Outcomes and Trends in Polymer Gels: Designing, Properties and Applications

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Processing and Engineering".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 5546

Special Issue Editors


E-Mail Website
Guest Editor
Center of Micro-Analysis for Materials, Autonomous University of Madrid, 28049 Madrid, Spain
Interests: soft matter; stimuli-responsive gels; additive manufacturing; bio-based nanomaterials; advanced analytical techniques; energy storage; aerogels

E-Mail Website
Guest Editor
Department of Chemistry, University of Patras, 26504 Patras, Greece
Interests: polymer synthesis and characterization; stimuli-responsive and functional polymeric materials; synthetic and reversible hydrogels; optically labelled polymers; hybrid inorganic/organic soft materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue entitled “Outcomes and Trends in Polymer Gels: Designing, Properties and Applications” focuses on the state-of-the-art design of new polymer networks that involves using novel crosslinkers or improving those existing. Deep synergy of hybrid nanomaterials has driven the rapid growth of adaptative properties of these materials with a significant role in soft matter. However, a goal to be pursued is to create stronger supramolecular interactions that give them robustness but do not sacrifice their advantages, in which great progress is already being achieved. This Special Issue is accompanied by the structural knowledge of these architectures that enable us to predict their properties, which requires the use of advanced characterization techniques and analysis through the so-called “Analytical Research Infrastructures” involving synchrotron and neutron facilities. Despite these points to overcome, polymer networks have found a place among the most successful and cutting-edge applications related to energy and bio-based applications where efforts in the scalability of obtained products are starting to be seen and beginning to go the extra mile. This Special Issue welcomes submissions focused on the development of novel building blocks or improving deeply characterized architectures with special emphasis on bridging the gap between academia and industry.

Dr. Noelia Maldonado Gavilán
Prof. Dr. Georgios Bokias
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymeric networks
  • strengthened supramolecular interactions
  • novel crosslinkers
  • smart behavior
  • advanced manufacturing and characterization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 5557 KB  
Article
Rheological and Physical Properties of Mucilage Hydrogels from Cladodes of Opuntia ficus-indica: Comparative Study with Pectin
by Federica Torregrossa, Matteo Pollon, Giorgia Liguori, Francesco Gargano, Donatella Albanese, Francesca Malvano and Luciano Cinquanta
Gels 2025, 11(7), 556; https://doi.org/10.3390/gels11070556 - 19 Jul 2025
Viewed by 395
Abstract
The physical and rheological properties of mucilage hydrogels derived from the cladodes of Opuntia ficus-indica (L. Mill) were compared with those of commercial pectin for potential applications in the food industry. All hydrogels—formulated by incorporating sucrose and either calcium chloride or calcium carbonate [...] Read more.
The physical and rheological properties of mucilage hydrogels derived from the cladodes of Opuntia ficus-indica (L. Mill) were compared with those of commercial pectin for potential applications in the food industry. All hydrogels—formulated by incorporating sucrose and either calcium chloride or calcium carbonate to promote favorable gel network formation—exhibited pseudoplastic (shear-thinning) behavior. The flow characteristics of the hydrogels prepared with mucilage or pectin conformed to the Casson fluid model. Moreover, all samples consistently displayed loss modulus (G″) values exceeding their corresponding storage modulus (G′) values, indicating a dominant viscous behavior over elastic properties. The ζ-potential of all samples was negative across the pH range studied. Mucilage-based samples exhibited lower ionizability per unit mass and reduced phase stability compared to those containing pectin. Principal component analysis (PCA) revealed that mucilage hydrogels exhibited multivariate profiles similar to pectin hydrogels containing calcium carbonate, though the latter demonstrated greater polydispersity than standard pectic gels. Infrared spectroscopy further highlighted distinct spectral differences between pectins and mucilages, offering valuable insights into their respective functional characteristics. Collectively, these findings underscore the potential of Opuntia ficus-indica mucilages as viable additives in food formulations. Full article
Show Figures

Figure 1

17 pages, 1446 KB  
Article
Radiation-Induced Synthesis of Polymer Networks Based on Thermoresponsive Ethylene Glycol Propylene Glycol Monomers
by Andjelka Stolic, Zorana Rogic Miladinovic, Maja Krstic, Georgi Stamboliev, Vladimir Petrovic and Edin Suljovrujic
Gels 2025, 11(7), 488; https://doi.org/10.3390/gels11070488 - 24 Jun 2025
Viewed by 388
Abstract
In this paper, different poly((ethylene glycol)-(propylene glycol)) methacrylate (P(EGPG)MA) hydrogels were synthesized by gamma-radiation-induced polymerization and crosslinking from a monomer–bisolvent mixture using the following monomers: (ethylene glycol)6 methacrylate (EG6MA), ((ethylene glycol)6-(propylene glycol)3) methacrylate (EG6PG [...] Read more.
In this paper, different poly((ethylene glycol)-(propylene glycol)) methacrylate (P(EGPG)MA) hydrogels were synthesized by gamma-radiation-induced polymerization and crosslinking from a monomer–bisolvent mixture using the following monomers: (ethylene glycol)6 methacrylate (EG6MA), ((ethylene glycol)6-(propylene glycol)3) methacrylate (EG6PG3MA), ((propylene glycol)6-(ethylene glycol)3) methacrylate (PG6EG3MA), and (propylene glycol)5 methacrylate (PG5MA), along with different water/ethanol compositions as the solvent. The monomer–bisolvent mixture was exposed to various radiation doses (5, 10, 15, 25, and 50 kGy). Considerable emphasis was placed on optimizing and tuning the reaction conditions necessary for the fabrication of methacrylic networks with pendant EGPG terminals. A further investigation was conducted on the effects of monomer composition, different preparation conditions, and radiation processing on thermal properties, microstructure, swelling behavior, and volume phase transition. Special attention was dedicated to PPG6EG3MA hydrogel, whose volume phase transition temperature is near physiological temperatures. This study identifies an optimal radiation dose and a water/ethanol solvent ratio for the synthesis of the radiation-induced hydrogels. Employing ionizing radiation within the sterilization dose range enables the simultaneous fabrication and sterilization of these hydrogels, offering an efficient production process. The findings provide new insights into the role of bisolvent composition on hydrogel formation and properties, and they present practical guidelines for optimizing hydrogel synthesis across a wide range of applications. Full article
Show Figures

