Previous Issue
Volume 13, April
 
 

Processes, Volume 13, Issue 5 (May 2025) – 252 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 3856 KiB  
Article
Modeling and Optimization of an Integrated Energy Supply in the Oil and Gas Industry: A Case Study of Northeast China
by Yujie Zhu, Jinze Li, Pei Liu, Guosheng Zhang and He Liu
Processes 2025, 13(5), 1512; https://doi.org/10.3390/pr13051512 - 14 May 2025
Abstract
The oil and gas industry has large and constant power and heat loads and usually ownership of land resources near oil and gas production, providing opportunities for onsite integration of renewable energy. In the future, a possible decrease in reliable and affordable electricity [...] Read more.
The oil and gas industry has large and constant power and heat loads and usually ownership of land resources near oil and gas production, providing opportunities for onsite integration of renewable energy. In the future, a possible decrease in reliable and affordable electricity production capability by the power grid, mainly due to the penetration of intermittent renewable energy, makes seeking an alternative energy supply a wise choice for the oil and gas industry. Foreseeable carbon emission costs also drive the oil and gas industry to a less carbon-intensive way of production. However, it is not yet clear whether it is economically viable for the integration of renewable energy in the oil and gas industry. In this work, we propose a modeling and optimization framework for conceptual planning and the operation of an oilfield’s energy system, where energy demands—heat and power in particular, are supposed to be met by an integrated energy supply including both fossil fuels and renewable energy. Herein, an oilfield in Northeast China has been then taken as a case study. The results indicate that under current conditions with no power purchase limits, integrating renewable energy is not economically viable. As the power purchase limits the decrease by a certain threshold, renewable energy integration becomes essential for maintaining a stable power supply, with renewable energy capacity reaching 35% in a self-sufficient microgrid configuration. Similarly, as electricity prices rise, the deployment of renewable energy begins to exhibit economic viability at 1.5 times the current electricity price. Independent microgrids show better economic resilience compared to grid-dependent systems under rising electricity prices. When carbon prices increase, the heat electrification transformation for microgrids achieves a cost inflection point at USD 76.4 per tonne, resulting in overall cost reductions. These findings emphasize the importance of flexible, renewable energy-driven energy systems in cost-effective decarbonization and energy stability, providing insights for optimizing oilfield energy systems and supporting China’s carbon neutrality goals. Full article
(This article belongs to the Special Issue Advanced Technologies of Renewable Energy Sources (RESs))
Show Figures

Figure 1

18 pages, 6158 KiB  
Article
Study of Mechanisms and Protective Strategies for Polymer-Containing Wastewater Reinjection in Sandstone Reservoirs
by Jie Cao, Liqiang Dong, Yuezhi Wang and Liangliang Wang
Processes 2025, 13(5), 1511; https://doi.org/10.3390/pr13051511 - 14 May 2025
Abstract
Wastewater reinjection is an important measure for balancing the sustainable development of petroleum resources with environmental protection. However, the polymer-containing wastewater generated after polymer injection presents challenges such as reservoir damage and waterflooded zone identification in oilfields. To address this, this study systematically [...] Read more.
Wastewater reinjection is an important measure for balancing the sustainable development of petroleum resources with environmental protection. However, the polymer-containing wastewater generated after polymer injection presents challenges such as reservoir damage and waterflooded zone identification in oilfields. To address this, this study systematically examined the impact of injection water with varying salinities on the flow characteristics and electrical responses of low-permeability reservoirs, based on rock-electrical and multiphase displacement experiments. Additionally, this study analyzed the factors influencing the damage to reservoirs during polymer-containing wastewater reinjection. Mass spectrometry, chemical compatibility tests, and SEM-based micro-characterization techniques were employed to reveal the micro-mechanisms of reservoir damage during the reinjection process, and corresponding protective measures were proposed. The results indicated the following: (1) The salinity of injected water significantly influences the electrical response characteristics of the reservoir. When low-salinity wastewater is injected, the resistivity–saturation curve exhibits a concave shape, whereas high-salinity wastewater results in a linear and monotonically increasing trend. (2) Significant changes were observed in the pore-throat radius distribution before and after displacement experiments. The average frequency of throats within the 0.5–2.5 µm range increased by 1.894%, while that for the 2.5–5.5 µm range decreased by 2.073%. In contrast, changes in the pore radius distribution were relatively minor. Both the experimental and characterization results suggest that pore-throat damage is the primary form of reservoir impairment following wastewater reinjection. (3) To mitigate formation damage during wastewater reinjection, a combined physical–chemical deblocking strategy was proposed. First, multi-stage precision filtration would be employed to remove suspended solids and oil contaminants. Then, a mildly acidic organic-acid-based compound would be used to inhibit the precipitation of metal ions and dissolve the in situ blockage within the core. This integrated approach would effectively alleviate the reservoir damage associated with wastewater reinjection. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

23 pages, 1403 KiB  
Article
Energy and Exergy Analysis of Modified Heat Pump for Simultaneous Production of Cooling and Water Desalination Using Diverse Refrigerants
by A. Pacheco-Reyes, J. C. Jimenez-Garcia, J. Delgado-Gonzaga and W. Rivera
Processes 2025, 13(5), 1510; https://doi.org/10.3390/pr13051510 - 14 May 2025
Abstract
More efficient energy conversion systems operating with clean energy sources or utilizing waste heat are crucial to minimizing the negative environmental impact associated with conventional systems. This study presents the energy and exergy analysis of a modified heat pump capable of producing cooling [...] Read more.
More efficient energy conversion systems operating with clean energy sources or utilizing waste heat are crucial to minimizing the negative environmental impact associated with conventional systems. This study presents the energy and exergy analysis of a modified heat pump capable of producing cooling and desalinated water using heat dissipated in the condenser. Six refrigerants were analyzed in the theoretical evaluation of the proposed system. These were selected based on their use in vapor compression systems and their thermodynamic properties. A parametric study considering operating temperatures and relative humidities determined that refrigerant R-123 achieved the greatest benefits in terms of the EER, the GOR, and . In contrast, the highest benefits in water desalination were obtained with refrigerant R-410a. For operating conditions of TE = 0 °C, TC = 34 °C, and TCA = 14 °C, the system using refrigerant R-123 achieved an EER, GOR, , DW, and IT of 0.82, 2.51, 0.35, 3.46 L/h, and 0.55 kW, respectively. Additionally, the dehumidifier and the evaporator were the components contributing the highest irreversibilities, accounting for approximately 24% and 19.3%, respectively. Full article
21 pages, 11299 KiB  
Article
Fracture System Characteristics and Their Control on Permeability Anisotropy in Bright and Dull Coal
by Liheng Bian, Yanxiang He, Rui Shi, Liang Ji, Wei Zhang, Zhuang Ma, Peng Wu and Jian Shen
Processes 2025, 13(5), 1509; https://doi.org/10.3390/pr13051509 - 14 May 2025
Abstract
Coal permeability, a key parameter influencing coalbed methane production and geological storage, is strongly governed by the dual-porosity nature of coal and the stress-dependent evolution of its fracture network. This study investigates the development characteristics of filled and unfilled fractures, and the resulting [...] Read more.
Coal permeability, a key parameter influencing coalbed methane production and geological storage, is strongly governed by the dual-porosity nature of coal and the stress-dependent evolution of its fracture network. This study investigates the development characteristics of filled and unfilled fractures, and the resulting permeability anisotropy, in typical bright and dull coals from the deep 8# coal seam of the Ordos Basin. Utilizing CT scanning and permeability anisotropy testing, we analyze how fracture development impacts coal permeability and its evolution under stress. Bright coal exhibits a grid-like distribution of mineral-filled fractures with good vertical connectivity, and a complex network of unfilled fractures. In contrast, dull coal displays a scattered distribution of mineral-filled fractures with poor vertical connectivity and a limited number of unfilled fractures. Results indicate an exponential decay trend in permeability with increasing confining pressure, strongly correlated with fracture system development. Permeability also demonstrates significant heterogeneity (face cleat > butt cleat > vertical). Bright coal exhibits a greater permeability decay rate than dull coal, indicating heightened stress sensitivity, while its permeability anisotropy is weaker, aligning with the observed fracture development patterns. Full article
Show Figures

