Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights
Abstract
:1. Introduction
2. Bio-Based Polyurethane Synthesis
2.1. Isocyanate-Based Polyurethane
2.2. Non-Isocyanate-Based Polyurethane
3. Renewable Resources for Polyurethane Synthesis
3.1. Natural Polysaccharides
Types | Bio-Polyols | Polyol Processing Methods | Isocyanates | Features | Refs. |
---|---|---|---|---|---|
Isocyanate-based polyurethane | Starch | – | TDI/MDI/HDI | PU absorbent for organic solvents | [62] |
Liquification | MDI | PU with high water adsorption ability (2000 wt%) | [63] | ||
Castor oil | – | pMDI | PU prepared with 100% castor oil as polyol | [64] | |
Glycerolysis/Epoxidation | MDI | High flame retardancy (LOI at 24.3%) | [65] | ||
Palm oil | Glycerolysis | pMDI | High flexibility of palm-oil-based polyol | [66] | |
Epoxidation | TDI | Improved compression modulus (65% indentation force deflection) from 8.0 kPa (petroleum-derived polyol) to 18.6 kPa (30 wt% soybean-oil-based polyol) | [67] | ||
Alkaline lignin | Fractionation with ethyl acetate, ethanol, acetone | HDI | PU with enhanced resilience from 94.67% (unfractionated lignin) to 98.81% (fractionated lignin) | [68] | |
Organosolv lignin | Oxypropylation | pMDI | PU with reduced thermal conductivity from 0.047 W/m/K (without lignin) to 0.037 W/m/K (with oxypropylated lignin fraction) | [69] | |
Kraft lignin | Acetylation | pMDI | PU with enhanced oil absorption capacity from 4.51 g/g to 8.06 g/g | [70] | |
Alkali lignin/PEG 200 | Ethanol fractionation | HDI | PU films with enhanced tensile strength (up to 38.2 MPa), elongation at break (up to 1108%), and elastic recovery ratio (up to 98.7%) | [45] | |
Coffee grounds | Acid liquefaction | MDI | PU prepared from coffee ground wastes with viscoelastic behavior and thermal stability up to 190 °C | [71] | |
Tannin | Liquefication | pMDI | Comparable mechanical strength; High oil/water selectivity as adsorbent | [72] | |
NIPU | Tannin | Carbonation | N/A a | Improved fire retardancy (LOI at 25.5%) | [48] |
Lignin | Carbonation | 100% bio-based carbon content | [47] |
3.2. Vegetable Oil
3.3. Lignin
4. Reinforcement of Polyurethanes with Bio-Fillers
4.1. Chitin Nanomaterials in Polyurethane Composites: Structure–Property Relationships and Applications
4.2. Nanocellulose Bio-Fillers
5. Techno-Economic Analysis (TEA) of Sustainable Polyurethane Production
6. Environmental Sustainability of Bio-Based Polyurethane
Product Type | System Boundary | Functional Unit | Allocation Method | Geographic Location | Method | Software/ Database | Impact Categories | Insights | Reference | |
---|---|---|---|---|---|---|---|---|---|---|
1 | PU | Cradle-to-grave | 1 kg of rigid PU foam | Economic | Portugal | ReCiPe 2016 Midpoint V.1.01 | SimaPro 8.5.0 Ecoinvent v3.4 | GWP, FFD, MD, TA, FWEu, MEu, ODP |
| [20] |
2 | PU | Cradle-to-gate | 1 kg of PU foam produced | Avoided burden | – | – | GaBi Ecoinvent v2.0 | GWP, FFD |
| [107] |
3 | PU | Cradle-to-grave | The amount of PU foam needed to achieve 1 m2·k/W of thermal resistance | – | Europe | ReCiPe CML2002 GWP100 | SimaPro Ecoinvent 3.5 | GWP100, ODP, AP, MEu, TE, ADP, FFD, POC |
| [114] |
4 | PU | Cradle-to-grave | The amount of PU foam needed to achieve 1 m2 k/W of thermal resistance | Cut-off approach 50:50 approach | Europe | IPCC, CML 2002, UNEP model (for PM), LOTOS-EUROS model | SimaPro Ecoinvent 3.5 | GWP100, FFD, POC, PM |
| [113] |
5 | PU | Cradle-to-gate | 1 kg of non-isocyanate polyurethane (NIPU) bio-adhesive | Mass allocation | Spain | ReCiPe 2016 v1.03 | SimaPro v9.0 Ecoinvent | GWP, ODP, TA, FWeu, MEu, TEc, FWEc, MEc, HH, FFD, WC |
| [106] |
6 | PU | Cradle-to-grave | Maintaining an acceptable acoustic level inside a vehicle for ten years | 50/50 allocation | Brazil | CML 2002 | SimaPro v7.3.3 Ecoinvent V2 | GWP, AP, EP, FWEc, TEc, ADP, ODP |
| [118] |
7 | PU | Gate-to-gate | 1 kg of high-value product produced | Mass allocation Economic allocation | – | IPCC 2013, CED | SimaPro v9.0 | GWP, CED |
| [100] |
8 | PU Composite | Cradle-to-gate | – | Economic (asset) allocation | Brazil | ReCiPe 2019 midpoint (H) | OpenLCA 1.9 Ecoinvent 3.4 Agribalyse 3.0 | GWP, FFD, FWEc, TEc, HT, POC, AP |
| [119] |
9 | PU Composite | Cradle-to-gate | 1 m2 of panel | Mass allocation | Portugal | CML 2 v. 2.05 (midpoint) | SimaPro Ecoinvent 2.2 | ADP, AP, EP, ODP POC, GWP |
| [108] |
11 | PU Composite | Cradle-to-grave | Mass (kg) of insulating board for a thermal resistance R of 1 m2 KW−1 for a 1 m2 area | – | United States | BEES | SimaPro 7.2 Ecoinvent/USLCI | GWP, AP, HH cancer, HH non-cancer, HH air pollutants, EP, Ec, POC, NRD, HA, W, ODP |
