. RSC Adv. 2016, 6, 15788–15795. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, J.; Xu, Q.; Chen, Z.; Yang, D.; Wang, B.; Jiang, Z. Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes. RSC Adv. 2014, 4, 23412–23419. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, C.; Ong, W.K.; Lu, X. Ultrafast-Freezing-Assisted Mild Preparation of Biomass-Derived, Hierarchically Porous, Activated Carbon Aerogels for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 403–411. [Google Scholar] [CrossRef]
- Ma, L.; Sun, G.; Ran, J.; Lv, S.; Shen, X.; Tong, H. One-Pot Template-Free Strategy toward 3D Hierarchical Porous Nitrogen-Doped Carbon Framework in Situ Armored Homogeneous NiO Nanoparticles for High-Performance Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 22278–22290. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.; Hu, Y.; Chen, Z.; Zhong, L. Cellulose carbon aerogel/PPy composites for high-performance supercapacitor. Carbohydr. Polym. 2019, 215, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xi, Y.; Chen, S.; Li, D.; She, X.; Sun, J.; Han, W.; Yang, D.; Guo, S. Prolifera-Green-Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage. Adv. Funct. Mater. 2016, 26, 8487–8495. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Luo, J.-D.; Qi, X.-T.; Yu, J.; Cai, J.-X.; Wei, J.-C.; Yang, Z.-Y. A Chemical Blowing Strategy to Fabricate Biomass-Derived Carbon-Aerogels with Graphene-Like Nanosheet Structures for High-Performance Supercapacitors. ChemSusChem 2019, 12, 2462–2470. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-L.; Wen, T.; Guo, H.-L.; Yang, S.; Wang, X.; Xu, A.-W. Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors. ACS Nano 2013, 7, 3589–3597. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Kuang, L.; Wang, C.; Jin, C.; Wang, Z.; Sun, Q. Cellulose as an Adhesive for the Synthesis of Carbon Aerogel with a 3D Hierarchical Network Structure for Capacitive Energy Storage. ChemElectroChem 2019, 6, 2586–2594. [Google Scholar] [CrossRef]
- Braghiroli, F.L.; Fierro, V.; Szczurek, A.; Stein, N.; Parmentier, J.; Celzard, A. Hydrothermally treated aminated tannin as precursor of N-doped carbon gels for supercapacitors. Carbon 2015, 90, 63–74. [Google Scholar] [CrossRef]
- Zhuo, H.; Hu, Y.; Tong, X.; Zhong, L.; Peng, X.; Sun, R. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture. Ind. Crops Prod. 2016, 87, 229–235. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Wang, H.; Sui, D.; Meng, F.; Qi, W. Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy. J. Energy Chem. 2020, 49, 348–357. [Google Scholar] [CrossRef]
- Ma, P.; Yao, S.; Wang, Z.; Qi, F.; Liu, X. Preparation of nitrogen-doped hierarchical porous carbon aerogels from agricultural wastes for efficient pollution adsorption. Sep. Purif. Technol. 2023, 311, 123250. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jung, J.C.; Park, S.; Seo, J.G.; Song, I.K. Nano-Sized Ni-Doped Carbon Aerogel for Supercapacitor. J. Nanosci. Nanotechnol. 2011, 11, 6528–6532. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, C.; Yang, Z.; Kuang, Y.; Li, T.; Li YHuang, H.; Kierzewski, I.; Liu, B.; He, S. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 2018, 12, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zaibi, F.; Slama, I.; Okolie, C.; Deshmukh, J.; Chtourou, R. Electro-performance of Functionalized Silicon Nanowires by Conductive Polymer Coated with Gold Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124450. [Google Scholar] [CrossRef]
- Norouzian, R.S.; Mansour, M. Polyaniline-thiacalix [4]arene metallopolymer, self-doped, and externally doped conductive polymers. Prog. Org. Coat. Int. Rev. J. 2020, 146, 105731. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Zhang, W.; Huang, Z.; Tsui, C.P.; Lu, C.; He, C.; Yang, Y. In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors. Electrochim. Acta 2019, 301, 55–62. [Google Scholar] [CrossRef]
- Khammar, H.; Abdelwahab, A.; Abdel-Samad, H.S.; Hassan, H.H. Synergistic performance of simply fabricated polyaniline/carbon xerogel composite as supercapacitor electrode. J. Electroanal. Chem. 2021, 880, 114848. [Google Scholar] [CrossRef]
- Qiu, M.; Zhang, S.; Abbas, Y.; Zhang, C.; Zhang, T. Heteroatom-doped ultrahigh specific area carbons from hybrid polymers with promising capacitive performance. J. Power Sources 2020, 478, 228761. [Google Scholar] [CrossRef]
- Zhuang, R.; Dong, Y.; Li, D.; Liu, R.; Zhang, S.; Yu, Y.; Song, H.; Ma, J.; Liu, X.; Chen, X. Polyaniline-mediated coupling of Mn3O4 nanoparticles on activated carbon for high-performance asymmetric supercapacitors-ScienceDirect. J. Alloys Compd. 2020, 851, 156871. [Google Scholar] [CrossRef]