Figure 1

18 pages, 15487 KiB  
Article
Study on the Four-Dimensional Variations of In Situ Stress in Stress-Sensitive Ultra-High-Pressure Tight Gas Reservoirs
by Chuankai Zhao, Lei Shi, Hang Su, Liheng Yan, Yang Luo, Shangui Luo, Peng Qiu and Yuanwei Hu
Processes 2025, 13(5), 1508; https://doi.org/10.3390/pr13051508 - 14 May 2025
Abstract
Compared with traditional gas reservoirs, ultra-deep and ultra-high-pressure tight sandstone gas reservoirs are characterized by well-developed faults and fractures, strong heterogeneity and stress sensitivity, and complex in situ stress distribution. Traditional three-dimensional geological models and numerical models ignore the variation characteristics of reservoir [...] Read more.
Compared with traditional gas reservoirs, ultra-deep and ultra-high-pressure tight sandstone gas reservoirs are characterized by well-developed faults and fractures, strong heterogeneity and stress sensitivity, and complex in situ stress distribution. Traditional three-dimensional geological models and numerical models ignore the variation characteristics of reservoir in situ stress during the production process, it affects the accuracy of the subsequent fracturing modification design and development plan formulation. Therefore, based on the integrated method of geological engineering, this article first carried out high-temperature and high-pressure stress sensitivity tests on reservoir rock samples and fitted the stress-sensitive mathematical model to clarify the influence of high temperature and high pressure on permeability. Then, aiming at the problem of four-dimensional in situ stress variation caused by the coupling of the seepage field and stress field during the exploitation of tight sandstone gas reservoirs, combined with the results of well logging interpretation, rock physical property analysis, and mechanical experiments, based on the three-dimensional geological model and geomechanical model of the gas reservoir and coupled with the stress-sensitive characteristics of the reservoir, a four-dimensional in situ stress model for the reservoir of tight sandstone gas reservoirs was established. The prediction of the variation law of four-dimensional in situ stress during the production process was carried out. Finally, the influence of considering stress sensitivity on reservoir production was simulated. The results show the following: ① The production process has a significant impact on the magnitude and distribution of four-dimensional in situ stress. With the decrease in pore pressure, both the maximum horizontal principal stress and the minimum horizontal principal stress decrease. ② In the area near the production well, the direction of in situ stress will significantly deflect over time. ③ In an ultra-deep and ultra-high-pressure environment, the gas reservoir is affected by the stress-sensitive effect. The stable production time of the gas well is reduced by two years, and the cumulative gas production decreases by 5.01 × 108 m3. The research results provide the temporal stress field distribution results for the simulation and prediction of the secondary fracturing of old wells and the commissioning fracturing of new wells in the target well area. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 6278 KiB  
Article
Application of Deep Learning Techniques for Air Quality Prediction: A Case Study in Macau
by Thomas M. T. Lei, Jianxiu Cai, Wan-Hee Cheng, Tonni Agustiono Kurniawan, Altaf Hossain Molla, Mohd Shahrul Mohd Nadzir, Steven Soon-Kai Kong and L.-W. Antony Chen
Processes 2025, 13(5), 1507; https://doi.org/10.3390/pr13051507 - 14 May 2025
Abstract
To better inform the public about ambient air quality and associated health risks and prevent cardiovascular and chronic respiratory diseases in Macau, the local government authorities apply the Air Quality Index (AQI) for air quality management within its jurisdiction. The application of AQI [...] Read more.
To better inform the public about ambient air quality and associated health risks and prevent cardiovascular and chronic respiratory diseases in Macau, the local government authorities apply the Air Quality Index (AQI) for air quality management within its jurisdiction. The application of AQI requires first determining the sub-indices for several pollutants, including respirable suspended particulates (PM10), fine suspended particulates (PM2.5), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO). Accurate prediction of AQI is crucial in providing early warnings to the public before pollution episodes occur. To improve AQI prediction accuracy, deep learning methods such as artificial neural networks (ANNs) and long short-term memory (LSTM) models were applied to forecast the six pollutants commonly found in the AQI. The data for this study was accessed from the Macau High-Density Residential Air Quality Monitoring Station (AQMS), which is located in an area with high traffic and high population density near a 24 h land border-crossing facility connecting Zhuhai and Macau. The novelty of this work lies in its potential to enhance operational AQI forecasting for Macau. The ANN and LSTM models were run five times, with average pollutant forecasts obtained for each model. Results demonstrated that both models accurately predicted pollutant concentrations of the upcoming 24 h, with PM10 and CO showing the highest predictive accuracy, reflected in high Pearson Correlation Coefficient (PCC) between 0.84 and 0.87 and Kendall’s Tau Coefficient (KTC) between 0.66 and 0.70 values and low Mean Bias (MB) between 0.06 and 0.10, Mean Fractional Bias (MFB) between 0.09 and 0.11, Root Mean Square Error (RMSE) between 0.14 and 0.21, and Mean Absolute Error (MAE) between 0.11 and 0.17. Overall, the LSTM model consistently delivered the highest PCC (0.87) and KTC (0.70) values and the lowest MB (0.06), MFB (0.09), RMSE (0.14), and MAE (0.11) across all six pollutants, with the lowest SD (0.01), indicating greater precision and reliability. As a result, the study concludes that the LSTM model outperforms the ANN model in forecasting air pollutants in Macau, offering a more accurate and consistent prediction tool for local air quality management. Full article
Show Figures

Figure 1

44 pages, 2201 KiB  
Review
Comparative Study of Hydrogen Storage and Metal Hydride Systems: Future Energy Storage Solutions
by Nesrin İlgin Beyazit
Processes 2025, 13(5), 1506; https://doi.org/10.3390/pr13051506 - 14 May 2025
Abstract
Hydrogen is a key energy carrier, playing a vital role in sustainable energy systems. This review provides a comparative analysis of physical, chemical, and innovative hydrogen storage methods from technical, environmental, and economic perspectives. It has been identified that compressed and liquefied hydrogen [...] Read more.
Hydrogen is a key energy carrier, playing a vital role in sustainable energy systems. This review provides a comparative analysis of physical, chemical, and innovative hydrogen storage methods from technical, environmental, and economic perspectives. It has been identified that compressed and liquefied hydrogen are predominantly utilized in transportation applications, while chemical transport is mainly supported by liquid organic hydrogen carriers (LOHC) and ammonia-based systems. Although metal hydrides and nanomaterials offer high hydrogen storage capacities, they face limitations related to cost and thermal management. Furthermore, artificial intelligence (AI)- and machine learning (ML)-based optimization techniques are highlighted for their potential to enhance energy efficiency and improve system performance. In conclusion, for hydrogen storage systems to achieve broader applicability, it is recommended that integrated approaches be adopted—focusing on innovative material development, economic feasibility, and environmental sustainability. Full article
(This article belongs to the Special Issue Sustainable Hydrogen Technologies and Their Value Chains)
Show Figures