| [115] |
12 | PU Composite | Cradle-to-gate | An eco-sandwich panel sized (0.400 m × 0.400 m × 0.02 m) | Mass allocation | Europe | CML 2000 v2.0 | SimaPro 7.2 Ecoinvent v.2 | ADP, AP, EP, GWP, ODP, HT, TEc, CED, FWEc, MEc |
| [19] |
15 | PU | Cradle-to-gate | Mass (kg) of insulation board that provides a thermal resistance R-value of 1 m2 K/W and an area A of 1 m2 | Mass allocation | Portugal | CML 2001 CED | SimaPro Ecoinvent ELCD | GWP, AP, EP, POC, ADP, ODP, RPE, NRPE |
| [112] |
16 | PU Composite | Cradle-to-grave | 1 m3 of insulating material | – | Poland | Eco-indicator 99 | SimaPro 7.1 | HH, EQ, NRD |
| [120] |
7. Policy and Regulatory Drivers of Bio-Based Polyurethanes
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AChNCs | Acetylated Chitin Nanocrystals |
ADP | Depletion of Abiotic Resources |
ALPHA | Aqueous Lignin Purification with Hot Agents |
AP | Acidification Potential |
CED | Cumulative Energy Demand |
CFCs | Chlorofluorocarbons |
ChNCs | Chitin Nanocrystals |
ChNFs | Chitin Nanofibers |
CNCs | Cellulose Nanocrystals |
CNFs | Cellulose Nanofibrils |
cWPUs | Cationic Waterborne Polyurethanes |
DBTDA | Dibutylin Diacetate |
DBTDL | Dibutylin Dilaurate |
DKL | Depolymerized Kraft Lignin |
DPP | Diphenyl Phosphate |
Ec | Ecotoxicity |
EIS | Electrochemical Impedance Spectroscopy |
EP | Eutrophication Potential |
EPR | Extended Producer Responsibility |
EQ | Environmental Quality |
ES | Epoxy-Functionalized Silane |
EU | European Union |
FFD | Fossil Fuel Depletion |
FWEc | Freshwater Ecotoxicity |
FWEu | Freshwater Eutrophication |
GWP | Global Warming Potential |
HA | Habitat Alteration |
HCFCs | Hydrochlorofluorocarbons |
HDI | Hexamethylene Diisocyanate |
HH | Human Health |
HT | Human Toxicity |
IPDI | Isophorone Diisocyanate |
IRR | Internal Rate of Return |
LCA | Life Cycle Assessment |
LOI | Limiting Oxygen Test |
MD | Mineral Depletion/Mineral Resource Scarcity |
MDI | Diphenylmethane Diisocyanate |
Mec | Marine Ecotoxicity |
MEu | Marine Eutrophication |
MSP | Minimum Selling Price |
NEFB | Empty Fruit Bunch Cellulose Nanofibrils |
NIPU | Non-Isocyanate Polyurethane |
NRD | Natural Resource Depletion/Consumption |
NRPE | Non-Renewable Primary Energy |
ODP | Ozone Depletion Potential |
PCL | Polycaprolactone |
PM | Particulate Matter |
pMDI | Polymeric-Diphenylmethane Diisocyanate |
POC | Photochemical Ozone Creation |
PUs | Polyurethanes |
RPE | Renewable Primary Energy |
S-CNCs | Silane-Functionalized CNCs |
TA | Terrestrial Acidification |
TDI | Toluene Diisocyanate |
TE | Terrestrial Eutrophication |
TEA | Techno-Economic Analysis |
TEc | Terrestrial Ecotoxicity |
W | Water Intake |
WC | Water Consumption |
References
- García González, M.N.; Börjesson, P.; Levi, M.; Turri, S. Development and Life Cycle Assessment of Polyester Binders Containing 2,5-Furandicarboxylic Acid and Their Polyurethane Coatings. J. Polym. Environ. 2018, 26, 3626–3637. [Google Scholar] [CrossRef]
- Moghadam, S.G.; Parsimehr, H.; Ershad-Langroudi, A. Polyurethanes for Biomedical Applications. In Polyurethane Chemistry: Renewable Polyols and Isocyanates; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2021; Volume 1380, pp. 363–392. ISBN 978-0-8412-9840-8. [Google Scholar]
- Azarmgin, S.; Torabinejad, B.; Kalantarzadeh, R.; Garcia, H.; Velazquez, C.A.; Lopez, G.; Vazquez, M.; Rosales, G.; Heidari, B.S.; Davachi, S.M. Polyurethanes and Their Biomedical Applications. ACS Biomater. Sci. Eng. 2024, 10, 6828–6859. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Chen, J.; Zhu, J.; Yan, N. Lignin-Based Polyurethane: Recent Advances and Future Perspectives. Macromol. Rapid Commun. 2021, 42, 2000492. [Google Scholar] [CrossRef] [PubMed]
- Recupido, F.; Lama, G.C.; Ammendola, M.; Bossa, F.D.L.; Minigher, A.; Campaner, P.; Morena, A.G.; Tzanov, T.; Ornelas, M.; Barros, A.; et al. Rigid Composite Bio-Based Polyurethane Foams: From Synthesis to LCA Analysis. Polymer 2023, 267, 125674. [Google Scholar] [CrossRef]
- Polyurethane Global Market Volume 2030. Available online: https://www.statista.com/statistics/720341/global-polyurethane-market-size-forecast/ (accessed on 23 January 2024).
- Zia, K.M.; Bhatti, H.N.; Ahmad Bhatti, I. Methods for Polyurethane and Polyurethane Composites, Recycling and Recovery: A Review. React. Funct. Polym. 2007, 67, 675–692. [Google Scholar] [CrossRef]
- Polyurethane Market Size, Share & Trends Analysis Report By Raw Material (Toluene Di-Isocyanate, Methylene Diphenyl Di-Isocyanate, Polyols), By Product, By Application, By Region, And Segment Forecasts, 2024–2030; Grand View Research: San Francisco, CA, USA, 2023; p. 130.
