Advances in Functional Hydrogels and Their Applications

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Processing and Engineering".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 2403

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering college, Chongqing University, Chongqing 400044, China
Interests: biomaterial; hydrogel; nano-/micromaterials; tissue regeneration; bone repair

Special Issue Information

Dear Colleagues,

This Special Issue is aimed towards the latest innovative developments in the synthesis, characterization, and applications of hydrogels across various scientific and engineering disciplines. The exceptional versatility in composition and internal bonding of hydrogels allows for a wide array of tailored physical, chemical, and biological properties. Consequently, the synthesis and applications of hydrogels have been extensively studied to satisfy specific application requirements. There are diverse applications of hydrogels in fields such as bioelectronics, agriculture, food chemistry, drug delivery, and tissue regeneration, which are continuously expanding.

For this Special Issue, we aim to present more recent advances in functional hydrogels. Contributions based on any materials science and technology related to hydrogels are very welcome. We accept original articles, reviews, short communications, and perspectives.

Dr. Peng Zhao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrogels
  • biomaterials
  • biopolymers
  • stimuli response
  • smart hydrogels
  • drug delivery
  • 3D printing
  • tissue engineering
  • tissue regeneration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 3975 KiB  
Article
Optimization of the Preparation Process of Crosslinked Polyvinyl Alcohol and Its Thermal Stability in Cementing Slurry
by Junhao Li, Haochen Ai, Qingchen Wang, Huifeng He, Xiaofeng Chang, Gang Chen, Alena Golian-Struhárová, Michal Slaný and Fangling Qin
Gels 2025, 11(2), 98; https://doi.org/10.3390/gels11020098 - 30 Jan 2025
Viewed by 798
Abstract
This study focuses on addressing the limitations of fluid loss additive in cement slurry under higher temperatures. The synthesis process of glutaraldehyde-crosslinked polyvinyl alcohol (PVA) was optimized to develop an efficient fluid loss additive for oil well cement slurries. Using one-factor experiments and [...] Read more.
This study focuses on addressing the limitations of fluid loss additive in cement slurry under higher temperatures. The synthesis process of glutaraldehyde-crosslinked polyvinyl alcohol (PVA) was optimized to develop an efficient fluid loss additive for oil well cement slurries. Using one-factor experiments and the uniform design method, the optimal synthesis parameters were established: a reaction temperature of 50 °C; an acid concentration of 1 mol/L; a PVA mass concentration of 8%; a molar ratio of glutaraldehyde to PVA hydroxyl group of 1.47; and a crosslinking degree of 1.49%. The optimized crosslinked PVA demonstrated the ability to control API fluid loss within 50 mL when applied at 1% concentration in cement slurry under conditions of 30–110 °C and 6.9 MPa. Rheological analysis at medium and high temperatures revealed improved slurry properties, including smooth thickening curves and unaffected compressive strength. Further analyses, including thermogravimetric analysis (TGA), Zeta potential testing, and scanning electron microscopy (SEM), revealed that the crosslinked PVA hydrogel remained thermally stable up to 260 °C. Chemical crosslinking transformed the linear PVA into a network structure, enhancing its molecular weight, viscoelasticity, and thermal stability. This thermal resistance mechanism is attributed to the hydrogel’s high-strength reticular structure which forms a uniform, dense, and highly stable adsorption layer, thereby improving both the additive’s efficiency and the hydrogel’s temperature resistance. Full article
(This article belongs to the Special Issue Advances in Functional Hydrogels and Their Applications)
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 1230 KiB  
Review
Advanced Hydrogel Systems for Local Anesthetic Delivery: Toward Prolonged and Targeted Pain Relief
by Jin-Oh Jeong, Minjoo Kim, Seonwook Kim, Kyung Kwan Lee and Hoon Choi
Gels 2025, 11(2), 131; https://doi.org/10.3390/gels11020131 - 12 Feb 2025
Viewed by 1397
Abstract
Local anesthetics (LAs) have been indispensable in clinical pain management, yet their limitations, such as short duration of action and systemic toxicity, necessitate improved delivery strategies. Hydrogels, with their biocompatibility, tunable properties, and ability to modulate drug release, have been extensively explored as [...] Read more.
Local anesthetics (LAs) have been indispensable in clinical pain management, yet their limitations, such as short duration of action and systemic toxicity, necessitate improved delivery strategies. Hydrogels, with their biocompatibility, tunable properties, and ability to modulate drug release, have been extensively explored as platforms for enhancing LA efficacy and safety. This narrative review explores the historical development of LAs, their physicochemical properties, and clinical applications, providing a foundation for understanding the integration of hydrogels in anesthetic delivery. Advances in thermoresponsive, stimuli-responsive, and multifunctional hydrogels have demonstrated significant potential in prolonging analgesia and reducing systemic exposure in preclinical studies, while early clinical findings highlight the feasibility of thermoresponsive hydrogel formulations. Despite these advancements, challenges such as burst release, mechanical instability, and regulatory considerations remain critical barriers to clinical translation. Emerging innovations, including nanocomposite hydrogels, biofunctionalized matrices, and smart materials, offer potential solutions to these limitations. Future research should focus on optimizing hydrogel formulations, expanding clinical validation, and integrating advanced fabrication technologies such as 3D printing and artificial intelligence-driven design to enhance personalized pain management. By bridging materials science and anesthetic pharmacology, this review provides a comprehensive perspective on current trends and future directions in hydrogel-based LA delivery systems. Full article
(This article belongs to the Special Issue Advances in Functional Hydrogels and Their Applications)
Show Figures

Figure 1

Back to TopTop