Figure 1

15 pages, 3161 KiB  
Article
Characterisation of Cork Volatile Organic Compounds Using TD-GC-MS: Effects of Origin, Washing Process, and Thermal Processing of Cork Stoppers
by Patricia Jové, Raquel de Nadal, Maria Verdum and Núria Fiol
Processes 2025, 13(5), 1505; https://doi.org/10.3390/pr13051505 - 14 May 2025
Abstract
This study presents a green and solvent-free methodology based on thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS) to characterise cork’s volatile aromatic (VOC) profile. Samples from three geographical origins—Catalonia, Extremadura, and Sardinia—were analysed at different extraction temperatures. Cork stoppers from Sardinia were [...] Read more.
This study presents a green and solvent-free methodology based on thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS) to characterise cork’s volatile aromatic (VOC) profile. Samples from three geographical origins—Catalonia, Extremadura, and Sardinia—were analysed at different extraction temperatures. Cork stoppers from Sardinia were also analysed after two washing procedures (immersion and spray) and thermal treatment. The results showed that temperature and geographical origin significantly influenced the quantity and intensity of extracted VOCs, with higher extraction temperatures yielding a more comprehensive volatile profile. Vanillin was the most abundant compound in all samples. A multivariate analysis showed that cork from Extremadura was associated with carboxylic acids, Catalonia with furan derivatives and sugar-related compounds, and Sardinia with phenolic compounds linked to lignin degradation. Immersion-washed stoppers retained more lignin-derived and phenolic compounds, while spray-washed samples were characterised by a higher alkane content. Thermal treatment notably altered the VOC profile, increasing ketones such as acetophenone and 2-nonadecanone and reducing alkanes and fatty acids. These findings highlight the influence of the geographical origin and manufacturing process on the aromatic composition of cork, with potential applications in industries seeking natural active compounds. Full article
Show Figures

Figure 1

15 pages, 2853 KiB  
Article
Thermodynamic Method for Evaluating the Gas Adsorption-Induced Swelling of Confined Coal: Implication for CO2 Geological Sequestration
by Zhigang Du, Tianxiang Chen, Shuigen Hu, Yanqiang Du, Fuqiang Gao, Pengli He, Qiang Huang, Shaoyang Yan and Ning Li
Processes 2025, 13(5), 1504; https://doi.org/10.3390/pr13051504 - 14 May 2025
Abstract
Geological storage of CO2 in coal seam is an effective way for carbon emission reduction. Evaluating the adsorption-induced swelling behavior of confined coal is essential for this carbon emission reduction strategy. Based on the thermodynamic theory and the Gibbs adsorption model, a [...] Read more.
Geological storage of CO2 in coal seam is an effective way for carbon emission reduction. Evaluating the adsorption-induced swelling behavior of confined coal is essential for this carbon emission reduction strategy. Based on the thermodynamic theory and the Gibbs adsorption model, a thermodynamic method for evaluating the gas adsorption-induced swelling behavior of confined coal was established. The influences of factors such as stress, gas pressure, and the state of gas on the adsorption-induced swelling behavior of confined coal were discussed. The predicted swelling deformation from the thermodynamic method based on the ideal gas hypothesis was consistent with the experimental result only under the condition of low-pressure CO2 (<2 MPa). The predicted swelling deformation from that method was larger than the experimental result under the condition of high-pressure CO2 (>2 MPa). However, the method based on the real gas hypothesis always had better prediction results under both the low- and high-pressure CO2 conditions. From the perspective of phase equilibrium and transfer, in the process of CO2 adsorption by the confined coal, gas molecules transfer from the adsorption site of high chemical potential to the low chemical potential. Taking the real gas as ideal gas will result in the surface energy increase in the established model. Consequently, the prediction result will be larger. Therefore, for geological storage of CO2 in coal seam, it is necessary to take the real gas state to predict the adsorption-induced swelling behavior of the coal. In the process of CO2 adsorption by the confined coal, when its pressure is being closed to the critical pressure, capillary condensation phenomenon will occur on the pore surface of the confined coal. This can make an excessive adsorption of CO2 by the coal. With the increase in the applied stress, the adsorption capacity and adsorption-induced swelling deformation of the confined coal decrease. Compared to N2 with CO2, the coal by CO2 adsorption always shows swelling deformation under the simulated condition of ultra-high-pressure injection. However, the coal by N2 adsorption will shows shrinking deformation due to the pore pressure effect after the equilibrium pressure. Taking the difference in the adsorption-induced swelling behavior and pore compression effect, N2 can be mixed to improve the injectivity of CO2. This suggests that CO2 storage in the deep burial coal seam can be carried out by its intermittent injection under high-pressure condition along with mixed N2. Full article
Show Figures

Figure 1

14 pages, 2643 KiB  
Article
Mining Biosynthetic Gene Clusters of Bacillus subtilis MGE 2012 Using Whole Genome Sequencing
by Jiyoun Kim, Hafiza Hira Bashir, Joon Hwang and Gi-Seong Moon
Processes 2025, 13(5), 1503; https://doi.org/10.3390/pr13051503 - 14 May 2025
Abstract
This study aims to elucidate the genomic characteristics of Bacillus subtilis MGE 2012, a strain isolated from Korean traditional fermented food, meju, which contributes to its high enzyme activity and potential applications. The whole genome sequence of B. subtilis MGE 2012 was assembled [...] Read more.
This study aims to elucidate the genomic characteristics of Bacillus subtilis MGE 2012, a strain isolated from Korean traditional fermented food, meju, which contributes to its high enzyme activity and potential applications. The whole genome sequence of B. subtilis MGE 2012 was assembled using MEGAHIT, annotated using RAST and BLASTKOALA v3.1. Phylogenetic analysis placed MGE 2012 within the Bacillus clade, showing high similarity to B. subtilis NCIB 3610 and B. subtilis ATCC 6051. AntiSMASH analysis identified 14 biosynthetic gene clusters (BGCs) capable of producing various secondary metabolites, including subtilosin, bacillibactin, fengycin, bacilysin, plipastatin, and surfactin. This study provides an overview of the whole genome and secondary metabolite profile of B. subtilis MGE 2012, emphasizing its potential applications in biotechnology. While the primary focus of this study was to explore the genomic characteristics and secondary metabolite profile, future research could delve deeper into genome mining for enzyme activities and their applications. Full article
(This article belongs to the Special Issue Computational Biology Approaches to Genome and Protein Analyzes)
Show Figures

Figure 1

18 pages, 3609 KiB  
Article
Semi-Interpenetrating Polymer Networks Incorporating Polygalacturonic Acid: Physical Characterization and In Vitro Biocompatibility
by Aisling N. O’Carroll, Colin P. McCoy and Louise Carson
Processes 2025, 13(5), 1502; https://doi.org/10.3390/pr13051502 - 14 May 2025
Abstract
Polygalacturonic acid (PGA), derived from the natural plant polysaccharide, pectin, has been suggested as a biomaterial for implantable medical devices and tissue engineering; particularly in the field of bone implant materials. As a negatively charged polysaccharide, PGA can be considered similar to hyaluronic [...] Read more.
Polygalacturonic acid (PGA), derived from the natural plant polysaccharide, pectin, has been suggested as a biomaterial for implantable medical devices and tissue engineering; particularly in the field of bone implant materials. As a negatively charged polysaccharide, PGA can be considered similar to hyaluronic acid, a component of the extracellular matrix (ECM). PGA-based biomaterials may therefore exhibit favorable biocompatibility with surface chemistry mimicking the natural ECM. In this study, we synthesized semi-interpenetrating polymer networks (SIPNs) incorporating PGA, and conducted physical characterization and in vitro biocompatibility studies. Biocompatibility testing revealed the SIPNs to be cytocompatible, with the PGA component conferring some resistance to the adherence of the macrophage cell line RAW264.7. In addition, SIPNs did not support the fusion of primary murine macrophages into foreign body giant cells (FBGCs). Macrophage adherence and FBGC formation on implanted biomaterial surfaces are important events in the progression of a foreign body response. Our in vitro studies suggest that PGA-based materials may offer desirable biocompatibility profiles, holding promise for future clinical applications. Full article
Show Figures

