Study on Rock Fracture Mechanism Using Well Logging Data and Minimum Energy Consumption Principle: A Case Study of Mesozoic Clastic Rocks in Chengdao–Zhuanghai Area, Jiyang Depression
Abstract
:1. Introduction
2. Geological Background
3. Database and Methods
4. Test Results
5. Rock Fracture Model and Fracture Mechanism
5.1. Derivation of Rock Fracture Model
5.2. Analysis of the Fracture Mechanism of Clastic Rocks
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Δts | Shear wave slowness log data |
Δtp | Compressional wave slowness log data |
ρb | Density logging data |
σ1-σ3 | Deviatoric stress |
ε1 | Axial strain |
ε3 | Radial strain |
εv | Volumetric strain |
W | Total strain energy of the rock element |
We | Releasable elastic strain energy of the rock element |
Wd | Dissipated energy |
E | Unloading elastic modulus of the failed rock |
μ | Nominal Poisson’s ratio of the material before failure |
σi (i = 1, 2, and 3) | Nominal stress of the rock element |
εi (i = 1, 2, and 3) | Nominal strain of the rock element |
ε0 | Initial strain in the initial compaction stage |
E0 | Initial elastic modulus of the rock before failure |
ε10 | Failure threshold strain |
K1 | Test loading parameter |
λ∗ | Relevant parameters characterizing the material properties |
Relevant parameters characterizing the material properties | |
c0 | Relevant parameters characterizing the material properties |
K | Bulk modulus |
K1 | Test loading parameter |
G | Shear modulus |
σ1t | Axial deviatoric stress |
A1 | Relevant parameters characterizing the material properties |
A2 | Relevant parameters characterizing the material properties |
B1 | Relevant parameters characterizing the material properties |
B2 | Relevant parameters characterizing the material properties |
Ed | Dynamic elastic modulus |
μd | Dynamic Poisson’s ratio |
Es | Static elastic modulus |
μs | Static Poisson’s ratio |
m | Conversion coefficients |
n | Conversion coefficients |
P | Conversion coefficients |
q | Conversion coefficients |
α | Material parameters |
β | Material parameters |
ws | Shear strain energy |
wv | Volume strain energy |
φ | Internal friction angle |
c | Cohesion |
σs | The stress at the peak point |
ε1s | The axial strain at the peak point |
ε3s | The radial strain at the peak point |
References
- Tang, C.A.; Liu, H.; Lee, P.K.K.; Tsui, Y.; Tham, L.G. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: Effect of heterogeneity. Int. J. Rock Mech. Min. Sci. 2000, 37, 555–569. [Google Scholar] [CrossRef]
- Tang, C.A.; Tham, L.G.; Lee, P.K.K.; Tsui, Y.; Liu, H. Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part II: Constraint, slenderness and size effect. Int. J. Rock Mech. Min. Sci. 2000, 37, 571–583. [Google Scholar] [CrossRef]
- Blair, S.C.; Cook, N.G.W. Analysis of compressive fracture in rock using statistical techniques: Part I. a non-linear rule-based model. Int. J. Rock Mech. Min. Sci. 1998, 35, 837–848. [Google Scholar] [CrossRef]
- Blair, S.C.; Cook, N.G.W. Analysis of compressive fracture in rock using statistical techniques: Part II. effect of microscale heterogeneity on macroscopic deformation. Int. J. Rock Mech. Min. Sci. 1998, 35, 849–861. [Google Scholar] [CrossRef]
- Chai, J.F. Study on Fracture Mechanism of Brittle Rock Based on Moment Tensor Theory. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2017. [Google Scholar]
- Liang, X. Study on Fractal Fracture Mechanism of Rocks Under Water & Gas Fracturing and Fractal Discrete Fracture Networks. Ph.D. Thesis, China University of Mining and Technology, Xuzhou, China, 2019. [Google Scholar]
- Peng, S.L. Research on Mechanical Properties and Fracture Mechanism of Flawed Coarse & Fine Sandstone. Ph.D. Thesis, ChongQing University, Chongqing, China, 2021. [Google Scholar]
- Tan, G.X. Experimental Study on Failure Mechanism and Energy Evolution of Red Sandstone Under Triaxial Extension. Master’s Thesis, Central South University, Changsha, China, 2022. [Google Scholar]
- Fan, Q.H. Development of Rock Direct Tensile Centring Device and Study on the Micro Fracture Mechanism of Rock Stretching. Master’s Thesis, Shandong University, Jinan, China, 2023. [Google Scholar]
- Gong, X.; Jin, Z.J.; Ma, X.H.; Liu, Y.Y.; Li, G.F.; Liao, W. Mechanical properties of the silurian longmaxi formation shale, southern Sichuan basin and its microfracturing mechanisms. Oil Gas Geol. 2024, 45, 1447–1455. [Google Scholar]
- Yan, S.W. The method of calculating rock strength with logging data. Well Log Technol. 1979, 1979, 10–19. [Google Scholar]
- Liu, Z.D. On calculating method of the rock poisson ratio using well logging data. Well Log Technol. 2024, 2024, 508–510+566. [Google Scholar]
- Wu, Y.L. Geomechanical parameters and in-situ stress in a block, xushen gasfield, songliao basin. Nat. Gas Explor. Dev. 2020, 43, 54–63. [Google Scholar]
- Wang, X.; Liu, X.Y.; Yuan, C.; Ma, Z.M. Study on the damage and rupture mechanism of red sandstone under the influence of fracture type and dip angle. Metal Mine 2025, 2025, 1–13. [Google Scholar]
- Yang, X.W. Experimental and Numerical Study on Failure Mechanism of Bedded Rocks. Master’s Thesis, Wuhan University, Wuhan, China, 2021. [Google Scholar]
- Li, J.R. Study on Mechanical Response and Microcosmic Failure Mechanism Ender Different Confining Pressures. Master’s Thesis, Shandong University, Jinan, China, 2023. [Google Scholar]
- Gui, X. Research on Energy Characteristics and Fracture Mechanism of Deep Marble Under True Triaxial Loading and Unloading Conditions. Master’s Thesis, Xihua University, Chengdu, China, 2022. [Google Scholar]
- Liu, S.; Zhang, Z.N. Modeling rock fragmentation by coupling voronoi diagram and discretized virtual internal bond. Theor. Appl. Mech. Lett. 2020, 10, 321–326. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Z.N.; Huang, Z.W. Three-dimensional hydraulic fracture simulation with hydromechanical coupled-element partition method. Int. J. Geomech. 2021, 21, 04021162. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Z.Y.; Zhang, Z.N. Numerical study on hydraulic fracture-cavity interaction in fractured-vuggy carbonate reservoir. J. Pet. Sci. Eng. 2022, 213, 110426. [Google Scholar] [CrossRef]
- Ulusay, R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer International Publisher: Cham, Switzerland, 2014; Volume 15, pp. 47–48. [Google Scholar]
- Gao, Y.; Guo, P.; Li, X.; Li, Y.Y.; Xu, D.S.; Zhou, Z.Y.; Qin, J.H.; Shi, G.X.; Li, S.D. Investigation of triaxial compression failure and acoustic emission characteristics of different reservoir rocks. J. Eng. Geol. 2022, 30, 1169–1178. [Google Scholar]
- Zhang, Q.; Zhang, X.P.; Chang, X.; Liu, C.Y. Study on energy evolution characteristics at pre-peak and post-peak stages and brittleness evaluation of rock. J. Eng. Geol. 2024, 32, 2110–2119. [Google Scholar]
- Zhao, Z.Y.; Yan, C.L.; Xue, J.C.; Cheng, Y.F.; Han, Z.Y.; Zhang, Z.; Sun, B.; Zhou, G.X. Study on the rock mechanical properties and anisotropy of Paleocene Huxiang reservoirs: A case study of the Shahejie Formation in the southeastern Bohai Bay Basin. Prog. Geophys. 2025, 40, 0806–0816. [Google Scholar]
- Zhou, H.; Li, Z.; Zhu, G.J.; Li, Y.; Lu, J.J.; Zhang, D.D. Unified energy yield criterion of rock. Chin. J. Rock Mech. Eng. 2016, 32, 2170–2184. [Google Scholar]
- Cao, W.G.; Zhao, H.; Zhang, L.; Zhang, Y.J. Damage statistical softening constitutive model for rock considering effect of damage threshold and its parameters determination method. Chin. J. Rock Mech. Eng. 2008, 27, 1148–1154. [Google Scholar]
- Liu, X.; Ning, J.G.; Tan, Y.L.; Gu, Q.H. Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading. Int. J. Rock Mech. Min. Sci. 2016, 85, 27–32. [Google Scholar] [CrossRef]
- Guo, J.Q.; Liu, X.R.; Wang, J.H.; Yu, Y. Damage constitutive model of rock salt based on energy principles. J. Cent. South Univ. (Sci. Technol.) 2013, 44, 5045–5050. [Google Scholar]
- Liu, X.M.; Xiong, L.; Liu, J.H.; Zhao, M.H. Slacking mechanism of red sandstone based on energy dissipation principle. J. Cent. South Univ. (Sci. Technol.) 2011, 42, 3143–3149. [Google Scholar]
- Xie, H.P.; Ju, Y.; Li, L.Y. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles. Chin. J. Rock Mech. Eng. 2005, 24, 3003–3010. [Google Scholar]
- Sun, M.C.; Xu, W., Y.; Wang, S.S.; Wang, R.B.; Wang, W. Study on damage constitutive model of rock based on principle of minimum dissipative energy. J. Cent. South Univ. (Sci. Technol.) 2018, 49, 2067–2075. [Google Scholar]
- Wang, X.; Xiao, Y.L.; Zhang, P.S. Application of logging technology in evaluation and analysis of rock mechanical properties in Qidong mine in northern Anhui. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2015, 34, 30–35. [Google Scholar]
- Zheng, J.K. Fracture Distribution Research of Igneous Reservoir in the West Flank of Chepaizi Uplift. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2019. [Google Scholar]
- Li, L.; Dai, J.S. Numerical simulation of tectonic stress field and fracture distribution of Mesozoic and Paleozoic erathem in Chengdao area. J. China Univ. Petrol. (Nat. Sci. Ed.) 2000, 24, 6–9. [Google Scholar]
- Chang, B.T. Petroleum Migration and Accumulation in Zhuanghai Buried Hill, Shengli Oilfield. Ph.D. Thesis, Tongji University, Shanghai, China, 2006. [Google Scholar]
Depth/m | Δts/µs·ft−1 | Δtp/µs·ft−1 | ρb/g·cm−3 |
---|---|---|---|
3210.000 | 62.880 | 52.831 | 2.594 |
3210.125 | 61.937 | 54.880 | 2.604 |
3210.250 | 61.734 | 55.336 | 2.606 |
3210.375 | 61.718 | 55.372 | 2.607 |
3210.500 | 61.841 | 55.095 | 2.605 |
3210.625 | 62.257 | 54.172 | 2.601 |
3210.750 | 62.458 | 53.734 | 2.599 |
3210.875 | 62.613 | 53.400 | 2.597 |
3211.000 | 62.687 | 53.241 | 2.596 |
3211.125 | 62.561 | 53.511 | 2.598 |
3211.250 | 62.426 | 53.803 | 2.599 |
3211.375 | 62.339 | 53.992 | 2.560 |
3211.500 | 62.362 | 53.942 | 2.560 |
3211.625 | 62.857 | 52.880 | 2.594 |
3211.750 | 63.379 | 51.791 | 2.589 |
3211.875 | 64.074 | 50.393 | 2.582 |
Number | Depth/m | Lithology | Confining Pressure /MPa | Compressive Strength/MPa |
---|---|---|---|---|
BH-1 | 3596.200 | Classic rock | 32 | 133.30 |
BH-2 | 3597.500 | Classic rock | 32 | 135.13 |
BH-3 | 3597.800 | Classic rock | 32 | 135.65 |
BH-4 | 3640.500 | Classic rock | 34 | 144.22 |
BH-5 | 3644.550 | Classic rock | 34 | 145.35 |
BH-6 | 3644.880 | Classic rock | 34 | 145.50 |
BH-7 | 3801.100 | Classic rock | 36 | 156.42 |
BH-8 | 3801.450 | Classic rock | 36 | 158.26 |
BH-9 | 3801.600 | Classic rock | 36 | 158.42 |
Number | σ3/MPa | Es/GPa | μs | Ed/GPa | μd |
---|---|---|---|---|---|
BH-1 | 32 | 19.460 | 0.140 | 37.340 | 0.281 |
BH-2 | 32 | 19.780 | 0.130 | 38.150 | 0.277 |
BH-3 | 32 | 19.810 | 0.150 | 38.156 | 0.275 |
BH-4 | 34 | 21.500 | 0.170 | 42.975 | 0.275 |
BH-5 | 34 | 22.300 | 0.160 | 43.729 | 0.277 |
BH-6 | 34 | 22.500 | 0.150 | 43.921 | 0.278 |
BH-7 | 36 | 25.060 | 0.190 | 50.505 | 0.268 |
BH-8 | 36 | 25.840 | 0.200 | 50.946 | 0.272 |
BH-9 | 36 | 25.960 | 0.200 | 51.134 | 0.271 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Yang, S.; Wu, Y.; Huang, D.; Zhang, Y. Study on Rock Fracture Mechanism Using Well Logging Data and Minimum Energy Consumption Principle: A Case Study of Mesozoic Clastic Rocks in Chengdao–Zhuanghai Area, Jiyang Depression. Processes 2025, 13, 1614. https://doi.org/10.3390/pr13051614
Ma S, Yang S, Wu Y, Huang D, Zhang Y. Study on Rock Fracture Mechanism Using Well Logging Data and Minimum Energy Consumption Principle: A Case Study of Mesozoic Clastic Rocks in Chengdao–Zhuanghai Area, Jiyang Depression. Processes. 2025; 13(5):1614. https://doi.org/10.3390/pr13051614
Chicago/Turabian StyleMa, Shilong, Shaochun Yang, Yanjia Wu, Dongmou Huang, and Yifan Zhang. 2025. "Study on Rock Fracture Mechanism Using Well Logging Data and Minimum Energy Consumption Principle: A Case Study of Mesozoic Clastic Rocks in Chengdao–Zhuanghai Area, Jiyang Depression" Processes 13, no. 5: 1614. https://doi.org/10.3390/pr13051614
APA StyleMa, S., Yang, S., Wu, Y., Huang, D., & Zhang, Y. (2025). Study on Rock Fracture Mechanism Using Well Logging Data and Minimum Energy Consumption Principle: A Case Study of Mesozoic Clastic Rocks in Chengdao–Zhuanghai Area, Jiyang Depression. Processes, 13(5), 1614. https://doi.org/10.3390/pr13051614