A New Method for Calculating the Setting Stress of Downhole Packer’s Inner Sleeve
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Theoretical Model of Pipeline Packers
2.2. Derivation of Analytical Stress–Strain Formulas for the Inner Sleeve
2.3. Development of Stress–Strain Computational Program for Inner-Sleeve Structure
3. Numerical Simulation Analysis of Mechanical Behavior in Packer Inner Sleeve
3.1. Geometric Model and Material Properties of the Inner Sleeve
3.2. Simulation Parameter Configuration
3.3. Mesh Independence Analysis
4. Results and Discussion
4.1. Analysis of Simulation Results
4.2. Comparative Analysis of Analytical and Numerical Solutions
5. Conclusions and Outlook
- (1)
- According to Figure 16. The root mean square errors (RMSEs) between the analytical and numerical solutions for the three physical quantities are 0.083, 0.074 and 0.086. These results confirm that the proposed analytical formulas can accurately calculate the mechanical behavior of the inner sleeve under specified external loads.
- (2)
- Numerical simulations revealed that the maximum equivalent stress (Von Mises) in the inner sleeve during service reaches 466.5 MPa, exceeding the yield strength of the sleeve material.
- (3)
- The maximum radial displacement (0.40345 mm) and peak plastic strain (0.003727) of the inner sleeve both occur in the central region of the keyways, highlighting this area as the critical zone for structural integrity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, R.Q. Analysis and Evaluation of Erosion Rate for Central Tube of Packers in High-Pressure and High-Yield Oil-Gas Wells. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2021. [Google Scholar]
- Chen, S.G.; Xie, X.Z.; Gao, Y.; Wu, Z.R. Research on Three-Dimensional Stress Analysis Method for Thick-Walled Ring-Ribbed Cylindrical Shells. J. Ship Mech. 2023, 27, 832–840. [Google Scholar]
- Wissler, H. Festigkeitsberechnung von Ringflächenschale; Orell Füssli: Zurich, Switzerland, 1916. [Google Scholar]
- Flügge, W. Die Stabilität der Kreiszylinderschale. Ing.-Arch. 1932, 3, 463–506. [Google Scholar] [CrossRef]
- Parkus, H. Die Grundgleichungen der allgemeinen Zylinderschale. Österr. Ing.-Arch. 1951, 6, 30. [Google Scholar]
- Donnell, L.H. Beams, Plates and Shells; McGraw-Hill: New York, NY, USA, 1976. [Google Scholar]
- Dishinger, F. Die strenge Berechnung der Kreiszylinderschale in ihrer Anwendung auf die Zeiss-Dywidag-Schalen. Beton Eisen 1935, 34, 257–264. [Google Scholar]
- Zheng, G.; Xia, Y.; Shen, G.Z.B. Coupled peridynamic model for geometrically nonlinear deformation and fracture analysis of thin shell structures. Comput. Methods Appl. Mech. Eng. 2024, 418, 116533. [Google Scholar] [CrossRef]
- Zhou, H.B.; Peng, Y.F.; Wu, H.M.; Ji, F. Research on Deformation Calculation Methods for Cylindrical Shells. Ship Sci. Technol. 2016, 38, 45–50. [Google Scholar]
- Lu, M.W.; Luo, X.F. Fundamentals of Elasticity Theory; Tsinghua University Press: Beijing, China, 1990. [Google Scholar]
- Liu, Y.; Feng, M.; Sun, G.; Liu, Z.; Ma, C.; Zhong, X.; Wang, L.; Liao, Y. Casing Failure Characteristics, Prevention and Control Strategies for Mature Oilfields. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 042035. [Google Scholar] [CrossRef]
- Zhang, W.X.; Chen, H.J. Optimization and Construction of Submarine Pipeline Plugging Technology. Guangzhou Chem. Ind. 2023, 51, 112–115. [Google Scholar]
- Wang, Y.; Wang, W.; Zhang, B.; Li, Y.; Li, C.-Q. Reliability analysis of steel pipe with longitudinal corrosion damage considering elastoplastic fracture behaviour. Int. J. Press. Vessel. Pip. 2022, 199, 104721. [Google Scholar] [CrossRef]
- Li, X.B.; Fan, Y.; Wan, Y.F.; Qu, Z.G.; Liu, C.; Cao, X. Design and Experimental Study on Sealing Ring of Submarine Pipeline Plugging Device. China Pet. Mach. 2023, 51, 89–95. [Google Scholar]
- Zhang, N.; Wang, P.; Li, J.; Ma, W.; Zhang, X.; Zhang, H.; Jiang, C.; Huang, W.; Feng, X.; Liu, S. A Study on the Mechanism of Casing Deformation and Its Control Strategies in Shale Oil Hydraulic Fracturing. Processes 2023, 11, 2437. [Google Scholar] [CrossRef]
- Zhang, Q.H. Buckling and Post-Buckling of Cylindrical Shells Under Axial Impact. Master’s Thesis, Ningbo University, Ningbo, China, 2020. [Google Scholar]