Figure 1

18 pages, 1081 KiB  
Article
Abnormal Energy Consumption Diagnosis Method of Oilfields Based on Multi-Model Ensemble Learning
by Wei Li, Xinyan Wang, Qingbo Sheng, Shaopeng Liu, Guangyi Wan, Yunfei Li and Xiaorui Dong
Processes 2025, 13(5), 1501; https://doi.org/10.3390/pr13051501 - 14 May 2025
Abstract
Petroleum is a significant source of global energy supply, and accurate and efficient anomaly diagnosis of energy consumption in oilfields plays a crucial role in controlling operational costs and ensuring environmental sustainability. This study utilizes daily production data from the Shengli Oilfield and [...] Read more.
Petroleum is a significant source of global energy supply, and accurate and efficient anomaly diagnosis of energy consumption in oilfields plays a crucial role in controlling operational costs and ensuring environmental sustainability. This study utilizes daily production data from the Shengli Oilfield and applies various encoding methods to construct a dataset for diagnosing anomalies in energy consumption. We propose a method for diagnosing energy consumption anomalies based on multi-model ensemble learning, aiming to effectively reduce energy consumption and optimize oilfield management. Based on the constructed dataset, we trained an efficient and reliable anomaly diagnosis model that blurs the boundaries between classification and regression problems. The model leverages the strengths of various machine learning algorithms, including Support Vector Machines, random forest, gradient boosting, and ridge regression, while considering the analysis requirements under different computational power and real-time scenarios. Experimental results demonstrate that the mean squared error of the proposed ensemble model is 0.04, with accuracy, precision, recall, and F1 score all reaching 96%, indicating excellent performance and significantly surpassing that of individual models and benchmark algorithms. Additionally, a new iterative data cleaning model based on the multi-task random forest framework is introduced, which effectively handles missing values and anomalies, demonstrating high processing accuracy for most features. This study provides a practical framework for optimizing energy consumption management in oilfields and offers insights into broader applications in energy-intensive industries. Full article
Show Figures

Figure 1

19 pages, 10657 KiB  
Article
Microplastic Identification in Domestic Wastewater-Treating Constructed Wetlands and Its Potential Usage in a Circular Economy
by Flor Idalia Tirado Aguilar, Carolina Peña Montes, Yodaira Borroto Pentón, María Cristina López Méndez, Jesús Castellanos Rivera, Gustavo Martínez Castellanos, Humberto Raymundo González Moreno and Brenda Lizeth Monzón Reyes
Processes 2025, 13(5), 1499; https://doi.org/10.3390/pr13051499 - 14 May 2025
Abstract
Mentions of microplastics (MPs) are increasingly frequent, for they are present in all environments, including wastewater. Knowing their possible harmful effects on the food chain, the fact that they appear in crops is concerning. The ways by which they are transported and stored, [...] Read more.
Mentions of microplastics (MPs) are increasingly frequent, for they are present in all environments, including wastewater. Knowing their possible harmful effects on the food chain, the fact that they appear in crops is concerning. The ways by which they are transported and stored, as well as their final destination, are still unclear. The issue of MPs in wastewater and how they are carried into agricultural crops are little-known facts. This study aims to evaluate whether horizontal subsurface flow wetlands with ornamental plants (Hippeastrum hybridum hort and Heliconia bihai marginata) can retain microplastics present in domestic wastewater while at the same time recirculating water for irrigation of the Phaseolus vulgaris crop. On average, the ornamental plants Hippeastrum hybridum hort and Heliconia bihai marginata removed contaminants such as COD, NH4+, TN, NO2, TP, PO43−, and TSS, with an efficiency of 84% and 98%, respectively. The presence of MPs was identified via FTIR analysis and visual characterization in domestic wastewater, treated wastewater, and well water; the quality of the fruit for human consumption was determined using safety tests for Escherichia coli and Salmonella. Full article
Show Figures

Figure 1

12 pages, 2326 KiB  
Article
Study of Specific Problems Arising in the Blending Processes of Crude Oils (Based on the Examples of Azerbaijan Oils)
by Xiuyu Wang, Gafar Ismayilov, Elman Iskandarov, Elnur Alizade and Fidan Ismayilova
Processes 2025, 13(5), 1500; https://doi.org/10.3390/pr13051500 - 13 May 2025
Abstract
Experiences in the production, transportation and preparation of crude oil for transportation have shown that specific problems arise related to their mixing, including water contamination. In recent years, interest in studying these problems has significantly increased, mainly due to the development of extraction [...] Read more.
Experiences in the production, transportation and preparation of crude oil for transportation have shown that specific problems arise related to their mixing, including water contamination. In recent years, interest in studying these problems has significantly increased, mainly due to the development of extraction technologies for heavy oil samples and bitumen. Along with various difficulties encountered during the pipeline transportation of complex rheological crude oil blended with each other and with light oil, including condensate (such as sedimentation, etc.), imbalances are also observed during storage, as well as in the processes of delivery and reception. During the dehydration of oil mixtures, a synergistic effect is observed in the consumption of demulsifier. The article investigates, in accordance with international standards and based on laboratory tests, how the physico-chemical properties (density, viscosity, freezing point, saturated vapor pressure, chemical composition) of mixtures formed by blending various grades and compositions of Azerbaijani oil examples with each other and with condensate change and how the efficiency of dehydration of oil mixtures is affected by the mixing ratio of the oil involved. It was found that the quality indicators (physico-chemical parameters) of oil mixtures differ non-additively from the initial parameters of the blended products and in some cases, this difference is even observed with anomalies. Moreover, depending on the mixing ratio of the oil, variations in the consumption of demulsifier were also identified. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

28 pages, 10590 KiB  
Opinion
Business Cases for Digital Twins in Biopharmaceutical Manufacturing—Market Overview, Stakeholders, Technologies in 2025 and Beyond
by Axel Schmidt, Jessica Lütge, Alexander Uhl, Dirk Köster and Jochen Strube
Processes 2025, 13(5), 1498; https://doi.org/10.3390/pr13051498 - 13 May 2025
Abstract
Over the past years, the biopharmaceutical industry has been marked by substantial growth, with key players dominating market sales. A major change in research and development is the onset of digital twin (DT) technology in manufacturing. This work gives an overview of the [...] Read more.
Over the past years, the biopharmaceutical industry has been marked by substantial growth, with key players dominating market sales. A major change in research and development is the onset of digital twin (DT) technology in manufacturing. This work gives an overview of the market and major stakeholders, such as contract development and manufacturing organizations (CDMOs), regulatory bodies, and academia, their functions, and challenges. Fundamental concepts and definitions are reviewed and serve as an overview of the challenges ahead of the full adaptation of DTs in manufacturing. Using established market analysis tools, the environment is analyzed, and a business case is developed. Opportunities and threats for small startups and larger pharmaceutical companies to gain a competitive edge are analyzed and evaluated. Even small groups of 4–16 employees enable significant margins at a return on investment of less than 1 year. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

24 pages, 5960 KiB  
Article
MBSE-Based Integration of Superplastic Forming Manufacturing Process Information for Customized Products
by Xingwei Zhou, Wanran Yang, Haiyu Guo, Shaozong Wang, Boya Wang, Le Wu, Chengyue Xiong, Ailing Zou, Bo Wang, Fanrong Zeng, Gongxi Zhou, Shijiang Li and Liang Hou
Processes 2025, 13(5), 1497; https://doi.org/10.3390/pr13051497 - 13 May 2025
Abstract
Optimizing superplastic forming (SPF) process parameters is vital for improving production efficiency and addressing the growing complexity of product requirements in high-end manufacturing fields. Current optimization of SPF process parameters focuses on meeting product requirements, often overlooking constraints related to quality indicators, process, [...] Read more.
Optimizing superplastic forming (SPF) process parameters is vital for improving production efficiency and addressing the growing complexity of product requirements in high-end manufacturing fields. Current optimization of SPF process parameters focuses on meeting product requirements, often overlooking constraints related to quality indicators, process, and equipment limitations. This paper proposes an optimization approach that integrates SPF manufacturing process information using model-based systems engineering and simulation validation techniques to establish a continuous mapping between product requirements, process parameters, and equipment control parameters. First, SPF is modeled using the systems modeling language to describe the relationships between processes and equipment. Then, the process parameters are extracted via object flow analysis and categorized according to shape and performance control. The key process parameters and impact indicators for meeting customized product requirements are identified using the analytic hierarchy process. Finally, orthogonal experimental design and process simulation are employed to optimize the parameters, with the results mapped onto the physical model to guide the equipment control parameter design. A case study demonstrates its feasibility and effectiveness in meeting customized products. Full article
Show Figures