- Li, H.; Liang, Y.; Li, P.; He, C. Conversion of Biomass Lignin to High-Value Polyurethane: A Review. J. Bioresour. Bioprod. 2020, 5, 163–179. [Google Scholar] [CrossRef]
- Zhang, M.; Jeong, S.; Cho, W.; Ryu, J.; Zhang, B.; Crovella, P.; Ragauskas, A.J.; Wie, J.J.; Yoo, C.G. Green Co-Solvent-Assisted One-Pot Synthesis of High-Performance Flexible Lignin Polyurethane Foam. Chem. Eng. J. 2024, 499, 156142. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and Health Hazard Ranking and Assessment of Plastic Polymers Based on Chemical Composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Jeon, B.; Lee, K.; Shin, J.; Choi, S.Q. Tailored Mechanical Properties of Soybean Oil-Based Non-Isocyanate Polyurethanes by Copolymer Integration. Green Chem. 2025, 27, 3559–3572. [Google Scholar] [CrossRef]
- Rokicki, G.; Parzuchowski, P.G.; Mazurek, M. Non-Isocyanate Polyurethanes: Synthesis, Properties, and Applications. Polym. Adv. Technol. 2015, 26, 707–761. [Google Scholar] [CrossRef]
- Wightman, J.L.; Ahmed, Z.U.; Volk, T.A.; Castellano, P.J.; Peters, C.J.; DeGloria, S.D.; Duxbury, J.M.; Woodbury, P.B. Assessing Sustainable Bioenergy Feedstock Production Potential by Integrated Geospatial Analysis of Land Use and Land Quality. Bioenerg. Res. 2015, 8, 1671–1680. [Google Scholar] [CrossRef]
- Hong, B.H.; Shen, H.; Lam, H. Overview of Sustainable Biomass Supply Chain: From Concept to Modelling. Clean Technol. Environ. Policy 2016, 18, 2173–2194. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Sahoo, K.; Nepal, P.; Runge, T.; Bergman, R. Environmental Impacts and Techno-Economic Assessments of Biobased Products: A Review. Renew. Sustain. Energy Rev. 2023, 180, 113302. [Google Scholar] [CrossRef]
- Sahoo, K.; Bergman, R.; Alanya-Rosenbaum, S.; Gu, H.; Liang, S. Life Cycle Assessment of Forest-Based Products: A Review. Sustainability 2019, 11, 4722. [Google Scholar] [CrossRef]
- Ögmundarson, Ó.; Sukumara, S.; Herrgård, M.J.; Fantke, P. Combining Environmental and Economic Performance for Bioprocess Optimization. Trends Biotechnol. 2020, 38, 1203–1214. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Recca, G.; Summerscales, J.; Latteri, A.; Cozzo, G.; Cicala, G. Bio-Based versus Traditional Polymer Composites. A Life Cycle Assessment Perspective. J. Clean. Prod. 2014, 74, 135–144. [Google Scholar] [CrossRef]
- Quinteiro, P.; Gama, N.V.; Ferreira, A.; Dias, A.C.; Barros-Timmons, A. Environmental Assessment of Different Strategies to Produce Rigid Polyurethane Foams Using Unrefined Crude Glycerol. J. Clean. Prod. 2022, 371, 133554. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The Path Forward for Biofuels and Biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef]
- Zarmehr, S.P.; Kazemi, M.; Madasu, N.G.A.; Lamanna, A.J.; Fini, E.H. Application of Bio-Based Polyurethanes in Construction: A State-of-the-Art Review. Resour. Conserv. Recycl. 2025, 212, 107906. [Google Scholar] [CrossRef]
- Phung Hai, T.A.; Tessman, M.; Neelakantan, N.; Samoylov, A.A.; Ito, Y.; Rajput, B.S.; Pourahmady, N.; Burkart, M.D. Renewable Polyurethanes from Sustainable Biological Precursors. Biomacromolecules 2021, 22, 1770–1794. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 2022, 14, 881. [Google Scholar] [CrossRef] [PubMed]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-Based Routes to Synthesize Cyclic Carbonates and Polyamines Precursors of Non-Isocyanate Polyurethanes: A Review. Eur. Polym. J. 2019, 118, 668–684. [Google Scholar] [CrossRef]
- Silva, R.; Barros-Timmons, A.; Quinteiro, P. Life Cycle Assessment of Fossil- and Bio-Based Polyurethane Foams: A Review. J. Clean. Prod. 2023, 430, 139697. [Google Scholar] [CrossRef]
- Delavarde, A.; Savin, G.; Derkenne, P.; Boursier, M.; Morales-Cerrada, R.; Nottelet, B.; Pinaud, J.; Caillol, S. Sustainable Polyurethanes: Toward New Cutting-Edge Opportunities. Prog. Polym. Sci. 2024, 151, 101805. [Google Scholar] [CrossRef]
- Antonino, L.D.; Gouveia, J.R.; de Sousa Júnior, R.R.; Garcia, G.E.S.; Gobbo, L.C.; Tavares, L.B.; dos Santos, D.J. Reactivity of Aliphatic and Phenolic Hydroxyl Groups in Kraft Lignin towards 4,4′ MDI. Molecules 2021, 26, 2131. [Google Scholar] [CrossRef]
- Gupta, R.K.; Kahol, P.K. (Eds.) Polyurethane Chemistry: Renewable Polyols and Isocyanates; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2021; ISBN 978-0-8412-9839-2. [Google Scholar] [CrossRef]
- Blackwell, J.; Lee, C.D. Hard-segment Polymorphism in MDI/Diol-based Polyurethane Elastomers. J. Polym. Sci. Polym. Phys. Ed. 1984, 22, 759–772. [Google Scholar] [CrossRef]
- Chattopadhyay, D.; Raju, N.; Vairamani, M.; Kothapalli, R.V. Structural Investigations of Polypropylene Glycol (PPG) and Isophorone Diisocyanate (IPDI) Based Polyurethane Prepolymer by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF)-Mass Spectrometry. Prog. Org. Coat. Prog. Org. Coat. 2008, 62, 117–122. [Google Scholar] [CrossRef]
- Du, H.; Zhao, Y.; Li, Q.; Wang, J.; Kang, M.; Wang, X.; Xiang, H. Synthesis and Characterization of Waterborne Polyurethane Adhesive from MDI and HDI. J. Appl. Polym. Sci. 2008, 110, 1396–1402. [Google Scholar] [CrossRef]
- Peyrton, J.; Avérous, L. Structure-Properties Relationships of Cellular Materials from Biobased Polyurethane Foams. Mater. Sci. Eng. R Rep. 2021, 145, 100608. [Google Scholar] [CrossRef]
- Hong, S.U.; Albouy, A.; Duda, J.L. Transport of blowing agents in polyurethane. J. Appl. Polym. Sci. 2001, 79, 696–702. [Google Scholar] [CrossRef]
- Modesti, M.; Adriani, V.; Simioni, F. Chemical and Physical Blowing Agents in Structural Polyurethane Foams: Simulation and Characterization. Polym. Eng. Sci. 2000, 40, 2046–2057. [Google Scholar] [CrossRef]
- Tang, Z.; Maroto-Valer, M.M.; Andresen, J.M.; Miller, J.W.; Listemann, M.L.; McDaniel, P.L.; Morita, D.K.; Furlan, W.R. Thermal Degradation Behavior of Rigid Polyurethane Foams Prepared with Different Fire Retardant Concentrations and Blowing Agents. Polymer 2002, 43, 6471–6479. [Google Scholar] [CrossRef]
- ASTM D3014-99; Standard Test Method for Flame Height, Time of Burning, and Loss of Mass of Rigid Thermoset Cellular Plastics in a Vertical Position. ASTM International: West Conshohocken, PA, USA, 1999. [CrossRef]
- European Union. Regulation (EU) 2024/590 of the European Parliament and of the Council of 7 February 2024 on Substances That Deplete the Ozone Layer, and Repealing Regulation (EC) No 1005/2009; European Union: Brussels, Belgium, 2024. [Google Scholar]
- US EPA, O. Phaseout of ODS Under the Clean Air Act. Available online: https://www.epa.gov/ods-phaseout/phaseout-ods-under-clean-air-act (accessed on 14 May 2025).