Figure 1

12 pages, 1908 KB  
Article
The First Example of a Model Amphiphilic Polymer Conetwork Containing a Hydrophobic Oligopeptide: The Case of End-Linked Tetra[Poly(ethylene glycol)-b-oligo(L-alanine)]
by Demetris E. Apostolides, George Michael, Costas S. Patrickios, Takamasa Sakai, Iro Kyroglou, Maria Kasimatis, Hermis Iatrou, Sylvain Prévost and Michael Gradzielski
Gels 2025, 11(5), 331; https://doi.org/10.3390/gels11050331 - 29 Apr 2025
Cited by 1 | Viewed by 583
Abstract
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and [...] Read more.
Herein we describe the development of the first model amphiphilic polymer conetwork (APCN) comprising a short hydrophobic hexa(L-alanine) segment being the outer block of an amphiphilic four-armed star block copolymer with inner poly(ethylene glycol) (PEG) blocks bearing benzaldehyde terminal groups and end-linked with another four-armed star PEG homopolymer (tetraPEG star) bearing aryl-substituted acylhydrazide terminal groups. The present successful synthesis that yielded the peptide-containing model APCN was preceded by several unsuccessful efforts that followed different synthetic strategies. In addition to the synthetic work, we also present the structural characterization of the peptide-bearing APCN in D2O using small-angle neutron scattering (SANS). Full article
Show Figures

Figure 1

17 pages, 6186 KB  
Article
Ion-Specific Gelation and Internal Dynamics of Nanocellulose Biocompatible Hybrid Hydrogels: Insights from Fluctuation Analysis
by Arianna Bartolomei, Elvira D’Amato, Marina Scarpa, Greta Bergamaschi, Alessandro Gori and Paolo Bettotti
Gels 2025, 11(3), 197; https://doi.org/10.3390/gels11030197 - 12 Mar 2025
Cited by 1 | Viewed by 726
Abstract
Hydrogels find widespread use in bioapplications for their ability to retain large amounts of water while maintaining structural integrity. In this article, we investigate hybrid hydrogels made of nanocellulose and either amino–polyethylenglycol or sodium alginates and we present two novel results: (1) the [...] Read more.
Hydrogels find widespread use in bioapplications for their ability to retain large amounts of water while maintaining structural integrity. In this article, we investigate hybrid hydrogels made of nanocellulose and either amino–polyethylenglycol or sodium alginates and we present two novel results: (1) the biocompatibility of the amino-containing hybrid gel synthesized using a simplified receipt does not require any intermediate synthetic step to functionalize either component and (2) the fluctuation in the second-order correlation function of a dynamic light scattering experiment provides relevant information about the characteristic internal dynamics of the materials across the entire sol–gel transition as well as quantitative information about the ion-specific gel formation. This novel approach offers significantly better temporal (tens of μs) and spatial (tens of μm) resolution than many other state-of-the-art techniques commonly used for such analyses (such as rheometry, SAXS, and NMR) and it might find widespread application in the characterization of nano- to microscale dynamics in soft materials. Full article
Show Figures

Graphical abstract

14 pages, 5281 KB  
Article
Zirconium–Polycarboxylato Gel Systems as Substrates to Develop Advanced Fluorescence Sensing Devices
by Jon Pascual-Colino, Garikoitz Beobide, Oscar Castillo, Javier Cepeda, Mónica Lanchas, Antonio Luque and Sonia Pérez-Yáñez
Gels 2024, 10(12), 783; https://doi.org/10.3390/gels10120783 - 29 Nov 2024
Cited by 2 | Viewed by 2848
Abstract
This study presents the development of zirconium polycarboxylate gel systems as substrates for advanced fluorescence sensing devices. Zirconium-based metal–organic gels (MOGs) offer a promising alternative due to the robustness of the Zr–O bond, which provides enhanced chemical stability. In this work, zirconium polycarboxylate [...] Read more.
This study presents the development of zirconium polycarboxylate gel systems as substrates for advanced fluorescence sensing devices. Zirconium-based metal–organic gels (MOGs) offer a promising alternative due to the robustness of the Zr–O bond, which provides enhanced chemical stability. In this work, zirconium polycarboxylate gels were synthesized using green solvents in a rapid room temperature method. Fluorescein, naphthalene-2,6-dicarboxylic acid, and 4,4′,4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakisbenzoic acid were incorporated as fluorophores to give the gel luminescent properties, enabling it to be used as a sensor. These fluorophores produce specific changes in the perceived color and intensity of the fluorescence emission upon interaction with different analytes in a solution, allowing a qualitative identification of different solvents and compounds. However, the fragile structure of neat gels hinders reproducible quantitative analysis of fluorescence emission. Therefore, to increase their mechanical stability during manipulation, a composite material was developed by combining the MOGs with quartz microcrystals, which proved to be a more reliable fluorescent system. The results show that the material can identify univocally different solvents and analytes in aqueous solutions by the quantitative analysis of the emission intensities. This work presents an innovative approach to create advanced fluorescence sensors with improved mechanical properties and stability using zirconium polycarboxylate gels and multiple fluorophores. Full article
Show Figures

Graphical abstract

Back to TopTop