Figure 1

13 pages, 3607 KiB  
Article
Combined Removal of NOx and SO2 in Circulating Fluidized Beds with Post-Combustion
by Chao Wang and Qinggang Lyu
Processes 2025, 13(5), 1496; https://doi.org/10.3390/pr13051496 - 13 May 2025
Abstract
The post-combustion technology of circulating fluidized beds (CFBs) can largely reduce the emission of nitrogen oxides (NOx) in the process of combustion, significantly reducing the removal cost of NOx. To explore the potential of the combined removal of NO [...] Read more.
The post-combustion technology of circulating fluidized beds (CFBs) can largely reduce the emission of nitrogen oxides (NOx) in the process of combustion, significantly reducing the removal cost of NOx. To explore the potential of the combined removal of NOx and SO2 emissions under post-combustion technology, experiments were conducted on a 0.1 MWth circulating fluidized bed test platform. This paper focuses on the effect of temperature in CFB with limestone addition on NOx and SO2 emissions under post-combustion technology combined with sorbent injection into the furnace. The low-cost combined removal of NOx and SO2 can be realized by denitrification in the furnace and through secondary desulfurization in the furnace and post-combustion chamber. In the optimized experimental condition, with combustion temperatures at 845 °C and sorbent addition in the furnace under post-combustion, the emission of NOx can be reduced to 47.10 mg/Nm3(@6%O2), and meanwhile, the emission of SO2 can be reduced to 92.09 mg/Nm3. Sulfur removal efficiency is higher under lower temperatures in a weakly reducing atmosphere. The reaction of sulfur fixation occurred in the post-combustion chamber and caused the particle size of fly ashes at the tail flue to become bigger and the sulfur content in the fly ash at the tail flue to increase. At 845–905 °C, the combustion temperature had a bigger effect on the SO2 emission than the NOx with sorbent addition in the furnace under post-combustion. Full article
(This article belongs to the Special Issue Development and Utilization of Biomass, Coal and Organic Solid Wastes)
Show Figures

Figure 1

15 pages, 5003 KiB  
Article
Softening of Production Tubing Under Random Vibration Excitation and Prediction of Fatigue Life of the Entire Wellbore
by Lian Liu, Zhongwei Huang, Peng Su, Yinping Cao and Yihua Dou
Processes 2025, 13(5), 1495; https://doi.org/10.3390/pr13051495 - 13 May 2025
Abstract
A study was conducted on the mechanical behavi or of the completion string in a 10,000 m ultra-deep well from western China’s oilfields to identify the causes of plastic failure in the string. This article analyzes the interaction between fluid and tubing in [...] Read more.
A study was conducted on the mechanical behavi or of the completion string in a 10,000 m ultra-deep well from western China’s oilfields to identify the causes of plastic failure in the string. This article analyzes the interaction between fluid and tubing in high-pressure and high-production gas wells by establishing a fluid structure coupling four-equation model. Through fatigue tests, it was found that P110 tubing material has a stress amplitude related ratchet effect, revealing the softening characteristics of tubing material. Through case analysis, the fatigue of the entire wellbore was analyzed, and it was shown that the fatigue hotspot is concentrated near the neutralization point, and stress concentration under high-production and low-production conditions leads to the degradation of tubing material performance under fatigue load. After continuous service for 30 days under high-production and low-production conditions, the entire wellbore section exhibited a softening phenomenon, and the yield strength began to decrease below 4349 m and 4324 m well depths, respectively. The safety factor of the entire wellbore section decreased. Within 284 days of production, the fatigue damage of the entire wellbore section was less than 5%, and the remaining yield change and material softening of the tubing string were negligible. However, there was an impact load during the lifecycle, which caused severe fluctuations in the wellbore safety factor and was the main cause of tubing string fracture. Subsequent research should integrate diverse well cases exhibiting varying production parameters to establish a statistically robust predictive framework for safety factor variations. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

23 pages, 2651 KiB  
Article
Thermo-Catalytic Persulfate Activation in Tubular Microreactors for Advanced Oxidation of Safranin O: Insights into Process Benefits and Limitations
by Abderrahmane Talbi, Slimane Merouani, Aissa Dehane, Hana Bouchoucha, Ala Abdessemed and Mohamed S. O. Belahmadi
Processes 2025, 13(5), 1494; https://doi.org/10.3390/pr13051494 - 13 May 2025
Abstract
This study examines the use of a1 mm-diameter tubular microreactor submerged in a temperature-controlled water bath to activate potassium persulfate (KPS) via thermal, Fe2+-catalyzed, and combined thermo-catalytic processes for degrading the persistent textile dye Safranin O (SO). The efficiency of these [...] Read more.
This study examines the use of a1 mm-diameter tubular microreactor submerged in a temperature-controlled water bath to activate potassium persulfate (KPS) via thermal, Fe2+-catalyzed, and combined thermo-catalytic processes for degrading the persistent textile dye Safranin O (SO). The efficiency of these methods was evaluated under varying conditions, including KPS, dye, and Fe2⁺ flow rates, solution pH, reactor length, and water matrix quality (deionized water, tap water, seawater, and secondary effluent from a wastewater treatment plant (SEWWTP)) across bath temperatures of 30–80 °C. Total organic carbon (TOC) analysis validated the results. Maximum dye conversion (up to 89%) occurred at 70 °C, with no improvement beyond this temperature, mainly due to radical-radical recombination. Longer reactors (2–6 m) enhanced conversion, though this effect diminished at higher temperatures due to efficient thermal activation. Increasing dye flow rates reduced removal efficiency, particularly above 50 °C, highlighting kinetic and mass transfer limitations. Persulfate flow rate increases improved conversion, but a plateau emerged at 80 °C. At lower temperatures (30–40 °C), Fe2+ addition significantly boosted SO conversion in deionized water. Between 40 and 50 °C, conversion rose from 30.27% (0 mM Fe2+) to 85.91% (0.2 mM Fe2+) at 50 °C. At higher temperatures (60–80 °C), conversion peaked at 70 °C for lower Fe2+ concentrations (100% for 0.01–0.05 mM Fe2+), but higher Fe2+ levels (0.1–0.2 mM) caused a decline above 60 °C, dropping to 68.44% for 0.2 mM Fe2+ at 80 °C. Deionized, tap, and mineral water showed similar performance, while river water, secondary effluent, and seawater inhibited SO conversion at lower temperatures (30–60 °C). At 70–80 °C, all matrices achieved efficiencies comparable to deionized water for both thermal and thermo-catalytic activation. The thermo-catalytic system achieved >50% TOC reduction, indicating significant organic matter mineralization. The results were comprehensively analyzed in relation to thermal and kinetic factors influencing the performance of continuous-flow reactors. Full article
(This article belongs to the Special Issue Treatment and Remediation of Organic and Inorganic Pollutants)
Show Figures