- Shang, M.; Zhang, X.; Zhang, J.; Sun, J.; Yi, X. Nitrogen-doped carbon composite derived from ZIF-8/Polyaniline@cellulose-derived carbon aerogel for high-performance symmetric supercapacitors. Carbohydr. Polym. 2021, 262, 117966. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Oh, T.; Kim, M.; Yang, J.; Kim, J. Optimal Co(OH) Nanowire Contents in Graphene Nanosheet Electrode on Its Electrochemical Performance of Supercapacitor. J. Nanosci. Nanotechnol. 2019, 19, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Wang, S.; Cheng, L.; Wang, Y.; Fu, L.; Sun, Y.; Lin, B. High-performance asymmetric supercapacitors of advanced double ion-buffering reservoirs based on battery-type hierarchical flower-like Co3O4-GC microspheres and 3D holey graphene aerogels. Electrochim. Acta 2021, 365, 137334. [Google Scholar] [CrossRef]
- Ma, C.; Dirican, L.; Cheng, M.; Li, H.; Song, J.; Shi, Y.; Zhang, J.; Wu, X. ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors. J. Colloid Interface Sci. 2021, 586, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Cheng, D.; Wang, S.; Xiong, C.; Yang, Q. Phytic acid modified manganese dioxide/graphene composite aerogel as high-performance electrode materials for supercapacitors. Appl. Surf. Sci. 2019, 495, 143589. [Google Scholar] [CrossRef]
- Chien, H.C.; Cheng, W.Y.; Wang, Y.H.; Lu, S.Y. Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites. Adv. Funct. Mater. 2012, 22, 5038–5043. [Google Scholar] [CrossRef]
- Dong, J.X.; Li, S.J.; Ding, Y. Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors. J. Alloys Compd. 2020, 845, 155701. [Google Scholar] [CrossRef]
- Rani, M.U.; Naresh, V.; Damodar, D.; Muduli, S.; Martha, S.K.; Deshpande, A.S. In-situ formation of mesoporous SnO2@C nanocomposite electrode for supercapacitors-ScienceDirect. Electrochim. Acta 2020, 365, 137284. [Google Scholar] [CrossRef]
- Qu, C.; Zhang, L.; Meng, W.; Liang, Z.; Zhu, B.; Dang, D.; Dai, S.; Zhao, B.; Tabassum, H.; Gao, S. MOF-derived α-NiS nanorods on graphene as an electrode for high-energy-density supercapacitors. J. Mater. Chem. A 2018, 6, 4003–4012. [Google Scholar] [CrossRef]
- Yin, Q.; He, L.; Lian, J.; Sun, J.; Lin, B. The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors. Carbon 2019, 155, 147–154. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, Z.; Kang, L.; Liu, Z.-H. Preparation and capacitance of V2O5/holey graphene hybrid aerogel electrode with high performance. J. Alloys Compd. 2019, 780, 792–799. [Google Scholar] [CrossRef]
- Fu, G.; Yan, X.; Chen, Y.; Xu, L.; Sun, D.; Lee, J.-M.; Tang, Y. Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles. Adv. Mater. 2018, 30, 1704609. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Chen, S.; Ren, J.; Jia, Y.A.; Chen, C.; Komarneni, S.; Yang, D.; Yao, X. Electronic Structure Tuning in Ni3FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano 2018, 12, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Patil, U.M.; Salunkhe, R.R.; Gurav, K.V.; Lokhande, C.D. Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl. Surf. Sci. 2008, 255 Pt 2, 2603–2607. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, Q.; Zhang, J.; Yang, H.; Wang, B.; Yang, D.; Hu, J.; Liu, Z. Functionalization of Biomass Carbonaceous Aerogels: Selective Preparation of MnO2@CA Composites for Supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 9689–9697. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Xing, L.; Liu, Y.; Gao, Y.; Liu, J. A porous biomass-based sandwich-structured Co3O4@Carbon Fiber@Co3O4 composite for high-performance supercapacitors. Carbon 2018, 129, 819–825. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.; Dong, X.; Li, X.; Xie, Y.; Chen, S.; Li, P.; Hou, H.; Song, Y. Three-Dimensional Macroporous Carbon/Fe3O4-Doped Porous Carbon Nanorods for High-Performance Supercapacitor. ACS Sustain. Chem. Eng. 2016, 4, 1531–1537. [Google Scholar] [CrossRef]
- Wang, X.; Chen, S.; Li, D.; Sun, S.; Peng, Z.; Komarneni, S.; Yang, D. Direct Interfacial Growth of MnO2 Nanostructure on Hierarchically Porous Carbon for High-Performance Asymmetric Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 633–641. [Google Scholar] [CrossRef]
- Xiang, Z.; Song, Y.; Xiong, J.; Pan, Z.; Wang, X.; Liu, L.; Liu, R.; Yang, H.; Lu, W. Enhanced electromagnetic wave absorption of nanoporous Fe3O4 @ carbon composites derived from metal-organic frameworks. Carbon 2019, 142, 20–31. [Google Scholar] [CrossRef]
- Li, Y.; Yu, N.; Yan, P.; Li, Y.; Zhou, X.; Chen, S.; Wang, G.; Wei, T.; Fan, Z. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors. J. Power Sources 2015, 300, 309–317. [Google Scholar] [CrossRef]