- Murphy, G.J.; Eschbach, C.S.; Baskent, F.O. Silicone Surfactant Performance Requirements in Reduced Combustibility Polyurethane Foams. J. Cell. Plast. 1982, 18, 56–59. [Google Scholar] [CrossRef]
- Khatoon, H.; Iqbal, S.; Irfan, M.; Darda, A.; Rawat, N. A Review on the Production, Properties and Applications of Non-Isocyanate Polyurethane: A Greener Perspective. Prog. Org. Coat. 2021, 154, 106124. [Google Scholar] [CrossRef]
- Rokicki, G.; Piotrowska, A. A New Route to Polyurethanes from Ethylene Carbonate. Polymer 2002, 43, 2927–2935. [Google Scholar] [CrossRef]
- Bähr, M.; Mülhaupt, R. Linseed and Soybean Oil-Based Polyurethanes Prepared via the Non-Isocyanate Route and Catalytic Carbon Dioxide Conversion. Green Chem. 2012, 14, 483–489. [Google Scholar] [CrossRef]
- Grignard, B.; Thomassin, J.-M.; Gennen, S.; Poussard, L.; Bonnaud, L.; Raquez, J.-M.; Dubois, P.; Tran, M.-P.; Park, C.B.; Jerome, C.; et al. CO2-Blown Microcellular Non-Isocyanate Polyurethane (NIPU) Foams: From Bio- and CO2-Sourced Monomers to Potentially Thermal Insulating Materials. Green Chem. 2016, 18, 2206–2215. [Google Scholar] [CrossRef]
- Huang, J.; Wang, H.; Liu, W.; Huang, J.; Yang, D.; Qiu, X.; Zhao, L.; Hu, F.; Feng, Y. Solvent-Free Synthesis of High-Performance Polyurethane Elastomer Based on Low-Molecular-Weight Alkali Lignin. Int. J. Biol. Macromol. 2023, 225, 1505–1516. [Google Scholar] [CrossRef]
- Saražin, J.; Pizzi, A.; Amirou, S.; Schmiedl, D.; Šernek, M. Organosolv Lignin for Non-Isocyanate Based Polyurethanes (NIPU) as Wood Adhesive. JRM 2021, 9, 881–907. [Google Scholar] [CrossRef]
- Sternberg, J.; Pilla, S. Materials for the Biorefinery: High Bio-Content, Shape Memory Kraft Lignin-Derived Non-Isocyanate Polyurethane Foams Using a Non-Toxic Protocol. Green Chem. 2020, 22, 6922–6935. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Xi, X.; Pizzi, A.; Zhou, X.; Fredon, E.; Du, G.; Gerardin, C. Condensed Tannin-Glucose-Based NIPU Bio-Foams of Improved Fire Retardancy. Polym. Degrad. Stab. 2020, 175, 109121. [Google Scholar] [CrossRef]
- Zhang, M.; Jia, L.; Li, M.; Yoo, C.G.; Peng, H.; Arvelli, S.; Zhao, J. Challenges and Perspectives in Lignin-Derived Polyurethane Foam Synthesis. In Advanced Sustainable Systems; Wiley: Hoboken, NJ, USA, 2025; p. 2401054. [Google Scholar] [CrossRef]
- Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural Polysaccharide Nanomaterials: An Overview of Their Immunological Properties. Int. J. Mol. Sci. 2019, 20, 5092. [Google Scholar] [CrossRef] [PubMed]
- Gubitosi, M.; Nosrati, P.; Koder Hamid, M.; Kuczera, S.; Behrens, M.A.; Johansson, E.G.; Olsson, U. Stable, Metastable and Unstable Cellulose Solutions. R. Soc. Open Sci. 2017, 4, 170487. [Google Scholar] [CrossRef] [PubMed]
- Jamil, T. Cytotoxicity and Mechanical Behavior of Chitin–Bentonite Clay Based Polyurethane Bio-Nanocomposites. Int. J. Biol. Macromol. 2011, 49, 1131–1136. [Google Scholar]
- Marcovich, N.E.; Auad, M.L.; Bellesi, N.E.; Nutt, S.R.; Aranguren, M.I. Cellulose Micro/Nanocrystals Reinforced Polyurethane. J. Mater. Res. 2006, 21, 870–881. [Google Scholar] [CrossRef]
- Rouhani Shirvan, A.; Shakeri, M.; Bashari, A. Recent Advances in Application of Chitosan and Its Derivatives in Functional Finishing of Textiles. In The Impact and Prospects of Green Chemistry for Textile Technology; Shahid-ul-Islam, B.S.B., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 107–133. [Google Scholar] [CrossRef]
- Seydibeyoglu, Ö.; Oksman, K. Novel Nanocomposites Based on Polyurethane and Micro Fibrillated Cellulose. Compos. Sci. Technol. 2008, 68, 908–914. [Google Scholar] [CrossRef]
- Stanzione, M.; Oliviero, M.; Cocca, M.; Errico, M.E.; Gentile, G.; Avella, M.; Lavorgna, M.; Buonocore, G.G.; Verdolotti, L. Tuning of Polyurethane Foam Mechanical and Thermal Properties Using Ball-Milled Cellulose. Carbohydr. Polym. 2020, 231, 115772. [Google Scholar] [CrossRef]
- Silva, M.C.; Takahashi, J.A.; Chaussy, D.; Belgacem, M.N.; Silva, G.G. Composites of Rigid Polyurethane Foam and Cellulose Fiber Residue. J. Appl. Polym. Sci. 2010, 117, 3665–3672. [Google Scholar] [CrossRef]
- Tran, Y.; Doan, T.; Zenitova, L. Effective Treatment of Oil Spills by Sorbent Formed from Chitin and Polyurethane Foam; Current Applied Science and Technology: Bangkok, Thailand, 2019. [Google Scholar]
- Cunha, A.; Gandini, A. Turning Polysaccharides into Hydrophobic Materials: A Critical Review. Part 2. Hemicelluloses, Chitin/Chitosan, Starch, Pectin and Alginates. Cellulose 2010, 17, 1045–1065. [Google Scholar] [CrossRef]