Figure 1

13 pages, 463 KiB  
Article
Cryoconservation Modifies Ion Transport Pathways in the Skin Microenvironment: An In Vitro Study
by Iga Hołyńska-Iwan, Marcin Wróblewski, Lucyna Kałużna, Tomasz Dziaman, Jolanta Czuczejko, Olga Zavyalova, Dorota Olszewska-Słonina and Karolina Szewczyk-Golec
Processes 2025, 13(5), 1493; https://doi.org/10.3390/pr13051493 - 13 May 2025
Abstract
Due to the lack of skin donors, the short time frame for conducting the procedure, and the increasing demand for tissue specimens, the proper storage conditions for skin fragments have gained critical importance. Therefore, the search for methods for storing skin tissue long-term, [...] Read more.
Due to the lack of skin donors, the short time frame for conducting the procedure, and the increasing demand for tissue specimens, the proper storage conditions for skin fragments have gained critical importance. Therefore, the search for methods for storing skin tissue long-term, ensuring its physiological functions, is a matter of considerable interest. Freezing skin fragments in a cryoprotectant solution, such as dimethylsulfoxide (DMSO), can be a valuable complement to tissues for transplantation and for supplying difficult-to-heal wounds. This study aimed to assess the effect of deep freezing rabbit skin fragments immersed in a 5% DMSO solution on their electrophysiological parameters. Control (n = 23) and defrosted skin specimens were incubated in Ringer (n = 21), amiloride (n = 26), and bumetanide (n = 24) solutions. Then, resistance (R), potential difference (PD), and minimal and maximal PD were measured. The specimens did not show differences in R values compared to controls, which means that the skin subjected to freezing was compact and durable. However, the tissue subjected to freezing in DMSO solution presented increased transport of sodium and chloride ions, which may translate into a change in pain perception, the development of hypersensitivity and/or allergy, and the initiation of repair and regeneration processes. Full article
(This article belongs to the Special Issue Structure Optimization and Transport Characteristics of Porous Media)
Show Figures

Figure 1

17 pages, 3545 KiB  
Article
Optimal Scheduling of Active Distribution Networks with Hybrid Energy Storage Systems Under Real Road Network Topology
by Ling Miao, Li Di, Jian Zhao, Hao Liu, Yurong Hu and Xiaozhao Wei
Processes 2025, 13(5), 1492; https://doi.org/10.3390/pr13051492 - 13 May 2025
Abstract
With the increasing proportion of renewable energy in power systems, the applications of mobile energy storage systems (MESSs) with better flexibility and controllability are becoming more widespread. To further explore the hybrid ESS optimization scheduling problem of MESS and SESS, this paper first [...] Read more.
With the increasing proportion of renewable energy in power systems, the applications of mobile energy storage systems (MESSs) with better flexibility and controllability are becoming more widespread. To further explore the hybrid ESS optimization scheduling problem of MESS and SESS, this paper first quantifies parts of actual road topologies in Dali City, China, and combines the Dijkstra algorithm to obtain an MESS path optimization framework. Subsequently, a hybrid ESS optimization scheduling model combining MESS and SESS is constructed with the objective functions of maximizing the scheduling benefits of the hybrid ESS and minimizing system voltage deviation. Finally, the non-dominated sorting genetic algorithm III (NSGA-III) is used to solve the hybrid ESS optimization scheduling model. To verify the effectiveness of the proposed method, this paper selected typical daily load and renewable energy output data in winter in Dali for the case study. The final result shows that the total profit of the optimized scheduling of the hybrid ESS is CNY 578, of which the arbitrage income is CNY 1119.2 and the total cost is CNY 540.44. Meanwhile, the voltage distribution range and total power loss are optimized from [0.9616, 1.0105] to [0.9723, 1.0008] and 0.963 MW to 0.9134 MW, which indicates that the coordinated scheduling of hybrid ESS is the key to improving the reliability of distribution network operation, and the path optimization of MESS is crucial for enhancing its profitability. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

20 pages, 6191 KiB  
Article
Numerical Investigation of Energy Efficiency and Remediation Performance of Steam Injection via Horizontal Wells for Soil Xylene Pollution
by Yuchao Zeng, Lixing Ding, Haizhen Zhai and Bin He
Processes 2025, 13(5), 1491; https://doi.org/10.3390/pr13051491 - 13 May 2025
Abstract
Soil organic pollution poses a significant threat to agricultural safety in China, underscoring the critical importance of developing efficient remediation technologies for soil environmental protection. Steam injection, a promising method for removing organic pollutants from soil, has yet to be thoroughly investigated in [...] Read more.
Soil organic pollution poses a significant threat to agricultural safety in China, underscoring the critical importance of developing efficient remediation technologies for soil environmental protection. Steam injection, a promising method for removing organic pollutants from soil, has yet to be thoroughly investigated in terms of its energy efficiency. A novel steam injection system with horizontal wells is proposed to remediate soil xylene pollution, and a corresponding numerical model is established and solved through TOUGH2-T2VOC codes. The energy efficiency characteristics and main influencing factors of the system are analyzed. The results demonstrate that steam injection is an effective method to remediate xylene pollution. It is evaluated that during the first 1.5 years of the 5-year operation period, production xylene saturation gradually decreases from 0.3 to 0.05, and the production xylene mass flow rate gradually decreases from 0.179 kg/s to 2.448 × 10−4 kg/s. Pump power consumption gradually increases from 17.23 kW to 30.67 kW, while energy efficiency gradually decreases from 7.73 × 10−4 kg/kJ to 1.00 × 10−6 kg/kJ. Sensitivity analyses indicate that the main factors affecting the xylene mass flow rate are formation permeability, production pressure and the initial xylene saturation, and the main factors affecting energy efficiency are the steam injection flow rate, formation permeability, production pressure and initial xylene saturation. This has significant practical significance for the optimal design of the steam injection remediation scheme for soil organic pollution. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

21 pages, 15103 KiB  
Article
Analysis of Waterflooding Oil Recovery Efficiency and Influencing Factors in the Tight Oil Reservoirs of Jilin Oilfield
by Jie Cao, Zhou Liu, Zhipeng Zhang, Yuezhi Wang and Liangliang Wang
Processes 2025, 13(5), 1490; https://doi.org/10.3390/pr13051490 - 13 May 2025
Abstract
During the waterflooding recovery process, water is injected into the hydrocarbon reservoirs and displaces a portion of the oil and gas, thereby improving oil and gas recovery rates and extending the production life of the reservoir. The macro benefits of waterflooding technology are [...] Read more.
During the waterflooding recovery process, water is injected into the hydrocarbon reservoirs and displaces a portion of the oil and gas, thereby improving oil and gas recovery rates and extending the production life of the reservoir. The macro benefits of waterflooding technology are widely recognized; however, the micro-scale effects of water on the reservoir’s pore structure and fluid distribution during the injection process remain underexplored. Therefore, this study aims to analyze the micro-distribution characteristics of fluids in the reservoir during the oil–water displacement process. To further investigate the micro-mechanisms of waterflooding recovery and the factors influencing recovery efficiency, the study focuses on the impact of permeability, pressure gradient, injection volume, and reverse displacement on oil recovery efficiency. A combined qualitative and quantitative analysis approach was employed, using techniques such as nuclear magnetic resonance (NMR), CT scanning, and fluid distribution tomography to comprehensively analyze the fluid evolution patterns within the reservoir. The results show the following: (1) The movable fluids in the oilfield are primarily distributed within pores ranging from 0.1 to 40 μm; the remaining oil is mainly distributed within pores of 0.1 to 10 μm, accounting for over 85% of the total distribution, and these pores serve as the main space for extracting remaining oil in later stages. (2) Increasing the injection volume significantly improves the oil recovery efficiency in pores ranging from 0.1 to 10 μm. Increasing the displacement pressure gradient effectively reduces remaining oil in pores of 0.1 to 5 μm. However, for reservoirs with permeability greater than 10 mD, once the injection volume exceeds 1 PV or the displacement pressure gradient exceeds 1.8 MPa/m, the increase in oil recovery efficiency becomes marginal. (3) With increasing water injection multiples, the oil displacement efficiency of cores with varying permeability levels shows an overall upward trend. However, the extent of improvement varies significantly, with low-permeability cores exhibiting a markedly greater enhancement in displacement efficiency compared to high-permeability cores. (4) Reverse displacement can reduce the remaining oil in pores ranging from 0.1 to 10 μm, and the increase in oil recovery efficiency is more significant in cores with lower permeability than in those with higher permeability. Therefore, increased production cannot solely rely on improving the production pressure differential to develop remaining oil. Full article
(This article belongs to the Special Issue Recent Developments in Enhanced Oil Recovery (EOR) Processes)
Show Figures