- Pourhosseini, S.E.M.; Norouzi, O.; Salimi, P.; Naderi, H.R. Synthesis of a Novel Interconnected 3D Pore Network Algal Biochar Constituting Iron Nanoparticles Derived from a Harmful Marine Biomass as High-Performance Asymmetric Supercapacitor Electrodes. ACS Sustain. Chem. Eng. 2018, 6, 4746–4758. [Google Scholar] [CrossRef]
- Fang, K.; Chen, J.; Zhou, X.; Mei, C.; Tian, Q.; Xu, J.; Wong, C.-P. Decorating biomass-derived porous carbon with Fe2O3 ultrathin film for high-performance supercapacitors. Electrochim. Acta 2018, 261, 198–205. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Sethuraman, M.G.; Lee, Y.R. Supercapacitor performance of carbon supported Co3O4 nanoparticles synthesized using Terminalia chebula fruit. J. Taiwan Inst. Chem. Eng. 2016, 68, 489–495. [Google Scholar] [CrossRef]
- Nagaraju, G.; Cha, S.M.; Yu, J.S. Ultrathin nickel hydroxide nanosheet arrays grafted biomass-derived honeycomb-like porous carbon with improved electrochemical performance as a supercapacitive material. Sci. Rep. 2017, 7, 45201. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lu, C.; Xiao, D.; Zhang, H.; Chen, C.; Xie, L.; Liu, Y.; Yuan, S.; Kong, Q.; Zheng, K.; et al. β-Ni(OH)2 Nanosheet Arrays Grown on Biomass-Derived Hollow Carbon Microtubes for High-Performance Asymmetric Supercapacitors. ChemElectroChem 2018, 5, 1279–1287. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Huang, P.; Wang, H.; Cao, C.; Song, W. Carbonaceous aerogel and CoNiAl-LDH@CA nanocomposites derived from biomass for high performance pseudo-supercapacitor. Sci. Bull. 2017, 62, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, X.; Zhou, X.; Jiang, S.; Chen, W.; Shi, S.; Wang, D.; Liu, Z. Ultrasmall Co3O4 Nanoparticles Confined in P, N-Doped Carbon Matrices for High-Performance Supercapacitors. J. Phys. Chem. C 2020, 124, 9225–9232. [Google Scholar] [CrossRef]
- Li, T.; An, X.; Chen, J.; Fan, L.; Fu, D. One-Step Synthesis of Cellulosed-Based Nitrogen-Doped Carbon Aerogel and Its CO2 Adsorption Performance. Energy Fuels 2024, 38, 555–564. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Samad, Y.A.; Polychronopoulou, K.; Alhassan, S.M.; Liao, K. Carbon Aerogel from Winter Melon for Highly Efficient and Recyclable Oils and Organic Solvents Absorption. ACS Sustain. Chem. Eng. 2014, 2, 1492–1497. [Google Scholar] [CrossRef]
- Wang, Z.; Jin, P.; Wang, M.; Wu, G.; Dong, C.; Wu, A. Biomass-Derived Porous Carbonaceous Aerogel as Sorbent for Oil-Spill Remediation. ACS Appl. Mater. Interfaces 2016, 8, 32862–32868. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Wei, J.; Jonasson, S.; Hedlund, J.; Oksman, K. Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO2 Capture and Energy Storage. ACS Appl. Mater. Interfaces 2020, 12, 7432–7441. [Google Scholar] [CrossRef] [PubMed]
- Seantier, B.; Bendahou, D.; Bendahou, A.; Grohens, Y.; Kaddami, H. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr. Polym. 2016, 138, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Saelices, C.; Seantier, B.; Cathala, B.; Grohens, Y. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr. Polym. 2017, 157, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Arnold, B.B.; Murphy, G.W. Studies on the electrochemistry of carbon and chemically-modified carbon surfaces. J. Phys. Chem. 1961, 65, 135–138. [Google Scholar] [CrossRef]
- Cheng, J.; Cheng, X.; Wang, Z.; Hussain, M.B.; Wang, M. Multifunctional carbon aerogels from typha orientalis for applications in adsorption: Hydrogen storage, CO2 capture and VOCs removal. Energy 2023, 263, 125984. [Google Scholar] [CrossRef]
- Zhan, W.; Gao, L.; Fu, X.; Siyal, S.H.; Sui, G.; Yang, X. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal. Appl. Surf. Sci. 2019, 467–468, 1122–1133. [Google Scholar] [CrossRef]
- Moreno-Castilla, C.; Maldonado-Hódar, F.J. Carbon aerogels for catalysis applications: An overview. Carbon 2005, 43, 455–465. [Google Scholar] [CrossRef]
- Yang, K.-L.; Ying, T.-Y.; Yiacoumi, S.; Tsouris, C.; Vittoratos, E.S. Electrosorption of ions from aqueous solutions by carbon aerogel: An electrical double-layer model. Langmuir 2001, 17, 1961–1969. [Google Scholar] [CrossRef]
- Yang, C.-M.; Choi, W.-H.; Na, B.-K.; Cho, B.W.; Cho, W.I. Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes. Desalination 2005, 174, 125–133. [Google Scholar] [CrossRef]
- Jung, H.-H.; Hwang, S.-W.; Hyun, S.-H.; Lee, K.-H.; Kim, G.-T. Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying. Desalination 2007, 216, 377–385. [Google Scholar] [CrossRef]
- Haro, M.; Rasines, G.; Macias, C.; Ania, C.O. Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water. Carbon 2011, 49, 3723–3730. [Google Scholar] [CrossRef]
