Synthesis, Properties, and Applications of Novel Polymer-Based Gels

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 2206

Special Issue Editors


E-Mail Website
Guest Editor
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
Interests: polymer gels; geopolymer composite; cementitious composite; fiber reinforced concrete; high performance concrete; mechanical property; durability; fracture property
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
Interests: recycled concrete; performance improvement; materials durability; fiber-reinforced; nano-modification
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
Interests: geopolymer concrete; high performance concrete; mechanical behavior; microstructure; numerical analysis

Special Issue Information

Dear Colleagues,

Recent advancements in polymer science have led to the development of novel polymer-based gels with unique properties and diverse applications. These gels are synthesized through various methods, including free-radical polymerization, click chemistry, and supramolecular assembly, allowing precise control over their structure and functionality. Key innovations include stimuli-responsive hydrogels that adapt to environmental changes (e.g., pH, temperature, or light), self-healing gels with dynamic covalent bonds, and nanocomposite gels reinforced with nanoparticles or 2D materials for enhanced mechanical strength.

These gels exhibit exceptional properties, such as high elasticity, tunable porosity, and biocompatibility, making them suitable for applications in drug delivery, tissue engineering, soft robotics, and wastewater treatment. Such applications involve hydrogels incorporated or encapsulated with healing agents, the interaction between hydrogels and the cementitious matrix, self-healing mechanisms, and the impact of hydrogels on self-healing in cement, alkali-activated materials, and supplementary cementitious materials. For instance, conductive polymer gels are being explored for flexible electronics, while biodegradable polysaccharide-based gels are gaining traction in sustainable packaging and agriculture.

Despite their potential, challenges remain in scalability, long-term stability, and cost-effective production. Given the breadth of the field, this Special Issue will feature only a select few exemplary papers, recognizing that it is impossible to encompass all aspects of polymer gels in a single publication. We hope that these topics will inspire new research and discoveries in the field of polymer gels.

Prof. Dr. Peng Zhang
Prof. Dr. Yuanxun Zheng
Dr. Zhen Gao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer gels
  • stimuli-responsive
  • self-healing
  • nanocomposite
  • drug delivery
  • tissue engineering
  • soft robotics
  • wastewater treatment
  • cementitious matrix
  • flexible electronics
  • sustainable packaging
  • agriculture

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

31 pages, 8652 KiB  
Article
Study on Road Performance and Ice-Breaking Effect of Rubber Polyurethane Gel Mixture
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Jingyu Yang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Deqing Tang and Jiajie Feng
Gels 2025, 11(7), 505; https://doi.org/10.3390/gels11070505 - 29 Jun 2025
Viewed by 260
Abstract
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of [...] Read more.
Aiming at the problems of serious pavement temperature diseases, low efficiency and high loss of ice-breaking methods, high occupancy rate of waste tires and the low utilization rate and insufficient durability of rubber particles, this paper aims to improve the service level of roads and ensure the safety of winter pavements. A pavement material with high efficiency, low carbon and environmental friendliness for active snow melting and ice breaking is developed. Firstly, NaOH, NaClO and KH550 were used to optimize the treatment of rubber particles. The hydrophilic properties, surface morphology and phase composition of rubber particles before and after optimization were studied, and the optimal treatment method of rubber particles was determined. Then, the optimized rubber particles were used to replace the natural aggregate in the polyurethane gel mixture by the volume substitution method, and the optimum polyurethane gel dosages and molding and curing processes were determined. Finally, the influence law of the road performance of RPGM was compared and analyzed by means of an indoor test, and the ice-breaking effect of RPGM was explored. The results showed that the contact angles of rubber particles treated with three solutions were reduced by 22.5%, 30.2% and 36.7%, respectively. The surface energy was improved, the element types on the surface of rubber particles were reduced and the surface impurities were effectively removed. Among them, the improvement effect of the KH550 solution was the most significant. With the increase in rubber particle content from 0% to 15%, the dynamic stability of the mixture gradually increases, with a maximum increase of 23.5%. The maximum bending strain increases with the increase in its content. The residual stability increases first and then decreases with the increase in rubber particle content, and the increase ranges are 1.4%, 3.3% and 0.5%, respectively. The anti-scattering performance increases with the increase in rubber content, and an excessive amount will lead to an increase in the scattering loss rate, but it can still be maintained below 5%. The fatigue life of polyurethane gel mixtures with 0%, 5%, 10% and 15% rubber particles is 2.9 times, 3.8 times, 4.3 times and 4.0 times higher than that of the AC-13 asphalt mixture, respectively, showing excellent anti-fatigue performance. The friction coefficient of the mixture increases with an increase in the rubber particle content, which can be increased by 22.3% compared with the ordinary asphalt mixture. RPGM shows better de-icing performance than traditional asphalt mixtures, and with an increase in rubber particle content, the ice-breaking ability is effectively improved. When the thickness of the ice layer exceeds 9 mm, the ice-breaking ability of the mixture is significantly weakened. Mainly through the synergistic effect of stress coupling, thermal effect and interface failure, the bonding performance of the ice–pavement interface is weakened under the action of driving load cycle, and the ice layer is loosened, broken and peeled off, achieving efficient de-icing. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