Figure 1

19 pages, 3731 KiB  
Article
Predicting Indirect Tensile Strength of Rejuvenated Asphalt Mixes Using Machine Learning with High Reclaimed Asphalt Pavement Content
by Abdullah Al Mamun, Uneb Gazder, Md Kamrul Islam, Md Arifuzzaman, Hamad Al-Abdul Wahhab and Muhammad Muhitur Rahman
Processes 2025, 13(5), 1489; https://doi.org/10.3390/pr13051489 - 13 May 2025
Abstract
Predicting the performance of hot mix asphalt (HMA) is crucial for ensuring pavement durability, especially as the use of rejuvenated reclaimed asphalt pavement (RAP) increases in sustainable construction. Indirect tensile strength (ITS) is a critical parameter that indicates a pavement’s resistance to cracking [...] Read more.
Predicting the performance of hot mix asphalt (HMA) is crucial for ensuring pavement durability, especially as the use of rejuvenated reclaimed asphalt pavement (RAP) increases in sustainable construction. Indirect tensile strength (ITS) is a critical parameter that indicates a pavement’s resistance to cracking and distress under traffic loads. This study developed statistical and machine learning models—linear regression, support vector machine (SVM), and artificial neural network (ANN)—to predict ITS and ITS loss in RAP-incorporated HMA rejuvenated with waste cooking oil (WCO) and waste engine oil (WEO). The models used key input variables, including rejuvenator type and the composition of asphalt, rejuvenator, and RAP. Results showed that WCO increased initial ITS, while WEO enhanced durability by reducing ITS loss. Additionally, lower RAP and asphalt content contributed to improved pavement durability. Among the predictive models, ANN demonstrated the highest accuracy, exhibiting lower error metrics and less variation in scatterplots compared to regression and SVM models. The only exception was ITS loss percentage prediction, where the mean absolute error was nearly identical across all models. These predictive models provide valuable insights for designing and testing modified asphalt mixtures, particularly those containing RAP. By optimizing mix design and enabling proactive maintenance strategies, they contribute to the development of more durable and sustainable pavement infrastructure with the provision of accurate and workable models for prediction of ITS and loss prediction which can be used for design. Full article
(This article belongs to the Special Issue Advances in Modifications Processes of Bitumen and Asphalt Mixtures)
Show Figures

Figure 1

11 pages, 1653 KiB  
Article
Isolation of Metabolites Produced by Phoma dimorpha Under Submerged Fermentation and Its Evaluation as a Bioherbicide
by Silvana Schmaltz, Clair Walker, Keli Souza da Silva, Renata Gulart Ninaus, Carolina Poletto Zamin, Gilson Zeni and Marcio A. Mazutti
Processes 2025, 13(5), 1488; https://doi.org/10.3390/pr13051488 - 13 May 2025
Abstract
Weeds are a significant challenge to global agricultural production, significantly impacting crop yields. The evolution of resistance to synthetic herbicides, along with their adverse environmental effects, underscores the need for alternative control strategies. This study reports the production, purification, and evaluation of the [...] Read more.
Weeds are a significant challenge to global agricultural production, significantly impacting crop yields. The evolution of resistance to synthetic herbicides, along with their adverse environmental effects, underscores the need for alternative control strategies. This study reports the production, purification, and evaluation of the herbicidal activity of a metabolite produced by Phoma dimorpha (NRRL 43879) via submerged fermentation. To the best of our knowledge, this is the first report on the evaluation of the herbicidal potential of metabolites isolated from the cultivation of this microorganism. Metabolites extracted with ethyl acetate were fractionated into three fractions, with only one showing herbicidal activity. Fraction 1 controlled 96.25% of Amaranthus retroflexus plants in a leaf puncture bioassay at 2 mg mL−1 and 96.67% when applied to the aerial parts at 600 µg mL−1 with 0.1% Tween 80. The purified compound was also tested on Raphanus sativus seed germination, reducing rates by 80% and 26% at 24.5 mg mL−1 and 12.25 mg mL−1, respectively. Seedling length decreased by 80% and 31% under the same treatments. These results highlight the potential of this metabolite as a sustainable alternative for weed management, supporting the development of novel bioherbicides. Full article
Show Figures

Figure 1

25 pages, 5176 KiB  
Article
Flowing Microreactors for Periodate/H2O2 Advanced Oxidative Process: Synergistic Degradation and Mineralization of Organic Dyes
by Abderrahmane Talbi, Slimane Merouani and Aissa Dehane
Processes 2025, 13(5), 1487; https://doi.org/10.3390/pr13051487 - 13 May 2025
Abstract
The periodate/hydrogen peroxide (PI/H2O2) system is a recently developed advanced oxidation process (AOP) characterized by its rapid reaction kinetics, making it highly suitable for continuous-flow applications compared to conventional batch systems. Despite its potential, no prior studies have investigated [...] Read more.
The periodate/hydrogen peroxide (PI/H2O2) system is a recently developed advanced oxidation process (AOP) characterized by its rapid reaction kinetics, making it highly suitable for continuous-flow applications compared to conventional batch systems. Despite its potential, no prior studies have investigated its performance under flowing conditions. This work presents the first application of the PI/H2O2 process in a tubular microreactor, a promising technology for enhancing mass transfer and process efficiency. The degradation of textile dyes (specifically Basic Yellow 28 (BY28)) was systematically evaluated under various operating conditions, including reactant concentrations, flow rates, reactor length, and temperature. The results demonstrated that higher H2O2 flow rates, increased PI dosages, and moderate dye concentrations (25 µM) significantly improved degradation efficiency, achieving complete mineralization at 2 mM PI and H2O2 flow rates of 80–120 µL/s. Conversely, elevated temperatures negatively impacted the process performance. The influence of organic and inorganic constituents was also examined, revealing that surfactants (SDS, Triton X-100, Tween 20, and Tween 80) and organic compounds (sucrose and glucose) acted as strong hydroxyl radical scavengers, substantially inhibiting dye oxidation—particularly at higher concentrations, where nearly complete suppression was observed. Furthermore, the impact of water quality was assessed using different real matrices, including tap water, seawater, river water, and secondary effluents from a municipal wastewater treatment plant (SEWWTP). While tap water exhibited minimal inhibition, river water and SEWWTP significantly reduced process efficiency due to their high organic content competing with reactive oxygen species (ROS). Despite its high salt content, seawater remained a viable medium for dye degradation, suggesting that further optimization could enhance process performance in saline environments. Overall, this study highlights the feasibility of the PI/H2O2 process in continuous-flow microreactors and underscores the importance of considering competing organic and inorganic constituents in real wastewater applications. The findings provide valuable insights for optimizing AOPs in industrial and municipal wastewater treatment systems. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

