A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis of the Hydrogels
2.2. Swelling
2.3. FTIR
2.4. Microstructural Observation
2.5. Nickel(II) Absorption
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Synthesis of the Hydrogels
4.3. Swelling
4.4. Nickel(II) Absorption
4.5. FTIR
4.6. Microstructural Observation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coman, V.; Robotin, B.; Ilea, P. Nickel recovery/removal from industrial wastes: A review. Resour. Conserv. Recycl. 2013, 73, 229–238. [Google Scholar] [CrossRef]
- Vakili, M.; Rafatullah, M.; Yuan, J.; Zwain, H.; Mojiri, A.; Gholami, Z.; Gholami, F.; Wang, W.; Giwa, A.; Yu, Y.; et al. Nickel ion removal from aqueous solutions through the adsorption process: A review. Rev. Chem. Eng. 2021, 37, 755–778. [Google Scholar] [CrossRef]
- Priya, A.S.; Premanand, R.; Ragupathi, I.; Bhaviripudi, V.R.; Aepuru, R.; Kannan, K.; Shanmugaraj, K. Comprehensive Review of Hydrogel Synthesis, Characterization, and Emerging Applications. J. Compos. Sci. 2024, 8, 457. [Google Scholar] [CrossRef]
- Nasution, H.; Harahap, H.; Dalimunthe, N.F.; Ginting, M.H.S.; Jaafar, M.; Tan, O.O.H.; Aruan, H.K.; Herfananda, A.L. Hydrogel and Effects of Crosslinking Agent on Cellulose-Based Hydrogels: A Review. Gels 2022, 8, 568. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Feng, Z.; Dong, C.; Zhu, P.; Qiu, J.; Zhu, L. Synthesis of Sodium Carboxymethyl Cellulose/Poly(acrylic acid) Microgels via Visible-Light-Triggered Polymerization as a Self-Sedimentary Cationic Basic Dye Adsorbent. Langmuir 2022, 38, 3711–3719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, X.; Zhang, Q.; Xie, H.; Wang, B.; Feng, Y. Hydrochar-embedded carboxymethyl cellulose-g-poly(acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth. J. Bioresour. Bioprod. 2022, 7, 116–127. [Google Scholar] [CrossRef]
- Roig-Sanchez, S.; Kam, D.; Malandain, N.; Sachyani-Keneth, E.; Shoseyov, O.; Magdassi, S.; Laromaine, A.; Roig, A. One-step double network hydrogels of photocurable monomers and bacterial cellulose fibers. Carbohydr. Polym. 2022, 294, 119778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Du, Y.; Xia, H.; Xia, F.; Yang, G.; Gao, Y. HPC-PAA hydrogel smart windows with and without Cs0.32WO3: High solar modulation ability and luminous transmittance. Ceram. Int. 2022, 48, 37122–37131. [Google Scholar] [CrossRef]
- Haqani, M.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Synthesis of dual-sensitive nanocrystalline cellulose-grafted block copolymers of N-isopropylacrylamide and acrylic acid by reversible addition-fragmentation chain transfer polymerization. Cellulose 2017, 24, 2241–2254. [Google Scholar] [CrossRef]
- Zhao, B.; Jiang, H.; Lin, Z.; Xu, S.; Xie, J.; Zhang, A. Preparation of acrylamide/acrylic acid cellulose hydrogels for the adsorption of heavy metal ions. Carbohydr. Polym. 2019, 224, 115022. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-García, R.O.; Cortés-Ortega, J.A.; Sánchez-Díaz, J.C.; Medina-Hernández, N.A.; Reyes-Aguilar, J. A Novel Thermosensitive Poly(N-isopropylacrylamide)-Based Hydrogel Crosslinked with Cellulose Acetate, Exhibiting an Increased LCST, as a Removal Agent for Nickel(II) in Aqueous Solutions. Fibers Polym. 2025, 26, 501–512. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, C.; Wang, H.; Han, L.; Wang, C.; Jie, X.; Chen, Y. Modified adsorbent hydroxypropyl cellulose xanthate for removal of Cu2+ and Ni2+ from aqueous solution. Desalin. Water Treat. 2016, 57, 27419–27431. [Google Scholar] [CrossRef]
- Godiya, C.B.; Revadekar, C.; Kim, J.; Park, B.J. Amine-bilayer-functionalized cellulose-chitosan composite hydrogel for the efficient uptake of hazardous metal cations and catalysis in polluted water. J. Hazard. Mater. 2022, 436, 129112. [Google Scholar] [CrossRef] [PubMed]
- Kundu, D.; Mondal, S.K.; Banerjee, T. Development of β-Cyclodextrin-Cellulose/Hemicellulose-Based Hydrogels for the Removal of Cd(II) and Ni(II): Synthesis, Kinetics, and Adsorption Aspects. J. Chem. Eng. Data 2019, 64, 2601–2617. [Google Scholar] [CrossRef]
- Chaurasiya, A.; Pande, P.P.; Shankar, R.; Kumar, K.; Dey, K.; Kumar, P.; Kumar, B.; Kumar, R.; Singh, P.; Alam, M.S. Synthesis and characterization of chemically functionalized novel and reusable D-mannitol xanthate derived hydrogel for capturing of toxic metal ions from aqueous solutions. Polym. Bull. 2024, 81, 17075–17108. [Google Scholar] [CrossRef]
- Antic, K.; Onjia, A.; Vasiljevic-Radovic, D.; Velickovic, Z.; Tomic, S.L. A Removal of Nickel Ions from Aqueous Solutions by 2-Hydroxyethyl Acrylate/Itaconic Acid Hydrogels Optimized with Response Surface Methodology. Gels 2021, 7, 225. [Google Scholar] [CrossRef] [PubMed]
- Chaurasiya, N.; Pande, P.P.; Chaurasiya, A.; Singh, D.; Chaudhary, A.; Kashaudhan, K. Removal of cobalt and nickel ions from aqueous solution via batch adsorption technique using cost-effective β-cyclodextrin based smart hydrogel. Int. J. Environ. Anal. Chem. 2025, 1–24. [Google Scholar] [CrossRef]
- Kadry, G.; Aboelmagd, E.I.; Ibrahim, M.M. Cellulosic-based hydrogel from biomass material for removal of metals from waste water. J. Macromol. Sci. A 2019, 56, 968–981. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Uraki, Y.; Ubukata, M.; Itoyama, K. Graft polymerization of vinyl monomers onto cotton fibers pretreated with amines. Cellulose 2008, 15, 581–592. [Google Scholar] [CrossRef]
- Pulat, M.; Isakoca, C. Chemically induced graft copolymerization of vinyl monomers onto cotton fibers. J. Appl. Polym. Sci. 2006, 100, 2343–2347. [Google Scholar] [CrossRef]
- Muñoz-García, R.O.; Hernández, M.E.; Ortiz, G.G.; Fernández, V.V.; Arellano, M.R.; Sánchez-Díaz, J.C. A Novel Poly(acrylamide)-Based Hydrogel Crosslinked with Cellulose Acetate and Prepared by Precipitation Polymerization. Quim. Nova 2015, 38, 1031–1036. [Google Scholar] [CrossRef]
- Abdel-Halim, E.S.; Al-Deyab, S.S. Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions. React. Funct. Polym. 2014, 75, 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, D.; Wang, S.; Qi, S.; Zuo, H. Structure, Property Optimization, and Adsorption Properties of N,N-methylenebisacrylamide Cross-Linked Polyacrylic Acid Hydrogels under Different Curing Conditions. Polymers 2024, 16, 1990. [Google Scholar] [CrossRef] [PubMed]
- Mieles, M.; Harper, S.; Ji, H.F. Bulk Polymerization of Acrylic Acid Using Dielectric-Barrier Discharge Plasma in a Mesoporous Material. Polymers 2023, 15, 2965. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, H.; Luo, M.; Dong, Y.; Xu, H.; Cheng, X.; Cai, Z. Adsorption of vanadium with amorphous hydrated chromium oxide. Water Pract. Technol. 2021, 16, 1410–1420. [Google Scholar] [CrossRef]
- Correa-Camacho, J.M.; Valadez-Rosales, M.F.; Carbajal-Arizaga, G.G.; Cortes-Ortega, J.A.; Muñoz-García, R.O.; Barrera-Rodríguez, A.; Casillas-García, J.E. Preferential growth of nickel hydroxide through the controlled release of base from acrylamide-crotonic acid hydrogels. Res. Mater. 2020, 7, 100098. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Yu, Y.; Rengui, P.; Cheng, Y.; Youhong, T. Eco-friendly and cost-effective superabsorbent sodium polyacrylate composites for environmental remediation. J. Mater. Sci. 2015, 50, 5799–5808. [Google Scholar] [CrossRef]
- Mendoza, D.J.; Ayurini, M.; Raghuwanshi, V.S.; Simon, G.P.; Hooper, J.F.; Garnier, G. Synthesis of Superabsorbent Polyacrylic Acid-Grafted Cellulose Nanofibers via Silver-Promoted Decarboxylative Radical Polymerization. Macromolecules 2023, 56, 3497–3506. [Google Scholar] [CrossRef]
- Mao, Y.; Zhou, B.; Peng, S. Simple deposition of mixed a, B-nickel hydroxide thin film onto nickel foam as high-performance supercapacitor electrode material. J. Mater. Sci. Mater. Electron. 2020, 31, 9457–9467. [Google Scholar] [CrossRef]
- Logutenko, O.A.; Titkov, A.I.; Vorobyov, A.M.; Balaev, D.A.; Shaikhutdinov, K.A.; Semenov, S.V.; Yukhin, Y.M.; Lyakhov, N.Z. Effect of molecular weight of sodium polyacrylates on the size and morphology of nickel nanoparticles synthesized by the modified polyol method and their magnetic properties. Eur. Polym. J. 2018, 99, 102–110. [Google Scholar] [CrossRef]
Composition | 1st Purif. | 2nd Purif. |
---|---|---|
wt.% HPC | Step (%) | Step (%) |
0 | 51.6 ± 2.8 | 84.3 ± 0.7 |
5 | 70.2 ± 10.9 | 90.9 ± 3.9 |
10 | 84.5 ± 5.0 | 95.3 ± 2.1 |
15 | 85.9 ± 4.4 | 95.4 ± 1.5 |
20 | 86.8 ± 0.3 | 98.1 ± 0.7 |
25 | 86.6 ± 1.1 | 97.8 ± 0.5 |
HPC | Swelling | After 1 h | After 24 h | ||||||
---|---|---|---|---|---|---|---|---|---|
(wt.%) | [Ni2+] (ppm) | Ni % Removed | [Ni2+] (ppm) | Ni % Removed | |||||
0 1 | 0.364 | 631 ± 87 | 340 ± 87 | 934 | 62 ± 4 | 446 ± 34 | 435 ± 12 | 1194 | 74 ± 2 |
5 | 0.220 | 638 ± 117 | 207 ± 20 | 941 | 63 ± 6 | 364 ± 50 | 263 ± 9 | 1198 | 80 ± 3 |
10 | 0.144 | 592 ± 112 | 153 ± 5 | 1059 | 69 ± 7 | 417 ± 46 | 185 ± 5 | 1280 | 79 ± 2 |
15 | 0.139 | 708 ± 25 | 126 ± 16 | 908 | 59 ± 2 | 228 ± 40 | 202 ± 6 | 1451 | 86 ± 3 |
20 | 0.112 | 751 ± 127 | 107 ± 15 | 952 | 62 ± 4 | 322 ± 58 | 161 ± 5 | 1438 | 84 ± 3 |
25 | 0.089 | 686 ± 170 | 91 ± 13 | 1025 | 66 ± 9 | 225 ± 44 | 122 ± 3.4 | 1373 | 88 ± 3 |
1000 ppm Ni2+ | 3000 ppm Ni2+ | 4000 ppm Ni2+ | |||||||
---|---|---|---|---|---|---|---|---|---|
wt.% HPC | [Ni2+] (ppm) | Removed Ni (%) | [Ni2+] (ppm) | Removed Ni (%) | [Ni2+] (ppm) | Removed Ni (%) | |||
0 | 118 | 206 | 87 | 1361 | 302 | 42 | 2069 | 331 | 35 |
5 | 129 | 104 | 75 | 1583 | 135 | 34 | 2088 | 187 | 35 |
Composite | Single Use | Reference | Year |
---|---|---|---|
Hydrogel | Absorption | ||
βCD-CMC | 17.29 mg Ni2+/g | [14] | 2019 |
PNIPAM-CA | 38.4 mg Ni2+/g | [11] | 2025 |
HPC-xanthate | 114.3 mg Ni2+/g | [12] | 2016 |
HEA-IA | 225.4 mg Ni2+/g | [16] | 2021 |
CS-PDA-PEI-MCC | 261.8 mg Ni2+/g | [13] | 2022 |
PAA-HPC | 263 mg Ni2+/g | present work | 2025 |
DMX-PAAm-PAA | 296.7 mg Ni2+/g | [15] | 2024 |
βCD-PNIPAM-DMAEA | 350.8 mg Ni2+/g | [17] | 2025 |
PAA-NMBA | 435 mg Ni2+/g | present work | 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-García, R.O.; Ruiz-Casillas, C.A.; Lomelí-Rosales, D.A.; Cortés-Ortega, J.A.; Sánchez-Díaz, J.C.; Cruz-Barba, L.E. A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions. Gels 2025, 11, 560. https://doi.org/10.3390/gels11070560
Muñoz-García RO, Ruiz-Casillas CA, Lomelí-Rosales DA, Cortés-Ortega JA, Sánchez-Díaz JC, Cruz-Barba LE. A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions. Gels. 2025; 11(7):560. https://doi.org/10.3390/gels11070560
Chicago/Turabian StyleMuñoz-García, Rubén Octavio, Cesar Alexis Ruiz-Casillas, Diego Alberto Lomelí-Rosales, Jorge Alberto Cortés-Ortega, Juan Carlos Sánchez-Díaz, and Luis Emilio Cruz-Barba. 2025. "A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions" Gels 11, no. 7: 560. https://doi.org/10.3390/gels11070560
APA StyleMuñoz-García, R. O., Ruiz-Casillas, C. A., Lomelí-Rosales, D. A., Cortés-Ortega, J. A., Sánchez-Díaz, J. C., & Cruz-Barba, L. E. (2025). A Poly(Acrylic Acid)-Based Hydrogel Crosslinked with Hydroxypropylcellulose as a Clarifying Agent in Nickel(II) Solutions. Gels, 11(7), 560. https://doi.org/10.3390/gels11070560