Effect of Mechanical Pressure on Li Metal Deposition Characteristics and Thermal Stability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prepare the Material
2.2. Electrochemical Experiments
2.2.1. Assembly and Disassembly of Coin Cells
2.2.2. Electrodeposition
2.2.3. Cycling Test
2.2.4. Electrochemical Impedance Spectroscopy (EIS)
2.3. SEM Sample Preparation and Imaging
2.4. Thermal Stability Analysis
2.5. Approximate Estimation of Spacer Pressure
3. Results and Discussion
3.1. Effect of Spacer Pressure on Li Deposition Overpotentials
3.2. Effect of Spacer Pressure on Cell Coulombic Efficiency
3.3. Effect of Spacer Pressure on the Morphology and SEI of Li Deposition
3.4. Effect of Spacer Pressure on the Thermal Stability of Li Deposition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SEI | Solid–electrolyte interphase |
EIS | Electrochemical impedance spectra |
CE | Coulombic efficiency |
SEM | Scanning electron microscopy |
EDS | Energy-dispersive spectroscopy |
DSC | Differential scanning calorimetry |
References
- Mousaei, A.; Naderi, Y.; Bayram, I.S. Advancing State of Charge Management in Electric Vehicles with Machine Learning: A Technological Review. IEEE Access 2024, 12, 43255–43283. [Google Scholar] [CrossRef]
- Yuan, S.; Kong, T.; Zhang, Y.; Dong, P.; Zhang, Y.; Dong, X.; Wang, Y.; Xia, Y. Advanced Electrolyte Design for High-Energy-Density Li-Metal Batteries under Practical Conditions. Angew. Chem. Int. Ed. 2021, 60, 25624–25638. [Google Scholar] [CrossRef]
- Wu, B.; Chen, C.; Raijmakers, L.H.J.; Liu, J.; Danilov, D.L.; Eichel, R.; Notten, P.H.L. Li-growth and SEI engineering for anode-free Li-metal rechargeable batteries: A review of current advances. Energy Storage Mater. 2023, 57, 508–539. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Xu, W. Advancing Lithium Metal Batteries. Joule 2018, 2, 833–845. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, R.; Zhao, C.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 10403–10473. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, B.; Yan, C.; Zhang, Q. Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Adv. Mater. 2021, 33, 2004128. [Google Scholar] [CrossRef]
- Patel, M.; Mishra, K.; Banerjee, R.; Chaudhari, J.; Kanchan, D.K.; Kumar, D. Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. J. Energy Chem. 2023, 81, 221–259. [Google Scholar] [CrossRef]
- Liang, H.; Wang, L.; Sheng, L.; Xu, H.; Song, Y.; He, X. Focus on the Electroplating Chemistry of Li Ions in Nonaqueous Liquid Electrolytes: Toward Stable Lithium Metal Batteries. Electrochem. Energy R. 2022, 5, 23. [Google Scholar] [CrossRef]
- Gao, M.; Li, H.; Xu, L.; Xue, Q.; Wang, X.; Bai, Y.; Wu, C. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges. J. Energy Chem. 2021, 59, 666–687. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, X.; Zhou, M.; Papović, S.; Zheng, K.; Świerczek, K.; Wu, J.; Xin, X. Revitalizing Lithium Metal Batteries: Strategies for Tackling Dead Lithium Formation and Reactivation. Small 2024, 20, 2407395. [Google Scholar] [CrossRef]
- Louli, A.J.; Genovese, M.; Weber, R.; Hames, S.G.; Logan, E.R.; Dahn, J.R. Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. J. Electrochem. Soc. 2019, 166, A1291. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Q.; Bi, Y.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B.; et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568. [Google Scholar] [CrossRef]
- Jana, A.; García, R.E. Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy 2017, 41, 552–565. [Google Scholar] [CrossRef]
- Verma, P.; Maire, P.; Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 2010, 55, 6332–6341. [Google Scholar] [CrossRef]
- Thakur, A.K.; Kumar, A.; Park, H.; Kim, H.; Ahmed, M.S.; Saleque, A.M.; Vikram, M.P.; Saidur, R.; Ma, Y.; Hwang, J. Composite separators for internal thermal management in rechargeable lithium batteries: A review. J. Energy Storage 2023, 73, 108873. [Google Scholar] [CrossRef]
- Dai, F.; Cai, M. Best practices in lithium battery cell preparation and evaluation. Commun. Mater. 2022, 3, 64. [Google Scholar] [CrossRef]
- Zhou, Y. External pressure: An overlooked metric in evaluating next-generation battery performance. Curr. Opin. Electrochem. 2022, 31, 100916. [Google Scholar] [CrossRef]
- Fang, C.; Lu, B.; Pawar, G.; Zhang, M.; Cheng, D.; Chen, S.; Ceja, M.; Doux, J.; Musrock, H.; Cai, M.; et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 2021, 6, 987–994. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Q.J.; Harrison, K.L.; Jungjohann, K.; Boyce, B.L.; Roberts, S.A.; Attia, P.M.; Harris, S.J. Rethinking How External Pressure Can Suppress Dendrites in Lithium Metal Batteries. J. Electrochem. Soc. 2019, 166, A3639. [Google Scholar] [CrossRef]
- Wang, H.; Han, Y.; Su, F.; Yi, Z.; Xie, L.; Sun, G.; Huang, X.; Chen, J.; Li, X.; Wang, Z.; et al. Internal pressure regulation enables reliable electrochemical performance evaluation of lithium-ion full coin cell. J. Power Sources 2024, 600, 234235. [Google Scholar] [CrossRef]
- Yuan, X.; Liu, B.; Mecklenburg, M.; Li, Y. Ultrafast deposition of faceted lithium polyhedra by outpacing SEI formation. Nature 2023, 620, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yu, S.; Abruña, H.D. Regulating lithium nucleation and growth by zinc modified current collectors. Nano Res. 2020, 13, 45–51. [Google Scholar] [CrossRef]
- Yang, C.; Yin, Y.; Zhang, S.; Li, N.; Guo, Y. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058. [Google Scholar] [CrossRef]
- Zheng, G.; Lee, S.W.; Liang, Z.; Lee, H.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618–623. [Google Scholar] [CrossRef]
- Jo, S.; Kwon, B.; Oh, J.; Lee, J.; Park, K.; Lee, K.T. The roles of nucleation and growth kinetics in determining Li metal morphology for Li metal batteries: Columnar versus spherical growth. J. Mater. Chem. A 2022, 10, 5520–5529. [Google Scholar] [CrossRef]
- Fan, Y.; Liao, J.; Luo, D.; Huang, Y.; Sun, F.; Nan, J. In situ formation of a lithiophilic surface on 3D current collectors to regulate lithium nucleation and growth for dendrite-free lithium metal anodes. Chem. Eng. J. 2023, 453, 139903. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, X.; Chen, X.; Cheng, X.; Zhang, X.; Yan, C.; Zhang, Q. Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angew. Chem. Int. Ed. 2017, 56, 7764–7768. [Google Scholar] [CrossRef] [PubMed]
- Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y. Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett. 2017, 17, 1132–1139. [Google Scholar] [CrossRef]
- Yan, K.; Lu, Z.; Lee, H.; Xiong, F.; Hsu, P.; Li, Y.; Zhao, J.; Chu, S.; Cui, Y. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 2016, 1, 16010. [Google Scholar] [CrossRef]
- Wood, K.N.; Kazyak, E.; Chadwick, A.F.; Chen, K.; Zhang, J.; Thornton, K.; Dasgupta, N.P. Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy. ACS Cent. Sci. 2016, 2, 790–801. [Google Scholar] [CrossRef]
- Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17, 8670–8679. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wood, K.N.; Kazyak, E.; LePage, W.S.; Davis, A.L.; Sanchez, A.J.; Dasgupta, N.P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681. [Google Scholar] [CrossRef]
- Chen, S.; Niu, C.; Lee, H.; Li, Q.; Yu, L.; Xu, W.; Zhang, J.; Dufek, E.J.; Whittingham, M.S.; Meng, S.; et al. Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule 2019, 3, 1094–1105. [Google Scholar] [CrossRef]
- Adams, B.D.; Zheng, J.; Ren, X.; Xu, W.; Zhang, J. Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. Adv. Energy Mater. 2018, 8, 1702097. [Google Scholar] [CrossRef]
- Mohammadi, A.; Djafer, S.; Sayegh, S.; Naylor, A.J.; Bechelany, M.; Younesi, R.; Monconduit, L.; Stievano, L. Assessing Coulombic Efficiency in Lithium Metal Anodes. Chem. Mater. 2023, 35, 2381–2393. [Google Scholar] [CrossRef]
- Li, B.; Chao, Y.; Li, M.; Xiao, Y.; Li, R.; Yang, K.; Cui, X.; Xu, G.; Li, L.; Yang, C.; et al. A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. Electrochem. Energy R. 2023, 6, 7. [Google Scholar] [CrossRef]