19 pages, 5657 KiB  
Article
Optimized Hydrometallurgical Extraction of Molybdenum via Mechanoactivation and Nitric–Sulfuric Leaching
by Bagdaulet Kenzhaliyev, Almagul Ultarakova, Nina Lokhova, Arailym Mukangaliyeva and Kaisar Kassymzhanov
Processes 2025, 13(5), 1486; https://doi.org/10.3390/pr13051486 - 13 May 2025
Abstract
This study explores the intensification of molybdenite concentrate processing through a synergistic hydrometallurgical approach using sulfuric acid, nitric acid, and their combination to enhance leaching efficiency while minimizing environmental impact. Molybdenum, a strategic metal widely used in advanced engineering and catalytic systems, presents [...] Read more.
This study explores the intensification of molybdenite concentrate processing through a synergistic hydrometallurgical approach using sulfuric acid, nitric acid, and their combination to enhance leaching efficiency while minimizing environmental impact. Molybdenum, a strategic metal widely used in advanced engineering and catalytic systems, presents extraction challenges due to the refractory nature of molybdenite (MoS2). The experimental approach incorporated oxygen sparging and mechanoactivation to improve dissolution kinetics and molybdenum availability. A central composite design (CCD) of response surface methodology (RSM) was employed to develop a predictive model for optimizing the leaching parameters. Acid concentration, temperature, and leaching time were systematically varied, allowing for the identification of statistically significant factor interactions and optimal operating conditions. The model demonstrated strong predictive capability with high adjusted and predicted R2 values, validating its suitability for process optimization. Optimal leaching conditions were identified as 50 g/dm3 HNO3 + 200 g/dm3 H2SO4, a temperature of 95 °C, a leaching time of 240 min, and a solid-to-liquid ratio of 1:6, resulting in a maximum molybdenum extraction efficiency of 72.6%. This performance was attributed to enhanced oxidative decomposition and stable complexation of molybdenum species. This study provides a scalable and environmentally conscious framework for molybdenum extraction, with implications for sustainable metallurgy and industrial applications. Full article
(This article belongs to the Special Issue Process Systems Engineering for Environmental Protection)
Show Figures

Figure 1

22 pages, 4478 KiB  
Article
Optimization Design of Drip Irrigation System Pipe Network Based on PSO-GA: A Case Study of Northwest China
by Meng Li, Dan Bai and Li Li
Processes 2025, 13(5), 1485; https://doi.org/10.3390/pr13051485 - 12 May 2025
Viewed by 70
Abstract
Implementing drip irrigation technology in water-scarce regions is a key development direction for modern agriculture. This paper proposes a multi-constraint optimization model based on a particle swarm optimization-genetic algorithm (PSO-GA) to minimize the annual cost of construction, energy consumption, and maintenance of a [...] Read more.
Implementing drip irrigation technology in water-scarce regions is a key development direction for modern agriculture. This paper proposes a multi-constraint optimization model based on a particle swarm optimization-genetic algorithm (PSO-GA) to minimize the annual cost of construction, energy consumption, and maintenance of a drip irrigation pipe network. This case study shows that the PSO-GA is significantly better than the traditional empirical method, particle swarm optimization (PSO), the genetic algorithm (GA), and an Atom Search Optimization (ASO) algorithm in the optimization of the pipeline’s network parameters, and the total annual cost is reduced by 21.2%, 15.9%, 7.5%, and 6.3%, respectively. The average total cost of the PSO-GA is 166,200 yuan/year, and the constraint satisfaction rate for the node pressure and flow rate is better than that with a single algorithm. After optimization, the diameter of the main pipe in the pipe network is gradually reduced from 200 mm to 160 mm, the number of branch pipes is reduced from five to four, the pump head is reduced by 25.7%, and the cost of energy consumption is reduced by 26.7%. This study provides a powerful optimization tool for drip irrigation system designers to achieve efficient optimization of the parameters and costs of drip irrigation systems. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

20 pages, 6765 KiB  
Article
Effect of Precipitated Bubbles on the Behavior of Gas–Liquid Two-Phase Flow in Ruhrstahl Heraeus Refining
by Yihong Li, Zongyi Chen, Yan Tian, Dong Wang, Yibo He, Chengjian Hua, Zhifeng Ren and Pengju Zhang
Processes 2025, 13(5), 1484; https://doi.org/10.3390/pr13051484 - 12 May 2025
Viewed by 56
Abstract
In this study, through RH water model simulation experiments, the effects of precipitation bubbles on the two-phase flow pattern, liquid steel flow behavior, and flow characteristics in an RH reactor during the whole decarburization process were comparatively investigated and analyzed by using quasi-counts [...] Read more.
In this study, through RH water model simulation experiments, the effects of precipitation bubbles on the two-phase flow pattern, liquid steel flow behavior, and flow characteristics in an RH reactor during the whole decarburization process were comparatively investigated and analyzed by using quasi-counts that reflected the similarity of the precipitation bubble phenomenon. The experimental results show that an increase in precipitation bubbles is positively related to an increase in circulating flow rate, a reduction in mixing time, and an increase in gas content and negatively related to the residence time of liquid steel in the vacuum chamber. The two-phase flow pattern of the rising tube under the influence of precipitation bubbles includes bubble flow, slug flow, mixing flow, and churn flow. Under the influence of precipitation bubbles, the liquid surface spattering inside the vacuum chamber is reduced, the fluctuation amplitude is reduced, the efficiency of liquid steel processing is improved, it is not easy for cold steel to form, and the fluctuation frequency is increased, which is conducive to increasing the surface area of the vacuum chamber; the bubbles’ rising, aggregating, and crushing behavior increases the stirring effect inside the vacuum chamber, which is conducive to improving the decarburization and mass transfer rate. Under the influence of the precipitated bubbles, the concentration gradient between the ladle and the vacuum chamber is increased, which accelerates the mixing speed of the liquid steel in the ladle, and the volume of the dead zone is reduced by 50%. The lifting gas flow rate can be appropriately reduced in the plant. Full article
(This article belongs to the Special Issue Advanced Ladle Metallurgy and Secondary Refining)
Show Figures

Figure 1

16 pages, 2187 KiB  
Article
Aqueous-Phase Uptake of Amlodipine Besylate by Activated Carbon Derived from Dwarf Elder
by Milan Z. Momčilović, Vladimir Dodevski, Sanja Krstić, Milica Petrović, Ljiljana Suručić, Aleksandra Nešić and Aleksandar Lj. Bojić
Processes 2025, 13(5), 1483; https://doi.org/10.3390/pr13051483 - 12 May 2025
Viewed by 68
Abstract
This study reports the synthesis of activated carbon from dwarf elder, a lignocellulosic precursor, yielding a material with a high specific surface area (500.43 m2/g) and mesoporous structure (median pore radius: 3.88 nm). The physicochemical properties of the obtained carbon were [...] Read more.
This study reports the synthesis of activated carbon from dwarf elder, a lignocellulosic precursor, yielding a material with a high specific surface area (500.43 m2/g) and mesoporous structure (median pore radius: 3.88 nm). The physicochemical properties of the obtained carbon were characterized using field-emission scanning electron microscopy (FE-SEM), Brunauer–Emmett–Teller (BET) analysis, and Fourier-transform infrared spectroscopy (FTIR), confirming its suitability for aqueous-phase sorption applications. Batch experiments demonstrated carbon’s efficacy in adsorbing amlodipine besylate (AMB), a model pharmaceutical pollutant, with a maximum capacity of 325.9 mg/g under optimized conditions (pH 10.0, room temperature). Systematic evaluation of key parameters, such as initial AMB concentration, sorbent dosage, pH, and agitation speed revealed that sorption kinetics adhered to pseudo-second-order and Elovich model. The high efficiency of the synthesized carbon material, coupled with its low-cost and eco-friendly synthesis, positions it as a promising candidate for the scalable remediation of AMB and structurally related pharmaceuticals from contaminated water sources. Full article
(This article belongs to the Special Issue Lignin Utilization: Depolymerization and Bioconversion Process)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop