Efficient Co-Production of Reducing Sugars and Xylo-Oligosaccharides from Waste Wheat Straw Through FeCl3-Mediated p-Toluene Sulfonic Acid Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of WS with Lewis Acid-Mediated PTSA
2.3. Reuse of PTSA and Lewis Acid in WS Pretreatment
2.4. Chemical Composition Analysis
2.5. Enzymolysis of WS
3. Results and Discussion
3.1. Investigation of Lignin and Xylan Elimination Under Factors of Different Severity
3.2. Investigation of XOS Formation by FeCl3-PTSA/Water Treatment
3.3. Investigation of Pretreatment Conditions in Influencing Enzymolysis
3.4. Recycling of FeCl3-PTSA/Water for Pretreatment of WS
3.5. Mass Balance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, S.; Xue, Y.; Cai, J.; Cui, C.; Ni, Z.; Zhou, Z. An understanding for improved biomass pyrolysis: Toward a systematic comparison of different acid pretreatments. Chem. Eng. J. 2021, 411, 128513. [Google Scholar] [CrossRef]
- Dharmalingam, B.; Tantayotai, P.; Panakkal, E.J.; Cheenkachorn, K.; Kirdponpattara, S.; Gundupalli, M.P.; Cheng, Y.-S.; Sriariyanun, M. Organic acid pretreatments and optimization techniques for mixed vegetable waste biomass conversion into biofuel production. BioEnergy Res. 2023, 16, 1667–1682. [Google Scholar] [CrossRef]
- Eda, S.; Kota, B.J.; Thella, P.K.; Bankupalli, S.; Bhargava, S.K.; Parthasarathy, R. Regeneration of levulinic acid from loaded-organic phase: Equilibrium, kinetic studies and process economics. Chem. Pap. 2017, 71, 1939–1951. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Townsend, T.J.; Sparkes, D.L.; Ramsden, S.J.; Glithero, N.J.; Wilson, P. Wheat straw availability for bioenergy in England. Energy Policy 2018, 122, 349–357. [Google Scholar] [CrossRef]
- Zoghlami, A.; Paës, G. Lignocellulosic biomass: Understanding recalcitrance and predicting hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, W.; Fan, B.; He, Y.C.; Ma, C. Implementing efficient and sustainable pretreatment of Sorghum stalks for delignification and xylan separation with a ternary deep eutectic solvent under mild conditions. Int. J. Biol. Macromol. 2025, 303, 140417. [Google Scholar] [CrossRef]
- Alam, A.; Zhang, R.; Liu, P.; Huang, J.; Wang, Y.; Hu, Z.; Madadi, M.; Sun, D.; Hu, R.; Ragauskas, A.J.; et al. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnol. Biofuels 2019, 12, 99. [Google Scholar] [CrossRef]
- Beig, B.; Riaz, M.; Raza Naqvi, S.; Hassan, M.; Zheng, Z.; Karimi, K.; Pugazhendhi, A.; Atabani, A.E.; Thuy Lan Chi, N. Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review. Fuel 2021, 287, 119670. [Google Scholar] [CrossRef]
- Abbas, A.; Adesina, A.Y.; Suleiman, R.K. Influence of organic acids and related organic compounds on corrosion behavior of stainless steel—A critical review. Metals 2023, 13, 1479. [Google Scholar] [CrossRef]
- Jiang, C.-X.; He, Y.-C.; Chong, G.-G.; Di, J.-H.; Tang, Y.-J.; Ma, C.-L. Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. J. Biotechnol. 2017, 259, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Tang, Z.; He, Y.C. Valorization of wheat straw through enhancement of cellulose accessibility, xylan elimination and lignin removal by choline chloride:p-toluenesulfonic acid pretreatment. Int. J. Biol. Macromol. 2025, 301, 140335. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ma, C.; Tang, W.; He, Y.-C. Comprehensive understanding of enzymatic saccharification of Betaine:Lactic acid-pretreated sugarcane bagasse. Bioresour. Technol. 2023, 386, 129485. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, L.; Jiang, Y.; Wang, X.; Xu, J.; Wang, Q.; Jiang, S. Recent advances in the acid-catalyzed conversion of lignin. Biomass Convers. Biorefinery 2023, 13, 519–539. [Google Scholar] [CrossRef]