- Li, T.; Ao, J.; Wei, H.; Sun, X. Damage and blasting failure of marine riser with slips bite-mark. Ocean Eng. 2024, 295, 116812. [Google Scholar] [CrossRef]
- Li, R.R. Discontinuous Stress Analysis of Nozzle-Pipe Connection Area in Cylindrical Shells. Value Eng. 2016, 35, 143–145. [Google Scholar]
- Feng, L.N.; Xiong, J.; Zheng, W.; Yang, J.; Wu, L. Design and Axial Compression Performance of Composite Corrugated Sandwich Cylindrical Shells. Acta Mater. Compos. Sin. 2016, 33, 789–796. [Google Scholar]
- Du, S.H.; Zhou, S.B. Mechanical Analysis of Nozzle-Pipe Connection Area in Cylindrical Shells Under Internal Pressure. Chem. Technol. Dev. 2014, 43, 23–27. [Google Scholar]
- Wang, L.Q.; Yu, J.X.; Zhou, X.R.; Wang, H.; Xu, B. Optimized Mathematical Model for Large-Diameter Inserted Cylindrical Shell Structures Under Lateral Loads. Chin. J. Appl. Mech. 2009, 26, 532–536. [Google Scholar]
- Zhang, K.; Zhang, S.; Ding, Q.; Gong, P.; Zhu, X. Research on the Design Criterion of Packers and Slips in Pipeline Isolation Tool. MATEC Web Conf. 2018, 153, 06004. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, G.; Wen, J.; Yun, F.; Liu, M. Establishment of constitutive model and simulation study on sealing performance of special-shaped rubber cylinder for inner packer in deepwater pipeline. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 238, 10127–10142. [Google Scholar] [CrossRef]
- Makhorkin, M.I.; Nykolyshyn, M.M. Influence of the Physical and Geometric Characteristics of a Cylindrical Shell with Longitudinal Crack on its Limit Equilibrium with Regard for the Inertia of Material. J. Math. Sci. 2024, 278, 859–879. [Google Scholar] [CrossRef]
- Kim, J.; Kang, D.; Hong, K.; Choe, C.; Ri, U. A Meshfree Legendre Point Interpolation Method for Dynamic Analysis of Laminated Composite Double Cylindrical and Conical Shells with Bulkheads in Thermal Environment. J. Vib. Eng. Technol. 2023, 12, 3797–3822. [Google Scholar] [CrossRef]
- Yudin, H.; Orynyak, I. Effective decoupling method for derivation of eigenfunctions for closed cylindrical shell. Mech. Adv. Technol. 2023, 7, 271–278. [Google Scholar] [CrossRef]
- Kashtanova, S.; Rzhonsnitskiy, A.V. Cylindrical shell with a circular hole under various loads: Comparison of analytical and numerical solutions. Izv. Saratov Univ. Math. Mech. Inform. 2023, 23, 195–206. [Google Scholar] [CrossRef]
- Zhang, Q.; Kaifang, Q.; Tong, J.Z. Study of Gap Flow Effects on Sound Transmission Through a Micro-Perforated Sandwich Cylindrical Shell Excited by a Plane Wave. J. Theor. Comput. Acoust. 2023, 31, 3. [Google Scholar] [CrossRef]
- Huseynli, Z.H.Z.; Popal, H.P.H. Study of self-drying effect of packer installations in exploitation wells. ETM Equip. Technol. Mater. 2023, 13, 57–64. [Google Scholar]
- Nazarov, S.A.; Slutskii, A.S. Homogenization of the Scalar Boundary Value Problem in aThin Periodically Broken Cylinder. Sib. Math. J. 2024, 65, 363–380. [Google Scholar] [CrossRef]
Configuration | Inner Diameter (mm) | Outer Diameter (mm) | Length (mm) | Wall Thickness (mm) | Keyway Dimensions (mm) |
---|---|---|---|---|---|
Before simplification | 220 | 253 | 1500 | 16.5 | Oblong hole Φ18 × 80 |
After simplification | 220 | 253 | 1500 | 16.5 | N/A |
Component | Material Type | Yield Strength (MPa) | Tensile Strength (MPa) | Poisson’s Ratio | Young’s Modulus (GPa) |
---|---|---|---|---|---|
Inner sleeve | 2A12 aluminum alloy | 361 | 477 | 0.3 | 67 |
Stoppers | 35CrMo steel | 758 | 980 | 0.3 | 206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Zhou, S.; Deng, W.; Li, N.; Li, X.; Zeng, Y.; Liu, S. A New Method for Calculating the Setting Stress of Downhole Packer’s Inner Sleeve. Processes 2025, 13, 1593. https://doi.org/10.3390/pr13051593
Tian Z, Zhou S, Deng W, Li N, Li X, Zeng Y, Liu S. A New Method for Calculating the Setting Stress of Downhole Packer’s Inner Sleeve. Processes. 2025; 13(5):1593. https://doi.org/10.3390/pr13051593
Chicago/Turabian StyleTian, Zixuan, Sizhu Zhou, Wanquan Deng, Ning Li, Xiang Li, Yun Zeng, and Shujie Liu. 2025. "A New Method for Calculating the Setting Stress of Downhole Packer’s Inner Sleeve" Processes 13, no. 5: 1593. https://doi.org/10.3390/pr13051593
APA StyleTian, Z., Zhou, S., Deng, W., Li, N., Li, X., Zeng, Y., & Liu, S. (2025). A New Method for Calculating the Setting Stress of Downhole Packer’s Inner Sleeve. Processes, 13(5), 1593. https://doi.org/10.3390/pr13051593