- Zia, F.; Zia, K.M.; Zuber, M.; Kamal, S.; Aslam, N. Starch Based Polyurethanes: A Critical Review Updating Recent Literature. Carbohydr. Polym. 2015, 134, 784–798. [Google Scholar] [CrossRef]
- Alfani, R.; Iannace, S.; Nicolais, L. Synthesis and Characterization of Starch-Based Polyurethane Foams. J. Appl. Polym. Sci. 1998, 68, 739–745. [Google Scholar] [CrossRef]
- Kwon, O.-J.; Yang, S.-R.; Kim, D.-H.; Park, J.-S. Characterization of Polyurethane Foam Prepared by Using Starch as Polyol. J. Appl. Polym. Sci. 2007, 103, 1544–1553. [Google Scholar] [CrossRef]
- Yao, Y.; Yoshioka, M.; Shiraishi, N. Water-Absorbing Polyurethane Foams from Liquefied Starch. J. Appl. Polym. Sci. 1996, 60, 1939–1949. [Google Scholar] [CrossRef]
- Sharma, C.; Kumar, S.; Unni, A.R.; Aswal, V.K.; Rath, S.K.; Harikrishnan, G. Foam Stability and Polymer Phase Morphology of Flexible Polyurethane Foams Synthesized from Castor Oil. J. Appl. Polym. Sci. 2014, 131, 40668. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Hu, L.; Zhou, Y. Synthesis of Rigid Polyurethane Foams with Castor Oil-Based Flame Retardant Polyols. Ind. Crops Prod. 2014, 52, 380–388. [Google Scholar] [CrossRef]
- Tanaka, R.; Hirose, S.; Hatakeyama, H. Preparation and Characterization of Polyurethane Foams Using a Palm Oil-Based Polyol. Bioresour. Technol. 2008, 99, 3810–3816. [Google Scholar] [CrossRef]
- Zhang, L.; Jeon, H.K.; Malsam, J.; Herrington, R.; Macosko, C.W. Substituting Soybean Oil-Based Polyol into Polyurethane Flexible Foams. Polymer 2007, 48, 6656–6667. [Google Scholar] [CrossRef]
- Guo, W.; Sun, S.; Wang, P.; Chen, H.; Zheng, J.; Lin, X.; Qin, Y.; Qiu, X. Successive Organic Solvent Fractionation and Homogenization of Technical Lignin for Polyurethane Foam with High Mechanical Performance. Int. J. Biol. Macromol. 2022, 221, 913–922. [Google Scholar] [CrossRef]
- Li, B.; Zhou, M.; Huo, W.; Cai, D.; Qin, P.; Cao, H.; Tan, T. Fractionation and Oxypropylation of Corn-Stover Lignin for the Production of Biobased Rigid Polyurethane Foam. Ind. Crops Prod. 2020, 143, 111887. [Google Scholar] [CrossRef]
- Hwang, U.; Lee, B.; Oh, B.; Shin, H.; Lee, S.; Kang, S.; Kim, D.; Park, J.; Shin, S.; Suhr, J.; et al. Hydrophobic Lignin/Polyurethane Composite Foam: An Eco-Friendly and Easily Reusable Oil Sorbent. Eur. Polym. J. 2022, 165, 110971. [Google Scholar] [CrossRef]
- Ferreira, A. Bio-Based Polyurethane Foams toward Applications beyond Thermal Insulation. Mater. Des. 2015, 76, 77–85. [Google Scholar]
- Zhang, T.; Yu, M.; Huang, Y.; Tan, J.; Zhang, M.; Zhu, X. Design and Manufacturing of Cost-Effective Tannin-Based Polyurethane Foam as an Efficient and Reusable Absorbent for Oil and Solvents. Ind. Crops Prod. 2022, 189, 115815. [Google Scholar] [CrossRef]
- Alagi, P.; Hong, S.C. Vegetable Oil-Based Polyols for Sustainable Polyurethanes. Macromol. Res. 2015, 23, 1079–1086. [Google Scholar] [CrossRef]
- Rojek, P.; Prociak, A. Effect of Different Rapeseed-Oil-Based Polyols on Mechanical Properties of Flexible Polyurethane Foams. J. Appl. Polym. Sci. 2012, 125, 2936–2945. [Google Scholar] [CrossRef]
- Tran, T.H.; Nguyen, H.-L.; Hwang, D.S.; Lee, J.Y.; Cha, H.G.; Koo, J.M.; Hwang, S.Y.; Park, J.; Oh, D.X. Five Different Chitin Nanomaterials from Identical Source with Different Advantageous Functions and Performances. Carbohydr. Polym. 2019, 205, 392–400. [Google Scholar] [CrossRef]
- Lee, S.; Hao, L.T.; Park, J.; Oh, D.X.; Hwang, D.S. Nanochitin and Nanochitosan: Chitin Nanostructure Engineering with Multiscale Properties for Biomedical and Environmental Applications. Adv. Mater. 2023, 35, 2203325. [Google Scholar] [CrossRef]
- Sanchez, C.; Boissiere, C.; Cassaignon, S.; Chaneac, C.; Durupthy, O.; Faustini, M.; Grosso, D.; Laberty-Robert, C.; Nicole, L.; Portehault, D.; et al. Molecular Engineering of Functional Inorganic and Hybrid Materials. Chem. Mater. 2014, 26, 221–238. [Google Scholar] [CrossRef]
- Anwer, M.A.S.; Wang, J.; Guan, A.Q.; Naguib, H.E. Chitin Nano-Whiskers (CNWs) as a Bio-Based Bio-Degradable Reinforcement for Epoxy: Evaluation of the Impact of CNWs on the Morphological, Fracture, Mechanical, Dynamic Mechanical, and Thermal Characteristics of DGEBA Epoxy Resin. RSC Adv. 2019, 9, 11063–11076. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Labidi, J.; Fernandes, S.C.M. Chitin Nanocrystals and Nanofibers as Nano-Sized Fillers into Thermoplastic Starch-Based Biocomposites Processed by Melt-Mixing. Chem. Eng. J. 2014, 256, 356–364. [Google Scholar] [CrossRef]
- Li, S.C.-Y.; Sun, Y.-C.; Guan, Q.; Naguib, H. Effects of Chitin Nanowhiskers on the Thermal, Barrier, Mechanical, and Rheological Properties of Polypropylene Nanocomposites. RSC Adv. 2016, 6, 72086–72095. [Google Scholar] [CrossRef]
- Feng, Y.; Li, J.; Wang, B.; Tian, X.; Chen, K.; Zeng, J.; Xu, J.; Gao, W. Novel Nanofibrillated Cellulose/Chitin Whisker Hybrid Nanocomposites and Their Use for Mechanical Performance Enhancements. BioResources 2018, 13, 3030–3044. [Google Scholar] [CrossRef]
- Bai, L.; Liu, L.; Esquivel, M.; Tardy, B.L.; Huan, S.; Niu, X.; Liu, S.; Yang, G.; Fan, Y.; Rojas, O.J. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem. Rev. 2022, 122, 11604–11674. [Google Scholar] [CrossRef]
- Kim, M.S.; Ryu, K.M.; Lee, S.H.; Choi, Y.C.; Rho, S.; Jeong, Y.G. Chitin Nanofiber-Reinforced Waterborne Polyurethane Nanocomposite Films with Enhanced Thermal and Mechanical Performance. Carbohydr. Polym. 2021, 258, 117728. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zou, J.W.; Chang, P.R.; Yu, J.H.; Dufresne, A. New Waterborne Polyurethane-Based Nanocomposites Reinforced with Low Loading Levels of Chitin Whisker. Express Polym. Lett. 2011, 5, 362–373. [Google Scholar] [CrossRef]
- Matsui, M.; Munaro, M.; Akcelrud, L. Chitin/Polyurethane Blends: A Thermal and Morphological Study. Polym. Int. 2010, 59, 1090–1098. [Google Scholar] [CrossRef]
- Lin, N.; Wei, S.; Xia, T.; Hu, F.; Huang, J.; Dufresne, A. Green Bionanocomposites from High-Elasticity “Soft” Polyurethane and High-Crystallinity “Rigid” Chitin Nanocrystals with Controlled Surface Acetylation. RSC Adv. 2014, 4, 49098–49107. [Google Scholar] [CrossRef]
- Doan Trang, T.Y.; Zenitova, L.a.; Huong, T.T.; Hanh, D.T.; Dung, H.T.; Vinh, M.T. The Effect of Adding Chitin on the Physical-Mechanical Properties of Polyurethane Foam. Vietnam. J. Chem. 2023, 61, 43–50. [Google Scholar] [CrossRef]
- Calvo-Correas, T.; Garrido, P.; Alonso-Varona, A.; Palomares, T.; Corcuera, M.A.; Eceiza, A. Biocompatible Thermoresponsive Polyurethane Bionanocomposites with Chitin Nanocrystals. J. Appl. Polym. Sci. 2019, 136, 47430. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J.; Chen, L.; Wang, Z.; Zhang, Y.; Fang, L. Liquefied Chitin-Derived Super Tough, Sustainable, and Anti-Bacterial Polyurethane Elastomers. Chem. Eng. J. 2023, 465, 143074. [Google Scholar] [CrossRef]
- Chen, F.; Wang, C.; Liu, X.; Wang, Z.; Fang, L.; Zhang, Y. Flame-Retardant Properties of Chitin Liquefaction-Based Polyurethane Foam. J. Polym. Res. 2023, 30, 143. [Google Scholar] [CrossRef]
- Li, S.; Duan, H.; Wang, Z.; Zhao, B.; Yang, H.; Hu, N.; Zhong, Q.; Shi, L.; Qi, D. Enhancement of Mechanical Properties in Reactive Polyurethane Film via In-Situ Assembly of Embedded Cellulose Nanocrystals. Int. J. Biol. Macromol. 2025, 301, 140297. [Google Scholar] [CrossRef]
- Zhan, S.; Bo, Y.; Liu, H.; Yuan, R.; Ding, W.; Zhang, Y.; Zhang, D.; Wang, S.; Zhang, M. High-Strength Polyurethane Composite Film Reinforced by Cellulose Nanocrystals. ACS Appl. Polym. Mater. 2024, 6, 1763–1771. [Google Scholar] [CrossRef]
- Marcelino, P.R.C.; Melo, E.C.R.; Moulin, J.C.; Silva, D.W.; dos Santos, V.B.; Oliveira, M.P. Development of a Methodology for the Production of Nanostructured Polymeric Biocomposites with Cellulose Nanocrystals. Eur. J. Wood Prod. 2024, 83, 1. [Google Scholar] [CrossRef]
- Eyni, M.B.; Shojaei, A.; Khasraghi, S.S. Enhancing Performance of In-Situ Synthesized Biocompatible Shape Memory Polyurethane Acrylate by Cellulose Nanocrystals. Int. J. Biol. Macromol. 2025, 300, 140232. [Google Scholar] [CrossRef]
- Mekonnen, T.H.; Haile, T.; Ly, M. Hydrophobic Functionalization of Cellulose Nanocrystals for Enhanced Corrosion Resistance of Polyurethane Nanocomposite Coatings. Appl. Surf. Sci. 2021, 540, 148299. [Google Scholar] [CrossRef]
- Azzra, N.A.; Atiqah, A.; Fadhlina, H.; Jalar, A.; Bakar, M.A.; Ismail, A.G.; Supian, A.B.M. Effect of Nanofibril Cellulose Empty Fruit Bunch-Reinforced Thermoplastic Polyurethane Nanocomposites on Tensile and Dynamic Mechanical Properties for Flexible Substrates. Polym. Compos. 2024, 45, 14633–14643. [Google Scholar] [CrossRef]
- Chen, S.; Liu, X.; Miao, Y.; Ge, S.; Li, S.; Liu, L.; Hou, L.; Rezakazemi, M.; Aminabhavi, T.M.; Fan, W. Self-Healing Polyurethane/Cellulose Nanocrystal Composite Fibers with Fatigue and Aging Resistance for Smart Wearable Elastic Yarns. Adv. Compos. Hybrid Mater. 2024, 8, 8. [Google Scholar] [CrossRef]
- Dukarska, D.; Mirski, R. Current Trends in the Use of Biomass in the Manufacture of Rigid Polyurethane Foams: A Review. J. Compos. Sci. 2024, 8, 286. [Google Scholar] [CrossRef]
- Pérez-Almada, D.; Galán-Martín, Á.; Contreras, M.d.M.; Castro, E. Integrated Techno-Economic and Environmental Assessment of Biorefineries: Review and Future Research Directions. Sustain. Energy Fuels 2023, 7, 4031–4050. [Google Scholar] [CrossRef]
- Kulas, D.G.; Thies, M.C.; Shonnard, D.R. Techno-Economic Analysis and Life Cycle Assessment of Waste Lignin Fractionation and Valorization Using the ALPHA Process. ACS Sustain. Chem. Eng. 2021, 9, 5388–5395. [Google Scholar] [CrossRef]
- Ajao, O.; Benali, M.; Faye, A.; Li, H.; Maillard, D.; Ton-That, M.T. Multi-Product Biorefinery System for Wood-Barks Valorization into Tannins Extracts, Lignin-Based Polyurethane Foam and Cellulose-Based Composites: Techno-Economic Evaluation. Ind. Crops Prod. 2021, 167, 113435. [Google Scholar] [CrossRef]
- Dessbesell, L.; Yuan, Z.; Hamilton, S.; Leitch, M.; Pulkki, R.; Xu, C. Bio-Based Polymers Production in a Kraft Lignin Biorefinery: Techno-Economic Assessment. Biofuels Bioprod. Biorefining 2018, 12, 239–250. [Google Scholar] [CrossRef]
- Vasic, S. Techno-Economic Analysis of Large Scale Lignin Based Rigid Polyurethane and Epoxy Resin. Bachelor’s Thesis, University of Southampton, Southampton, UK, 2020. [Google Scholar]
- Qin, Z.-H.; Fridrihsone, A.; Mou, J.-H.; Pomilovskis, R.; Godina, D.; Miao, Y.; Liu, Z.; Tsang, C.-W.; Zhang, L.; Xu, C.; et al. Valorisation of Food Waste into Bio-Based Polyurethane Rigid Foams: From Experimental Investigation to Techno-Economic Analysis. Chem. Eng. J. 2024, 493, 152680. [Google Scholar] [CrossRef]
- Davis, R.; Wiatrowski, M.; Kinchin, C.; Humbird, D. Conceptual Basis and Techno-Economic Modeling for Integrated Algal Biorefinery Conversion of Microalgae to Fuels and Products 2019 NREL TEA Update: Highlighting Paths to Future Cost Goals via a New Pathway for Combined Algal Processing; National Renewable Energy Laboratory: Golden, CO, USA, 2020; p. 77. [Google Scholar]
- Arias, A.; Entrena-Barbero, E.; Feijoo, G.; Moreira, M.T. Sustainable Non-Isocyanate Polyurethanes Bio-Adhesives for Engineered Wood Panels Are Revealed as Promising Candidates to Move from Formaldehyde-Based Alternatives. J. Environ. Chem. Eng. 2022, 10, 107053. [Google Scholar] [CrossRef]
- von der Assen, N.; Sternberg, A.; Kätelhön, A.; Bardow, A. Environmental Potential of Carbon Dioxide Utilization in the Polyurethane Supply Chain. Faraday Discuss. 2015, 183, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.; Correia, J.R.; Godinho, L.; Dias, A.M.P.G.; Dias, A. Life Cycle Analysis of Cross-Insulated Timber Panels. Structures 2021, 31, 1311–1324. [Google Scholar] [CrossRef]
- Llantoy, N.; Chàfer, M.; Cabeza, L.F. A Comparative Life Cycle Assessment (LCA) of Different Insulation Materials for Buildings in the Continental Mediterranean Climate. Energy Build. 2020, 225, 110323. [Google Scholar] [CrossRef]
- Yılmaz, E.; Arslan, H.; Bideci, A. Environmental Performance Analysis of Insulated Composite Facade Panels Using Life Cycle Assessment (LCA). Constr. Build. Mater. 2019, 202, 806–813. [Google Scholar] [CrossRef]
- Sierra-Pérez, J.; Boschmonart-Rives, J.; Gabarrell, X. Environmental Assessment of Façade-Building Systems and Thermal Insulation Materials for Different Climatic Conditions. J. Clean. Prod. 2016, 113, 102–113. [Google Scholar] [CrossRef]
- Pargana, N.; Pinheiro, M.D.; Silvestre, J.D.; De Brito, J. Comparative Environmental Life Cycle Assessment of Thermal Insulation Materials of Buildings. Energy Build. 2014, 82, 466–481. [Google Scholar] [CrossRef]
- Marson, A.; Masiero, M.; Modesti, M.; Scipioni, A.; Manzardo, A. Life Cycle Assessment of Polyurethane Foams from Polyols Obtained through Chemical Recycling. ACS Omega 2021, 6, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Manzardo, A.; Marson, A.; Roso, M.; Boaretti, C.; Modesti, M.; Scipioni, A.; Lorenzetti, A. Life Cycle Assessment Framework To Support the Design of Biobased Rigid Polyurethane Foams. ACS Omega 2019, 4, 14114–14123. [Google Scholar] [CrossRef] [PubMed]
- Batouli, S.M.; Zhu, Y.; Nar, M.; D’Souza, N.A. Environmental Performance of Kenaf-Fiber Reinforced Polyurethane: A Life Cycle Assessment Approach. J. Clean. Prod. 2014, 66, 164–173. [Google Scholar] [CrossRef]