- Javed, F.; Aslam, M.; Rashid, N.; Shamair, Z.; Khan, A.L.; Yasin, M.; Fazal, T.; Hafeez, A.; Rehman, F.; Rehman, M.S.U.; et al. Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel 2019, 255, 115826. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Lan, M.; Dou, Y.; Zhang, X. Rapid Fractionation of Lignocellulosic Biomass by p-TsOH Pretreatment. Energy Fuels 2019, 33, 2258–2264. [Google Scholar] [CrossRef]
- Sajid, M.; Rizwan Dilshad, M.; Saif Ur Rehman, M.; Liu, D.; Zhao, X. Catalytic conversion of xylose to furfural by p-toluenesulfonic acid (pTSA) and chlorides: Process optimization and kinetic modeling. Molecules 2021, 26, 2208. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, T.; Liu, N.; Zhao, Y.; Tian, G.; Wang, Z. Sequential extraction of hemicelluloses and lignin for wood fractionation using acid hydrotrope at mild conditions. Ind. Crops Prod. 2020, 145, 112086. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, C.; Yin, J.; Fan, B.; He, Y.-C.; Ma, C. Valorization of rapeseed straw through the enhancement of cellulose accessibility, lignin removal and xylan elimination using an n-alkyltrimethylammonium bromide-based deep eutectic solvent. Int. J. Biol. Macromol. 2025, 301, 140151. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Yuan, H.; Lyu, G.; Xie, J. FeCl3-catalyzed ethanol pretreatment of sugarcane bagasse boosts sugar yields with low enzyme loadings and short hydrolysis time. Bioresour. Technol. 2017, 249, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Xie, X.; Shi, Q. Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system. Renew. Energy 2021, 177, 853–858. [Google Scholar] [CrossRef]
- Palliprath, S.; Poolakkalody, N.J.; Ramesh, K.; Mangalan, S.M.; Kabekkodu, S.P.; Santiago, R.; Manisseri, C. Pretreatment of sugarcane postharvest leaves by γ-valerolactone/water/FeCl3 system for enhanced glucan and bioethanol production. Ind. Crops Prod. 2023, 197, 116571. [Google Scholar] [CrossRef]
- Wang, Q.; Su, Y.; Gu, Y.; Lai, C.; Ling, Z.; Yong, Q. Valorization of bamboo shoot shell waste for the coproduction of fermentable sugars and xylooligosaccharides. Front. Bioeng. Biotechnol. 2022, 10, 1006925. [Google Scholar] [CrossRef]
- Selvakumar, P.; Adane, A.A.; Zelalem, T.; Hunegnaw, B.M.; Karthik, V.; Kavitha, S.; Jayakumar, M.; Karmegam, N.; Govarthanan, M.; Kim, W. Optimization of binary acids pretreatment of corncob biomass for enhanced recovery of cellulose to produce bioethanol. Fuel 2022, 321, 124060. [Google Scholar] [CrossRef]
- Yildirim, O.; Tunay, D.; Ozkaya, B.; Demir, A. Optimization of oxalic and sulphuric acid pretreatment conditions to produce bio-hydrogen from olive tree biomass. Int. J. Hydrogen Energy 2022, 47, 26316–26325. [Google Scholar] [CrossRef]
- Madadi, M.; Elsayed, M.; Sun, F.; Wang, J.; Karimi, K.; Song, G.; Tabatabaei, M.; Aghbashlo, M. Sustainable lignocellulose fractionation by integrating p-toluenesulfonic acid/pentanol pretreatment with mannitol for efficient production of glucose, native-like lignin, and furfural. Bioresour. Technol. 2023, 371, 128591. [Google Scholar] [CrossRef]