13 pages, 5319 KiB  
Article
Self-Healing and Tough Polyacrylic Acid-Based Hydrogels for Micro-Strain Sensors
by Chuanjie Liu, Zhihong Liu and Bing Lu
Gels 2025, 11(7), 475; https://doi.org/10.3390/gels11070475 - 20 Jun 2025
Viewed by 337
Abstract
Self-healing hydrogels hold promise for smart sensors in bioengineering and intelligent systems, yet balancing self-healing ability with mechanical strength remains challenging. In this study, a self-healing hydrogel exhibiting superior stretchability was developed by embedding a combination of hydrogen bonding and dynamic metal coordination [...] Read more.
Self-healing hydrogels hold promise for smart sensors in bioengineering and intelligent systems, yet balancing self-healing ability with mechanical strength remains challenging. In this study, a self-healing hydrogel exhibiting superior stretchability was developed by embedding a combination of hydrogen bonding and dynamic metal coordination interactions, introduced by modified fenugreek galactomannan, ferric ions, and lignin silver nanoparticles, into a covalent polyacrylic acid (PAA) matrix. Synergistic covalent and multiple non-covalent interactions enabled the hydrogel with high self-healing ability and enhanced mechanical property. In particular, due to the introduction of multiple energy dissipation mechanisms, particularly migrative dynamic metal coordination interactions, the hydrogel exhibited ultra-high stretchability of up to 2000%. Furthermore, with the incorporation of lignin silver nanoparticles and ferric ions, the hydrogel demonstrated excellent strain sensitivity (gauge factor ≈ 3.94), with stable and repeatable resistance signals. Assembled into a flexible strain sensor, it effectively detected subtle human motions and organ vibrations, and even replaced conductive rubber in gaming controllers for real-time inputs. This study provides a versatile strategy for designing multifunctional hydrogels for advanced sensing applications. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Graphical abstract

18 pages, 5357 KiB  
Article
Bio-Gel Formation Through Enzyme-Induced Carbonate Precipitation for Dust Control in Yellow River Silt
by Jingwei Zhang, Hualing Jia, Jia Li, Xuanyu Chen, Lei Wang, Shilong Wang and Lin Liu
Gels 2025, 11(6), 452; https://doi.org/10.3390/gels11060452 - 12 Jun 2025
Viewed by 728
Abstract
This study explored the enzymatic formation of gel-like polymeric matrices through carbonate precipitation for dust suppression in Yellow River silt. The hydrogel-modified EICP method effectively enhanced the compressive strength and resistance to wind–rain erosion by forming a reinforced bio-cemented crust. The optimal cementation [...] Read more.
This study explored the enzymatic formation of gel-like polymeric matrices through carbonate precipitation for dust suppression in Yellow River silt. The hydrogel-modified EICP method effectively enhanced the compressive strength and resistance to wind–rain erosion by forming a reinforced bio-cemented crust. The optimal cementation solution, consisting of urea and CaCl2 at equimolar concentrations of 1.25 mol/L, was applied to improve CaCO3 precipitation uniformity. A spraying volume of 4 L/m2 (first urea-CaCl2 solution, followed by urease solution) yielded a 14.9 mm thick hybrid gel-CaCO3 crust with compressive strength exceeding 752 kPa. SEM analysis confirmed the synergistic interaction between CaCO3 crystals and the gel matrix, where the hydrogel network acted as a nucleation template, enhancing crystal bridging and pore-filling efficiency. XRD analysis further supported the formation of a stable gel-CaCO3 composite structure, which exhibited superior resistance to wind–rain erosion and mechanical wear. These findings suggest that gel-enhanced EICP represents a novel bio-gel composite technology for sustainable dust mitigation in silt soils. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

27 pages, 7784 KiB  
Article
Performance and Mechanism Analysis of an Anti-Skid Wear Layer of Active Slow-Release Ice–Snow Melting Modified by Gels
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Haobo Yan and Qi Chen
Gels 2025, 11(6), 449; https://doi.org/10.3390/gels11060449 - 11 Jun 2025
Viewed by 468
Abstract
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate [...] Read more.
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate with salt-storing ceramsite in SMA-10 graded mixtures (0–80% content), we systematically evaluate its mechanical performance and de-icing functionality. The experimental results demonstrate that 40% salt-storing ceramsite content optimizes high-temperature stability while maintaining acceptable low-temperature performance and water resistance. Microstructural analysis reveals that silicone–acrylic emulsion forms a hydrophobic film on ceramsite surfaces, enabling uniform salt distribution and sustained release. The optimal 10% gel modification achieves effective salt retention and controlled release through pore-structure regulation. These findings establish a 40–60% salt-storing ceramsite content range as the practical range for winter pavement applications, offering insights into the design of durable snow-melting asphalt surfaces. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 8184 KiB  
Review
A State-of-the-Art Review on the Freeze–Thaw Resistance of Sustainable Geopolymer Gel Composites: Mechanisms, Determinants, and Models
by Peng Zhang, Baozhi Shi, Xiaobing Dai, Cancan Chen and Canhua Lai
Gels 2025, 11(7), 537; https://doi.org/10.3390/gels11070537 - 11 Jul 2025
Abstract
Geopolymer, as a sustainable, low-carbon gel binder, is regarded as a potential alternative to cement. Freeze–thaw (F-T) resistance, which has a profound influence on the service life of structures, is a crucial indicator for assessing the durability of geopolymer composites (GCs). Consequently, comprehending [...] Read more.
Geopolymer, as a sustainable, low-carbon gel binder, is regarded as a potential alternative to cement. Freeze–thaw (F-T) resistance, which has a profound influence on the service life of structures, is a crucial indicator for assessing the durability of geopolymer composites (GCs). Consequently, comprehending the F-T resistance of GCs is of the utmost significance for their practical implementation. In this article, a comprehensive and in-depth review of the F-T resistance of GCs is conducted. This review systematically synthesizes several frequently employed theories regarding F-T damage, with the aim of elucidating the underlying mechanisms of F-T damage in geopolymers. The factors influencing the F-T resistance of GCs, including raw materials, curing conditions, and modified materials, are meticulously elaborated upon. The results indicate that the F-T resistance of GCs can be significantly enhanced through using high-calcium-content precursors, mixed alkali activators, and rubber aggregates. Moreover, appropriately increasing the curing temperature has been shown to improve the F-T resistance of GCs, especially for those fabricated with low-calcium-content precursors. Among modified materials, the addition of most fibers and nano-materials remarkably improves the F-T resistance of GCs. Conversely, the effect of air-entraining agents on the F-T resistance of GCs seems to be negligible. Furthermore, evaluation and prediction models for the F-T damage of GCs are summarized, including empirical models and machine learning models. In comparison with empirical models, the models established by machine learning algorithms exhibit higher predictive accuracy. This review promotes a more profound understanding of the factors affecting the F-T resistance of GCs and their mechanisms, providing a basis for engineering and academic research. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

Back to TopTop