- Xu, R.; Yan, C.; Xiao, Y.; Zhao, M.; Yuan, H.; Huang, J. The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Mater. 2020, 28, 401–406. [Google Scholar] [CrossRef]
- Jagger, B.; Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 2023, 7, 2228–2244. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, C.; Wang, S.; Wang, J.; Liu, M.; Ganapathy, S.; Bai, X.; Li, B.; Wagemaker, M. Clarifying the Relationship between the Lithium Deposition Coverage and Microstructure in Lithium Metal Batteries. J. Am. Chem. Soc. 2022, 144, 21961–21971. [Google Scholar] [CrossRef]
- Zhou, M.; Feng, C.; Xiong, R.; Li, L.; Huang, T.; Li, M.; Zhang, Y.; Zhou, H. Molecular Insights into the Structure and Property Variation of the Pressure-Induced Solid Electrolyte Interphase on a Lithium Metal Anode. Acs. Appl. Mater. Inter. 2022, 14, 24875–24885. [Google Scholar] [CrossRef]
- Lim, H.; Nguyen, D.T.; Lochala, J.A.; Cao, X.; Zhang, J. Improving Cycling Performance of Anode-Free Lithium Batteries by Pressure and Voltage Control. Acs. Energy Lett. 2024, 9, 126–135. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, H.; Yang, C.; Yang, Z.; Li, S.; Xu, Z.; Li, B.; Chen, Z.; Shang, Z.; Zheng, S.; et al. Investigating the pressure-induced evolution of solid electrolyte interphase on Li metal anodes: A ReaxFF molecular dynamics study. J. Energy Storage 2024, 91, 111966. [Google Scholar] [CrossRef]
- Gan, L.; Chen, R.; Xu, X.; Zan, M.; Li, Q.; Wang, Q.; Yu, X.; Li, H. Comparative study of thermal stability of lithium metal anode in carbonate and ether based electrolytes. J. Power Sources 2022, 551, 232182. [Google Scholar] [CrossRef]
- Jiang, F.; Yang, S.; Cheng, X.; Shi, P.; Ding, J.; Chen, X.; Yuan, H.; Liu, L.; Huang, J.; Zhang, Q. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. J. Energy Chem. 2022, 72, 158–165. [Google Scholar] [CrossRef]
- Hellweg, L.; Beuse, T.; Winter, M.; Börner, M. Influence of Lithium Metal Deposition on Thermal Stability: Combined DSC and Morphology Analysis of Cyclic Aged Lithium Metal Batteries. J. Electrochem. Soc. 2023, 170, 040530. [Google Scholar] [CrossRef]
- Puthusseri, D.; Parmananda, M.; Mukherjee, P.P.; Pol, V.G. Probing the Thermal Safety of Li Metal Batteries. J. Electrochem. Soc. 2020, 167, 120513. [Google Scholar] [CrossRef]
- Lu, B.; Cheng, D.; Sreenarayanan, B.; Li, W.; Bhamwala, B.; Bao, W.; Meng, Y.S. Key Parameters in Determining the Reactivity of Lithium Metal Battery. Acs. Energy Lett. 2023, 8, 3230–3238. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Seifi, H.; Gholami, T.; Ganduh, S.H.; Jasim, L.S.; Mahdi, M.A.; Salavati-Niasari, M. Thermal analysis techniques for evaluating the thermal stability of battery materials: A comprehensive review. J. Anal. Appl. Pyrol 2023, 174, 106136. [Google Scholar] [CrossRef]
Spacer | Deposition Capacity (mAh/cm2) | Peak Position (°C) | Total Exothermic Quantity (J/g) |
---|---|---|---|
H = 1.5 mm | 1 | 294.23 | 2043.05 |
H = 1.0 mm | 1 | 277.92 | 10,210 |
H = 1.5 mm | 4 | 290.92 | 5609.92 |
H = 1.0 mm | 4 | 275.27 | 4653.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Hao, L.; Zhao, Y.; Fu, H. Effect of Mechanical Pressure on Li Metal Deposition Characteristics and Thermal Stability. Processes 2025, 13, 1599. https://doi.org/10.3390/pr13051599
Xu M, Hao L, Zhao Y, Fu H. Effect of Mechanical Pressure on Li Metal Deposition Characteristics and Thermal Stability. Processes. 2025; 13(5):1599. https://doi.org/10.3390/pr13051599
Chicago/Turabian StyleXu, Mengyan, Lin Hao, Yiqiang Zhao, and Huiqun Fu. 2025. "Effect of Mechanical Pressure on Li Metal Deposition Characteristics and Thermal Stability" Processes 13, no. 5: 1599. https://doi.org/10.3390/pr13051599
APA StyleXu, M., Hao, L., Zhao, Y., & Fu, H. (2025). Effect of Mechanical Pressure on Li Metal Deposition Characteristics and Thermal Stability. Processes, 13(5), 1599. https://doi.org/10.3390/pr13051599