- Xu, P.; Drewes, J.E.; Heil, D.; Wang, G. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 2008, 42, 2605–2617. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Huang, X.; Zhao, Z.L.; Wang, M.; Xiang, B.; Li, J.; Feng, Z.; Xu, H.; Gu, M. Ultrahigh-Loading of Ir Single Atoms on NiO Matrix to Dramatically Enhance Oxygen Evolution Reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, Y.; Huang, L.-B.; Liu, X.-Z.; Zhang, Q.-H.; He, C.; Wu, Z.-Y.; Zhang, L.-J.; Wu, J.; Yang, W.; et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Jiang, W.-J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y.-Y.; Jin, S.-F.; Gao, F.; Wan, L.-J.; Hu, J.-S. Electronic and Morphological Dual Modulation of Cobalt Carbonate Hydroxides by Mn Doping toward Highly Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. J. Am. Chem. Soc. 2017, 139, 8320–8328. [Google Scholar] [CrossRef] [PubMed]
- Maleki, H.; Hüsing, N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects. Appl. Catal. B 2018, 221, 530–555. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Zuo, Z.; Wang, H.; Zhang, J. Tunable CoFe-based active sites on 3D heteroatom doped graphene aerogel electrocatalysts via annealing gas regulation for efficient water splitting. J. Mater. Chem. A 2018, 6, 15728–15737. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, S.; Yang, J.; Chen, C.; Song, Y.; Xu, C.; Wu, M.; Liao, J. Rational design and controllable synthesis of polymer aerogel-based single-atom catalysts with high loading. Mater. Adv. 2021, 2, 6885–6900. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, G.; Yu, M.; Wang, X.; Lv, J.; Yang, F. Free-Standing 3D Porous N-Doped Graphene Aerogel Supported Platinum Nanocluster for Efficient Hydrogen Production from Ammonia Electrolysis. ACS Sustain. Chem. Eng. 2018, 6, 8437–8446. [Google Scholar] [CrossRef]
- Song, Z.; Liu, W.; Sun, N.; Wei, W.; Zhang, Z.; Liu, H.; Liu, G.; Zhao, Z. One-step self-assembly fabrication of three-dimensional copper oxide/graphene oxide aerogel composite material for supercapacitors. Solid State Commun. 2019, 287, 27–30. [Google Scholar] [CrossRef]
- Schneider, M.; Baiker, A. Aerogels in Catalysis. Catal. Rev. 1995, 37, 515–556. [Google Scholar] [CrossRef]
- Narendra Kumar, A.V.; Li, Y.; Yu, H.; Yin, S.; Xue, H.; Xu, Y.; Li, X.; Wang, H.; Wang, L. 3D graphene aerogel supported FeNi-P derived from electroactive nickel hexacyanoferrate as efficient oxygen evolution catalyst. Electrochim. Acta 2018, 292, 107–114. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.; Shi, Z.; Ye, Z.; Wang, W.; Zhang, N.; Hong, Z.; Zhi, M. Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem. Eng. J. 2018, 331, 185–193. [Google Scholar] [CrossRef]
- Shi, Q.; Zhu, C.; Zhong, H.; Su, D.; Li, N.; Engelhard, M.H.; Xia, H.; Zhang, Q.; Feng, S.; Beckman, S.P.; et al. Nanovoid Incorporated IrxCu Metallic Aerogels for Oxygen Evolution Reaction Catalysis. ACS Energy Lett. 2018, 3, 2038–2044. [Google Scholar] [CrossRef]
- Xu, X.; Liang, H.; Ming, F.; Qi, Z.; Xie, Y.; Wang, Z. Prussian Blue Analogues Derived Penroseite (Ni,Co)Se2 Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting. ACS Catal. 2017, 7, 6394–6399. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, W.; Lu, H.; Huang, Y.; Zuo, L.; Fan, W.; Liu, T. Carbon-Nanotube-Incorporated Graphene Scroll-Sheet Conjoined Aerogels for Efficient Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2017, 5, 6994–7002. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, X.; Gao, B.; Ren, Z. Thiomolybdate [Mo3S13]2–Nanoclusters Anchored on Reduced Graphene Oxide-Carbon Nanotube Aerogels for Efficient Electrocatalytic Hydrogen Evolution. ACS Sustain. Chem. Eng. 2017, 5, 8908–8917. [Google Scholar] [CrossRef]
- Ou, H.; Yang, P.; Lin, L.; Anpo, M.; Wang, X. Carbon Nitride Aerogels for the Photoredox Conversion of Water. Angew. Chem. Int. Ed. 2017, 56, 10905–10910. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.-D.; Zeng, M.; Chen, D.-P.; Yua, L.; Wang, C.-Y.; Li, W.; Yi, Y. Self-Supporting Bimetallic Pt-Ni Aerogel as Electrocatalyst for Ethanol Oxidation Reaction. ChemistrySelect 2021, 6, 12696–12701. [Google Scholar] [CrossRef]
- Pimenta, J.L.C.W.; de Oliveira Camargo, M.; Belo Duarte, R.; dos Santos, O.A.A.; de Matos Jorge, L.M. Deoxygenation of vegetable oils for the production of renewable diesel: Improved aerogel based catalysts. Fuel 2021, 290, 119979. [Google Scholar] [CrossRef]
- Ettekali, N.; Allahyari, S.; Rahemi, N.; Abedini, F. One-pot oxidative-adsorptive desulfurization of model and real fuel using micro-mesoporous SiO2 aerogel supported MoO3. Microporous Mesoporous Mater. 2021, 326, 111376. [Google Scholar] [CrossRef]
- Li, L.; Gao, W.; Wan, Z.; Wan, X.; Ye, J.; Gao, J.; Wen, D. Confining N-doped carbon dots into PtNi aerogels skeleton for robust electrocatalytic methanol oxidation and oxygen reduction. Small 2024, 20, 2400158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sha, J.; Fei, H.; Liu, M.; Yazdi, S.; Zhang, J.; Zhong, Q.; Zou, X.; Zhao, N.; Yu, H.; et al. Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS Nano 2017, 11, 6930–6941. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; Dong, J.; Arellano-Jiménez, M.J.; Ye, G.; Dong Kim, N.; Samuel, E.L.G.; Peng, Z.; Zhu, Z.; Qin, F.; Bao, J.; et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, S.; Wu, J.; Liu, M.; Yazdi, S.; Ren, M.; Sha, J.; Zhong, J.; Nie, K.; Jalilov, A.S.; et al. Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. Adv. Energy Mater. 2018, 8, 1703487. [Google Scholar] [CrossRef]
- Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem. Int. Ed. 2016, 55, 10800–10805. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, Y. Ionic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, X.; Xi, S.; Miao, S.; Ding, J.; Cai, W.; Liu, S.; Yang, X.; Yang, H.; Gao, J.; et al. Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, J.T.; Kettunen, M.; Ras, R.H.A.; Ikkala, O. Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Appl. Mater. Interfaces 2011, 3, 1813–1816. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, O.; Suopajärvi, T.; Österberg, M.; Liimatainen, H. Hydrophobic, Superabsorbing Aerogels from Choline Chloride-Based Deep Eutectic Solvent Pretreated and Silylated Cellulose Nanofibrils for Selective Oil Removal. ACS Appl. Mater. Interfaces 2017, 9, 25029–25037. [Google Scholar] [CrossRef] [PubMed]
- Saleem, J.; Adil Riaz, M.; Gordon, M. Oil sorbents from plastic wastes and polymers: A review. J. Hazard. Mater. 2018, 341, 424–437. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Lin, Y.; Prakash, A.; Zhou, Y. Three-dimensional carbon-based architectures for oil remediation: From synthesis and modification to functionalization. J. Mater. Chem. A 2016, 4, 18687–18705. [Google Scholar] [CrossRef]
- Zahed, M.A.; Aziz, H.A.; Isa, M.H.; Mohajeri, L.; Mohajeri, S. Optimal conditions for bioremediation of oily seawater. Bioresour. Technol. 2010, 101, 9455–9460. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhao, H.; Li, X.; Su, D.; Zhang, F.; Ji, H.; Liu, R. Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. J. Hazard. Mater. 2018, 346, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Jiang, Z.; Yuan, B.; Zhi, S.; Zhang, Y.; Li, J.; Wu, A. Ultralight and superhydrophobic perfluorooctyltrimethoxysilane modified biomass carbonaceous aerogel for oil-spill remediation. Chem. Eng. Res. Des. 2021, 174, 71–78. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Mariana, M.; HPS, A.K.; Yahya, E.B.; Olaiya, N.G.; Alfatah, T.; Suriani, A.B.; Mohamed, A. Recent trends and future prospects of nanostructured aerogels in water treatment applications. J. Water Process Eng. 2022, 45, 102481. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D.; Duan, L.; Chen, W. Adsorption of single-ringed N- and S-heterocyclic aromatics on carbon nanotubes. Carbon 2010, 48, 3906–3915. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Z.; Zhang, W.; Jiang, G.; Cao, W.; Huang, Z.; Shi, M.; Li, J. Lightweight, high-strength, heat-resistant TiB2–B4C-modified phenolic aerogel/carbon fiber composites with excellent thermal stability, oxidation, and ablation resistance for thermal protection. Adv. Compos. Hybrid Mater. 2024, 8, 24. [Google Scholar] [CrossRef]
- Zuo, X.; Zhou, Y.; Hao, K.; Liu, C.; Yu, R.; Huang, A.; Wu, C.; Yang, Y. 3D Printed All-Natural Hydrogels: Flame-Retardant Materials Toward Attaining Green Sustainability. Adv. Sci. 2024, 11, 2306360. [Google Scholar] [CrossRef] [PubMed]
- Sai, H.; Xing, L.; Xiang, J.; Cui, L.; Jiao, J.; Zhao, C.; Li, Z.; Li, F. Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. J. Mater. Chem. A 2013, 1, 7963–7970. [Google Scholar] [CrossRef]
- Sai, H.; Xing, L.; Xiang, J.; Cui, L.; Jiao, J.; Zhao, C.; Li, Z.; Li, F.; Zhang, T. Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Adv. 2014, 4, 30453–30461. [Google Scholar] [CrossRef]
- Karadagli, I.; Schulz, B.; Schestakow, M.; Milow, B.; Gries, T.; Ratke, L. Production of porous cellulose aerogel fibers by an extrusion process. J. Supercrit. Fluids 2015, 106, 105–114. [Google Scholar] [CrossRef]
- Demilecamps, A.; Beauger, C.; Hildenbrand, C.; Rigacci, A.; Budtova, T. Cellulose–silica aerogels. Carbohydr. Polym. 2015, 122, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zheng, Q.; Zhu, J.; Li, J.; Cai, Z.; Chen, L.; Gong, S. Mechanically strong fully biobased anisotropic cellulose aerogels. RSC Adv. 2016, 6, 96518–96526. [Google Scholar] [CrossRef]
- Sun, H.; Bi, H.; Lin, X.; Cai, L.; Xu, M. Lightweight, Anisotropic, Compressible, and Thermally-Insulating Wood Aerogels with Aligned Cellulose Fibers. Polymers 2020, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Do, N.H.N.; Tran, V.T.; Tran, Q.B.M.; Le, K.A.; Thai, Q.B.; Nguyen, P.T.T.; Duong, H.M.; Le, P.K. Recycling of Pineapple Leaf and Cotton Waste Fibers into Heat-insulating and Flexible Cellulose Aerogel Composites. J. Polym. Environ. 2021, 29, 1112–1121. [Google Scholar] [CrossRef]
- Zach, J.; Hroudová, J.; Korjenic, A. Environmentally efficient thermal and acoustic insulation based on natural and waste fibers. J. Chem. Technol. Biotechnol. 2016, 91, 2156–2161. [Google Scholar] [CrossRef]
- Zhang, X.; Kwek, L.P.; Le, D.K.; Tan, M.S.; Duong, H.M. Fabrication and Properties of Hybrid Coffee-Cellulose Aerogels from Spent Coffee Grounds. Polymers 2019, 11, 1942. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiong, Y.; Fan, B.; Yao, Q.; Wang, H.; Jin, C.; Sun, Q. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation. Sci. Rep. 2016, 6, 32383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.-L.; Zhang, J.-Y.; Hou, Z.-L.; Bi, S.; Zhao, Q.-L. Multifunctional broadband microwave absorption of flexible graphene composites. Carbon 2019, 141, 608–617. [Google Scholar] [CrossRef]
- Liu, D.; Qiang, R.; Du, Y.; Wang, Y.; Tian, C.; Han, X. Prussian blue analogues derived magnetic FeCo alloy/carbon composites with tunable chemical composition and enhanced microwave absorption. J. Colloid Interface Sci. 2018, 514, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Huang, Y.; Yan, J.; Yang, Y.; Zhao, Y. Construction of CuS Nanoflakes Vertically Aligned on Magnetically Decorated Graphene and Their Enhanced Microwave Absorption Properties. ACS Appl. Mater. Interfaces 2016, 8, 5536–5546. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wen, B.; Bai, X.; Liu, C.; Yang, H. NiCo Alloy/Carbon Nanorods Decorated with Carbon Nanotubes for Microwave Absorption. ACS Appl. Nano Mater. 2019, 2, 7827–7838. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Li, Q.; Yu, X.; Zhao, Y.; Zhang, J.; Wang, M.; Che, R. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wen, B.; Yang, H.; Qiu, Y.; He, N. Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber. Compos. Part A 2020, 135, 105958. [Google Scholar] [CrossRef]
- Gao, S.; Yang, S.-H.; Wang, H.-Y.; Wang, G.-S.; Yin, P.-G. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C. Carbon 2020, 162, 438–444. [Google Scholar] [CrossRef]
- Xu, H.; Yin, X.; Li, M.; Ye, F.; Han, M.; Hou, Z.; Li, X.; Zhang, L.; Cheng, L. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 2018, 132, 343–351. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, C.; Gao, S.; Guan, C.; Huang, Y.; He, W. N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption. Carbon 2020, 163, 348–359. [Google Scholar] [CrossRef]
- Xu, H.; Yin, X.; Zhu, M.; Han, M.; Hou, Z.; Li, X.; Zhang, L.; Cheng, L. Carbon Hollow Microspheres with a Designable Mesoporous Shell for High-Performance Electromagnetic Wave Absorption. ACS Appl. Mater. Interfaces 2017, 9, 6332–6341. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, X.; He, Q.; Hui, Y.; Xu, C.; Wang, B.; Shan, F.; Zhang, J.; Shao, J. Bidirectional, Multilayer MXene/Polyimide Aerogels for Ultra-Broadband Microwave Absorption. Adv. Mater. 2024, 36, 2401733. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, X.; Wang, B.; He, Q.; Cao, J.; Zhu, Y.; Su, K.; Yan, H.; Sun, P.; Li, R. Ultra-Bandwidth Microwave Absorption and Low Angle Sensitivity in Dual-Network Aerogels with Dual-Scale Pores. Small 2025, 21, 2412744. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zheng, B.; Hua, Y.; Lu, S.; Nong, Z.; Wang, J.; Song, Y. Ultralight MXene/rGO aerogel frames with component and structure controlled electromagnetic wave absorption by direct ink writing. Carbon 2024, 230, 119650. [Google Scholar] [CrossRef]
- Lee, K.-M.; Lim, Y.-H.; Park, C.-J.; Jo, Y.-M. Adsorption of Low-Level CO2 Using Modified Zeolites and Activated Carbon. Ind. Eng. Chem. Res. 2012, 51, 1355–1363. [Google Scholar] [CrossRef]
- Meng, L.-Y.; Park, S.-J. Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates. J. Colloid Interface Sci. 2012, 386, 285–290. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, D.M.; Smit, B.; Long, J.R. Carbon Dioxide Capture: Prospects for New Materials. Angew. Chem. Int. Ed. 2010, 49, 6058–6082. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.B.; Rubin, E.S. A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol. 2002, 36, 4467–4475. [Google Scholar] [CrossRef] [PubMed]
- Haghgoo, M.; Yousefi, A.A.; Zohouriaan Mehr, M.J.; Celzard, A.; Fierro, V.; Léonard, A.; Job, N. Characterization of multi-walled carbon nanotube dispersion in resorcinol–formaldehyde aerogels. Microporous Mesoporous Mater. 2014, 184, 97–104. [Google Scholar] [CrossRef]
- Chaichanawong, J.; Kongcharoen, K.; Areerat, S. Preparation of carbon aerogel microspheres by a simple-injection emulsification method. Adv. Powder Technol. 2013, 24, 891–896. [Google Scholar] [CrossRef]
- Moon, C.-W.; Kim, Y.; Im, S.-S.; Park, S.-J. Effect of Activation temperature on CO2 capture behaviors of resorcinol-based carbon aerogels. Bull. Korean Chem. Soc. 2014, 35, 57–61. [Google Scholar] [CrossRef]
- Worsley, M.A.; Satcher, J.H., Jr.; Baumann, T.F. Synthesis and Characterization of Monolithic Carbon Aerogel Nanocomposites Containing Double-Walled Carbon Nanotubes. Langmuir 2008, 24, 9763–9766. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wu, D.; Shang, X.; Fu, R. Studies on the Structure and Electrochemical Performance of Pt/Carbon Aerogel Catalyst for Direct Methanol Fuel Cells. Energy Fuels 2009, 23, 908–911. [Google Scholar] [CrossRef]
Methods | Processes | Conditions | Temperature (°C) a | Structure |
---|---|---|---|---|
Carbonization | Direct pyrolysis | N2 flow and high temperature | >500 | Inherent morphologies with small surface area |
Hydrothermal carbonization | Generally combined with carbonization or activation | 120–250 | High graphitization | |
Activation | Physical activation | CO2, steam, O2, etc. | 600–1200 | Large surface area up to 3000 m2 g−1 |
Chemical activation | KOH, KHCO3, ZnCl2, H3PO4, NaOH, FeCl3, etc. | 400–1000 | Large surface area up to 3000 m2 g−1 | |
Template methods | Hard template | Silica; metal oxides (MgO, ZnO, etc.); molten salts (NaCl, KCl, LiCl, etc.) | Well-designed structure with ordered morphology and adjustable porosity |
Processes | Activating Agent | Activation Method | BET Surface Area (m2 g−1) a | Pore Volume (cm3g−1) b | Ref. |
---|---|---|---|---|---|
Physical activation | Steam | Pine nut shell; carbonization at 500 °C for 15 mins, activation at 900 °C for 75 min | 956 ± 20 | 0.620 ± 0.012 | [38] |
CO2 | Banana flesh; carbonization at 300 °C for 1 h, activation at 900 °C for 4 h | 1415 c ± 30 | 0.746 ± 0.015 | [39] | |
Chemical activation | KOH | Soybean; carbonization at 800 °C for 2 h, KOH/carbon material = 3:1, activation at 700 °C for 2 h | 1749 ± 30 | - | [40] |
NaOH | Waste mangosteen peel; carbonization at 600 °C for 2 h, NaOH/carbon material = 7:2, activation at 700 °C for 2 h | 2623 ± 50 | - | [41] | |
K2CO3 | K2CO3/carbon material = 5:2, activation at 850 °C for 1 h | 2312 ± 50 | 2.807 ± 0.056 | [42] | |
ZnCl2 | Aerobio granular sludge; 5 mol/L ZnCl2 solution for 24 h, carbonization at 700 °C for 2 h | 852 d ± 20 | 0.086 ± 0.002 | [43] | |
H3PO4 | Baobab fruit shells; hydrothermal carbonization at 160 °C for 16 h, activation at 800 °C for 2 h | 912 e ± 20 | 0.470 ± 0.009 | [44] |
Technique | Purpose | Pros | Cons |
---|---|---|---|
BET | Surface area/pore size distribution | Quantifies SSA, pore volume, pore size distribution | Limited to pores < 300 nm; assumes idealized pore shapes |
XRD | Crystallinity/phase identification | Identifies crystal phases, graphitization degree | Low sensitivity to amorphous phases; limited resolution for nanophases |
SEM/TEM | Morphology/microstructure | Direct imaging of 3D network, pore hierarchy | Sample preparation artifacts; 2D projection limits 3D analysis |
XPS | Surface chemistry/elemental states | Quantifies heteroatom doping (N, S, P), bonding types | Ultra-high vacuum required; surface contamination risks |
Raman | Structural defects/graphitization | Evaluates disorder (D-band) vs. graphitic order (G-band) | Semi-quantitative; laser-induced heating may alter samples |
EDS | Elemental mapping | Spatial distribution of dopants/metals | Limited quantification accuracy for light elements |
FT-IR | Functional group analysis | Identifies oxygen groups, organic residues | Peak overlap complicates interpretation; surface sensitivity |
Material | Carbon Source | Electrolyte | Specific Capacitance (F g−1) a | Ratc Capacitance (F g−1) b | Capacitance Retention c | Ref. |
---|---|---|---|---|---|---|
N-doped CA-800 | Cellulose | 1 M H2SO4 | 225.0 at 0.5 A g−1 | 185.0 at 10.0 A g−1 | 5000 cycles (94.0%) | [55] |
N-CA-600 | Watermelon | 6 M KOH | 281.0 at 5.0 mV s−1 | - | - | [56] |
a-CA | Lignin | 1 M H2SO4 | 189.0 at 1.0 A g−1 | 104.0 at 20.0 A g−1 | 10,000 cycles (97.4%) | [57] |
NCF/NiO-2 | Chitosan | 2 M KOH | 1074.0 at 1.0 A g−1 | 820.0 at 20.0 A g−1 | 5000 cycles (99.4%) | [58] |
Cell@PPy | Cellulose | 1 M H2SO4 | 387.6 at 0.5 A g−1 | 320.2 at 10.0 A g−1 | 10,000 cycles (92.6%) | [59] |
HPCA | Seaweed | 6 M KOH | 260.6 at 1.0 A g−1 | 190.0 at 50.0 A g−1 | 10,000 cycles (91.7%) | [60] |
Co3O4@HPCA-700-800 | Seaweed | 6 M KOH | 1167.6 at 1.0 A g−1 | 500.0 at 50.0 A g−1 | 10,000 cycles (92.4%) | [60] |
GCA | Agaric | 6 M KOH | 339.0 at 3.0 A g−1 | 308.0 at 10.0 A g−1 | 10,000 cycles (91.0%) | [61] |
WCA | Watermelon | 6 M KOH | 333.1 at 1.0 A g−1 | - | 1000 cycles (96.0%) | [62] |
C-10 | Cellulose and liginin | 6 M KOH | 166.0 at 0.1 A g−1 | 83.0 at 20.0 A g−1 | 1000 cycles (98.6%) | [63] |
CC27 | Tannin | 4 M H2SO4 | 387.6 at 2.0 mV s−1 | - | - | [64] |
Cell-CO2 | Cellulose | 1 M H2SO4 | 328.0 at 0.5 A g−1 | 213.0 at 10.0 A g−1 | 5000 cycles (96.0%) | [65] |
BCA-2 | Banana | 6 M KOH | 178.9 at 1.0 A g−1 | - | 10,000 cycles (98.0%) | [39] |
Carbon Source | Metal Compounds | Electrolyte | Specific Capacitance (F g−1) a | Synthesis Method | Ref. |
---|---|---|---|---|---|
Willow catkins | MnO2 | 1 M Na2SO4 | 262.0 at 0.2 A g−1 | Activation and hydrothermal treatment | [95] |
Enteromorpha prolifera | MnO2 | 1 M Na2SO4 | 345.1 at 0.5 A g−1 | Activation and post-annealing treatment | [93] |
Kenaf stem | Fe3O4 | 0.1 M KCl | 372.5 at 0.5 A g−1 | Pyrolysis of MlL-88A on activated carbon | [92] |
Cladophora glomerata | Fe3O4 | 3 M KCl | 418.0 at 1.0 A g−1 | Activation and hydrothermal treatment | [96] |
Wheat straw | Fe2O3 | 3 M KOH | 987.9 at 1.0 A g−1 | Activation and post-annealing treatment | [97] |
Cotton | Co3O4 | 6 M KOH | 892.0 at 0.5 A g−1 | Freeze-drying and calcination | [91] |
Terminalia chebula fruit | Co3O4 | 2 M KOH | 642.0 at 1.0 A g−1 | Thermolysis | [98] |
Pine cone flowers | Ni(OH)2 | 1 M KOH | 916.4 at 1.0 A g−1 | Alkali treatment, pyrolysis, and solvothermal treatment | [99] |
Willow catkins | Ni(OH)2 | 6 M KOH | 1568.0 at 1.0 A g−1 | Acid treatment and hydrothermal treatment | [100] |
Pomelo peel | Ni, Co and Al | 2 M KOH | 902.0 at 10.0 A g−1 | Hydrothermal treatment and solvothermal treatment | [101] |
Watermelon | MnO2 | 6 M KOH | 49.3 at 0.5 A g−1 | Hydrothermal treatment and thermolysis | [90] |
Preparation Type | Preparation Process | Performance Examples | Pros | Cons |
---|---|---|---|---|
Traditional Method | Sol–gel, drying, carbonization | Specific capacitance up to 62 F/g (aqueous electrolyte), but low porosity (~60%) [2] | - | High cost, petroleum-derived precursors |
Green Synthesis | Hydrothermal carbonization of biomass | Oil adsorption up to 50× weight, but specific capacitance ~178 F/g (banana-derived CA) [39] | Sustainable, low-cost | Variable pore structure |
Advanced Methods | Hard template (e.g., SiO2), heteroatom doping (e.g., N, P), composite | Specific capacitance up to 2883 F/g (N-CoFe2O4/CA) [14], CO2 adsorption 3.65 mmol/g (N-doped CA) [103] | Tailored pore structure | Complex synthesis |
Different Cellulose Aerogels | Density (g cm−3) b | Pore Size (nm) | Thermal Conductivity (W m−1 K−1) a | Ref. |
---|---|---|---|---|
Natural cellulose aerogel | - | 5–13 | 0.023–0.028 | [107] |
Natural cellulose aerogel with SiO2 | 0.007–0.201 | - | 0.029–0.037 | [156] |
Cellulose derived aerogel | 0.012–0.033 | 10–100 | 0.018–0.028 | [108] |
Cellulose aerogel with SiO2 | 0.007–0.229 | - | 0.030–0.037 | [157] |
Regenerated cellulose aerogel | 0.090–0.137 | 10–100 | 0.040–0.075 | [158] |
Regenerated cellulose aerogel with SiO2 | 0.125–0.225 | - | 0.026–0.033 | [159] |
Cellulose derived aerogel | 0.050–0.109 | 5000–40,000 | 0.040–0.053 | [160] |
Wood based aerogel | 0.032 | - | 0.033 | [161] |
Pineapple leaf/cotton-based aerogel | 0.019–0.046 | 20,000–60,000 | 0.039–0.043 | [162] |
Cotton/natural fiber-based aerogel | 0.028–0.105 | - | 0.036–0.0473 | [163] |
Spent coffee grounds/cotton/PVA | 0.045 | - | 0.037–0.045 | [164] |
Cellulose/lignin-based aerogel | 0.024–0.403 | 8–17 | 0.128–0.155 | [165] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Jin, G.; Shen, J.; Guo, M.; Song, J.; Li, Y.; Xiong, J. Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications. Gels 2025, 11, 548. https://doi.org/10.3390/gels11070548
Li L, Jin G, Shen J, Guo M, Song J, Li Y, Xiong J. Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications. Gels. 2025; 11(7):548. https://doi.org/10.3390/gels11070548
Chicago/Turabian StyleLi, Liying, Guiyu Jin, Jian Shen, Mengyan Guo, Jiacheng Song, Yiming Li, and Jian Xiong. 2025. "Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications" Gels 11, no. 7: 548. https://doi.org/10.3390/gels11070548
APA StyleLi, L., Jin, G., Shen, J., Guo, M., Song, J., Li, Y., & Xiong, J. (2025). Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications. Gels, 11(7), 548. https://doi.org/10.3390/gels11070548