- Wei, N.; Qi, S.; Wang, G.; Ge, J.; Sui, W.; Sun, H.; Parvez, A.M.; Jia, H.; Si, C. Acid-promoted lignin reductive depolymerization under mild conditions via a condensation minimizing approach: From organosolv lignin to woody biomass. Fuel 2023, 338, 127311. [Google Scholar] [CrossRef]
- Wang, Z.-K.; Hong, S.; Wen, J.-l.; Ma, C.-Y.; Tang, L.; Jiang, H.; Chen, J.-J.; Li, S.; Shen, X.-J.; Yuan, T.-Q. Lewis acid-facilitated deep eutectic solvent (DES) pretreatment for producing high-purity and antioxidative lignin. ACS Sustain. Chem. Eng. 2020, 8, 1050–1057. [Google Scholar] [CrossRef]
- Yang, Q.; Tang, W.; Ma, C.; He, Y.-C. Efficient co-production of xylooligosaccharides, furfural and reducing sugars from yellow bamboo via the pretreatment with biochar-based catalyst. Bioresour. Technol. 2023, 387, 129637. [Google Scholar] [CrossRef]
- Tomifuji, R.; Maeda, K.; Takahashi, T.; Kurahashi, T.; Matsubara, S. FeCl3 as an ion-pairing Lewis acid catalyst. Formation of highly Lewis acidic FeCl2+ and thermodynamically stable FeCl4– to catalyze the Aza-Diels–Alder reaction with high turnover frequency. Org. Lett. 2018, 20, 7474–7477. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Fan, B.; Tang, W.; He, Y.-C.; Ma, C. Comprehensive understanding of co-producing fermentable sugar, furfural, and xylo-oligosaccharides through the pretreatment with CTAB-based deep eutectic solvent containing Brønsted and Lewis acid. Chem. Eng. J. 2024, 488, 150637. [Google Scholar] [CrossRef]
- Varilla-Mazaba, A.; Raggazo-Sánchez, J.A.; Calderón-Santoyo, M.; Gómez-Rodríguez, J.; Aguilar-Uscanga, M.G. Optimization of lignin extraction by response surface methodology from sugarcane bagasse using deep eutectic solvents (DES). Ind. Crops Prod. 2022, 184, 115040. [Google Scholar] [CrossRef]
- Sun, D.; Lv, Z.-W.; Rao, J.; Tian, R.; Sun, S.-N.; Peng, F. Effects of hydrothermal pretreatment on the dissolution and structural evolution of hemicelluloses and lignin: A review. Carbohydr. Polym. 2022, 281, 119050. [Google Scholar] [CrossRef]
- Hong, C.; Corbett, D.; Venditti, R.; Jameel, H.; Park, S. Xylooligosaccharides as prebiotics from biomass autohydrolyzate. LWT 2019, 111, 703–710. [Google Scholar] [CrossRef]
- Martins, M.; Tramontina, R.; Squina, F.M.; Dinamarco, T.M.; Goldbeck, R. Synergism for xylo-oligosaccharides, ρ-coumaric and ferulic acid production, and thermostability modulation of GH 62 α-l-arabinofuranosidase. Biocatal. Agric. Biotechnol. 2022, 44, 102469. [Google Scholar] [CrossRef]
- Palaniappan, A.; Antony, U.; Emmambux, M.N. Current status of xylooligosaccharides: Production, characterization, health benefits and food application. Trends Food Sci. Technol. 2021, 111, 506–519. [Google Scholar] [CrossRef]
- Xie, X.; Chen, M.; Tong, W.; Song, K.; Wang, J.; Wu, S.; Hu, J.; Jin, Y.; Chu, Q. Comparative study of acid- and alkali-catalyzed 1,4-butanediol pretreatment for co-production of fermentable sugars and value-added lignin compounds. Biotechnol. Biofuels Bioprod. 2023, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, C.; Song, M.; Fan, R. Xylo-oligosaccharides preparation through acid hydrolysis of hemicelluloses isolated from press-lye. Grain Oil Sci. Technol. 2019, 2, 73–77. [Google Scholar] [CrossRef]
- Maroušek, J.; Stehel, V.; Vochozka, M.; Maroušková, A.; Kolář, L. Postponing of the intracellular disintegration step improves efficiency of phytomass processing. J. Clean. Prod. 2018, 199, 173–176. [Google Scholar] [CrossRef]
- Nowicki, J.; Stanek, N. Conversion of selected carbohydrates into furan aldehydes in aqueous media. Effect of cation structure of imidazolium ionic liquids on the selectivity phenomena. Biomass Bioenergy 2021, 154, 106252. [Google Scholar] [CrossRef]
- Liu, C.; Wei, L.; Yin, X.; Wei, M.; Xu, J.; Jiang, J.; Wang, K. Selective conversion of hemicellulose into furfural over low-cost metal salts in a γ-valerolactone/water solution. Ind. Crops Prod. 2020, 147, 112248. [Google Scholar] [CrossRef]
- Yang, T.; Li, W.; Su, M.; Liu, Y.; Liu, M. Production of furfural from xylose catalyzed by a novel calcium gluconate derived carbon solid acid in 1,4-dioxane. New J. Chem. 2020, 44, 7968–7975. [Google Scholar] [CrossRef]
- Hua, D.; Ding, H.; Liu, Y.; Li, J.; Han, B. Dehydration of xylose to furfural over imidazolium-based ionic liquid with phase separation. Catalysts 2021, 11, 1552. [Google Scholar] [CrossRef]
- Wu, M.; Di, J.; Gong, L.; He, Y.-C.; Ma, C.; Deng, Y. Enhanced adipic acid production from sugarcane bagasse by a rapid room temperature pretreatment. Chem. Eng. J. 2023, 452, 139320. [Google Scholar] [CrossRef]
- Panakkal, E.J.; Cheenkachorn, K.; Chuetor, S.; Tantayotai, P.; Raina, N.; Cheng, Y.-S.; Sriariyanun, M. Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass. Sustain. Energy Technol. Assess. 2022, 54, 102856. [Google Scholar] [CrossRef]
- Zhang, Y.; He, H.; Liu, Y.; Wang, Y.; Huo, F.; Fan, M.; Adidharma, H.; Li, X.; Zhang, S. Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chem. 2019, 21, 9–35. [Google Scholar] [CrossRef]
- Shinde, S.D.; Meng, X.; Kumar, R.; Ragauskas, A.J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018, 20, 2192–2205. [Google Scholar] [CrossRef]
- Liu, M.; Zuo, S.; Liang, Y.; Sheng, Y.; Ge, S.; Wu, J.; Ma, H.; Sun, F.; Ahamad, T.; Le, Q.V.; et al. The influence of 3-hydroxy-2-naphthoic acid on agricultural wastes extracted sugar production used as energy sources. Fuel 2022, 323, 124235. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, Q.; Wang, W.; Zhuang, X.; Deng, Y.; Yuan, Z. Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation. Fuel 2019, 249, 334–340. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, Y.; Meng, J.; Cheng, W.; Chen, W.; Liu, S.; Liu, Y.; Li, J.; Yu, H. Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem. 2018, 20, 2711–2721. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Li, W.; Wu, W.; Tang, B.; Zhu, C. Efficient pretreatment of cornstalks for lignin valorization using p-toluene sulfonic acid coupling ethylene glycol. Biomass Convers. Biorefinery 2024, 14, 18707–18720. [Google Scholar] [CrossRef]
- Ying, W.; Yang, J.; Zhang, J. In-situ modification of lignin in alkaline-pretreated sugarcane bagasse by sulfomethylation and carboxymethylation to improve the enzymatic hydrolysis efficiency. Ind. Crops Prod. 2022, 182, 114863. [Google Scholar] [CrossRef]
- Lee, I.; Yu, J.-H. The production of fermentable sugar and bioethanol from acacia wood by optimizing dilute sulfuric acid pretreatment and post treatment. Fuel 2020, 275, 117943. [Google Scholar] [CrossRef]
- Morán-Aguilar, M.G.; Calderón-Santoyo, M.; de Souza Oliveira, R.P.; Aguilar-Uscanga, M.G.; Domínguez, J.M. Deconstructing sugarcane bagasse lignocellulose by acid-based deep eutectic solvents to enhance enzymatic digestibility. Carbohydr. Polym. 2022, 298, 120097. [Google Scholar] [CrossRef]
- Yang, D.; Kong, L.; He, Y. Demonstrating effectual catalysis of corncob with solid acid Sn-NUS-BH in cyclopentyl methyl ether–water for co-producing reducing sugar, furfural, and xylooligosaccharides. Processes 2024, 14, 821. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Z.; Tang, W.; Ma, C.; He, Y.C. Exploration of biomass fractionation and lignin removal for enhancing enzymatic digestion of wheat-stalk through deep eutectic solvent Cetyl trimethyl ammonium chloride:Lactic acid treatment. Int. J. Biol. Macromol. 2025, 306, 141460. [Google Scholar] [CrossRef]
- Luo, Y.; Wei, M.; Jiang, B.; Zhang, M.; Miao, Q.; Fu, H.; Clark, J.H.; Fan, J. A hemicellulose and lignin-first process for corn stover valorization catalyzed by aluminum sulfate in γ-butyrolactone/water co-solvent. Green Chem. 2022, 24, 7429–7441. [Google Scholar] [CrossRef]
- Patel, R.; Dhar, P.; Babaei-Ghazvini, A.; Nikkhah Dafchahi, M.; Acharya, B. Transforming lignin into renewable fuels, chemicals, and materials: A review. Bioresour. Technol. Rep. 2023, 22, 101463. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, B.; Chen, H.; Wu, W.; Wu, S.; Jin, Y.; Xiao, H. Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnol. Biofuels 2021, 14, 205. [Google Scholar] [CrossRef]
PTSA | Lewis Acid | Temperature | Time | XOSs |
---|---|---|---|---|
40 g/L | FeCl3 (20 mM) | 40 °C | 60 min | 0.3 ± 0.1 g/L |
60 °C | 0.4 ± 0.1 g/L | |||
80 °C | 0.8 ± 0.2 g/L | |||
100 °C | 3.4 ± 0.2 g/L | |||
120 °C | 4.0 ± 0.2 g/L | |||
140 °C | 3.9 ± 0.1 g/L |
Reuse Time | Recovery, % | Removal, % | XOSs, g/L | Enzymatic Digestibility, % | ||
---|---|---|---|---|---|---|
Solid | Glucan | Xylan | Lignin | |||
/ | 61.5 ± 0.4 | 84.8 ± 0.4 | 79.7 ± 0.1 | 66.6 ± 0.4 | 4.0 ± 0.1 | 79.3 ± 0.6 |
1 | 62.0 ± 0.3 | 85.5 ± 0.2 | 75.3 ± 0.1 | 66.2 ± 0.3 | 4.0 ± 0.1 | 79.7 ± 0.3 |
2 | 63.1 ± 0.2 | 85.3 ± 0.1 | 74.1 ± 0.3 | 66.4 ± 0.4 | 5.3 ± 0.3 | 78.6 ± 0.2 |
3 | 63.3 ± 0.4 | 82.5 ± 0.2 | 71.2 ± 0.2 | 65.1 ± 0.3 | 6.7 ± 0.1 | 78.0 ± 0.2 |
4 | 67.7 ± 0.2 | 83.1 ± 0.3 | 68.3 ± 0.3 | 60.4 ± 0.2 | 6.2 ± 0.3 | 77.1 ± 0.1 |
5 | 71.1 ± 0.2 | 86.8 ± 0.1 | 63.8 ± 0.3 | 58.4 ± 0.2 | 6.6 ± 0.1 | 69.7 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Gao, Q.; He, Y. Efficient Co-Production of Reducing Sugars and Xylo-Oligosaccharides from Waste Wheat Straw Through FeCl3-Mediated p-Toluene Sulfonic Acid Pretreatment. Processes 2025, 13, 1615. https://doi.org/10.3390/pr13051615
Hu X, Gao Q, He Y. Efficient Co-Production of Reducing Sugars and Xylo-Oligosaccharides from Waste Wheat Straw Through FeCl3-Mediated p-Toluene Sulfonic Acid Pretreatment. Processes. 2025; 13(5):1615. https://doi.org/10.3390/pr13051615
Chicago/Turabian StyleHu, Xiuying, Qianqian Gao, and Yucai He. 2025. "Efficient Co-Production of Reducing Sugars and Xylo-Oligosaccharides from Waste Wheat Straw Through FeCl3-Mediated p-Toluene Sulfonic Acid Pretreatment" Processes 13, no. 5: 1615. https://doi.org/10.3390/pr13051615
APA StyleHu, X., Gao, Q., & He, Y. (2025). Efficient Co-Production of Reducing Sugars and Xylo-Oligosaccharides from Waste Wheat Straw Through FeCl3-Mediated p-Toluene Sulfonic Acid Pretreatment. Processes, 13(5), 1615. https://doi.org/10.3390/pr13051615