- Wiatrowski, M.; Tan, E.C.D.; Davis, R. Chapter 6—TEA and LCA of Bio-Based Polyurethanes. In Rethinking Polyester Polyurethanes; Pomeroy, R.S., Ed.; Emerging Issues in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2023; pp. 153–176. ISBN 978-0-323-99982-3. [Google Scholar]
- Wray, H.E.; Luzzi, S.; D’Arrigo, P.; Griffini, G. Life Cycle Environmental Impact Considerations in the Design of Novel Biobased Polyurethane Coatings. ACS Sustain. Chem. Eng. 2023, 11, 8065–8074. [Google Scholar] [CrossRef]
- Pegoretti, T.D.S.; Mathieux, F.; Evrard, D.; Brissaud, D.; Arruda, J.R.D.F. Use of Recycled Natural Fibres in Industrial Products: A Comparative LCA Case Study on Acoustic Components in the Brazilian Automotive Sector. Resour. Conserv. Recycl. 2014, 84, 1–14. [Google Scholar] [CrossRef]
- Martins, L.S.; Zanini, N.C.; Maia, L.S.; Souza, A.G.; Barbosa, R.F.S.; Rosa, D.S.; Mulinari, D.R. Crude Oil and S500 Diesel Removal from Seawater by Polyurethane Composites Reinforced with Palm Fiber Residues. Chemosphere 2021, 267, 129288. [Google Scholar] [CrossRef]
- Dylewski, R.; Adamczyk, J. Study on Ecological Cost-Effectiveness for the Thermal Insulation of Building External Vertical Walls in Poland. J. Clean. Prod. 2016, 133, 467–478. [Google Scholar] [CrossRef]
- European Union. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives; European Union: Brussels, Belgium, 2024. [Google Scholar]
- EEA Municipal Waste Management across European Countries; European Environment Agency: Copenhagen, Denmark, 2016; p. 12.
- Program States. Mattress Recycling Council. Available online: https://mattressrecyclingcouncil.org/programs/ (accessed on 15 May 2025).
- European Union Commission Regulation (EU) 2020/1149 of 3 August 2020 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Diisocyanates; European Union: Brussels, Belgium, 2020.
- USDA. Biobased Markets Program: 2024-28431 (89 FR 97459). 2024. Available online: https://www.govinfo.gov/app/details/FR-2024-12-09/2024-28431 (accessed on 15 May 2025).
Property | Chitin Nanocrystals (ChNCs) | Cellulose Nanocrystals (CNCs) |
---|---|---|
Chemical Composition | Composed of N-acetylglucosamine (GlcNAc) monomers | Composed of glucose monomers |
Functional Groups | Contain hydroxyl (-OH) and acetamido (–NHCOCH3) groups | Contain hydroxyl (–OH) groups |
Charge and Surface Chemistry | Naturally positively charged due to amine groups (after deacetylation) | Typically negatively charged due to sulfate or carboxylate groups from acid hydrolysis |
Source | Found in arthropods (e.g., crustaceans, insects), fungal cell walls | Found in plant cell walls, bacteria, and algae |
Hydrophobicity | More hydrophobic due to acetamido groups | More hydrophilic due to hydroxyl groups |
Mechanical Strength | Slightly lower stiffness than CNCs but still strong | Higher Young’s modulus and strength |
Thermal Stability | Generally higher thermal stability | Moderate thermal stability but depends on source and treatment |
Applications | Used in biomedical fields (wound healing, tissue engineering), antimicrobial coatings, packaging | Used in reinforcing composites, coatings, packaging, and biomedical applications |
Filler Type | Type of PU Matrix | Processing Technique | Filler Loading Range (wt%) | Observed Enhancement | Reference |
---|---|---|---|---|---|
ChNFs | Cationic Waterborne PU | Aqueous Dispersion Casting | 1–50 | Thermal stability increased by 25 °C (hard segment) and 17 °C (soft segment) | [83] |
Storage moduli increased up to 7 wt% | |||||
ChNWs | Waterborne Polyurethane (WPU) | Casting and Evaporation | 1–5 | Tensile strength increased from 11.3 to 20.8 MPa (3 wt%) | [84] |
Young’s modulus increased from 3.0 MPa to 9.6 MPa (5 wt%) | |||||
Chitin | PU | Solution Casting | 30–90 | Tensile strength improved from 13 to 56 MPa | [85] |
Elastic modulus increased from 280 MPa to 1500 MPa | |||||
AChNCs | Castor-Oil-Based PU | Solution Casting | 2–10 | Young’s modulus increased from 0.8 to 4.01 MPa (10 wt%) | [86] |
Tensile strength increased from 2.79 to 5.67 MPa (6 wt%) | |||||
Elongation at break increased from 200 to 400% (4 wt%) | |||||
Chitin | PU | Solution Casting | 10–50 | The foaming, crosslink density, physical–mechanical properties, compressive stress, compression set, and resilience were enhanced at 10 wt% chitin content | [87] |
ChNCs | PU | Solution Casting | 1–5 | Elastic modulus increased from 135 to 256 MPa (5 wt%) | [88] |
Yield strength increased from 9.2 to 10.8 MPa (3 wt%) | |||||
Tensile strength at break increased from 8.1 to 8.9 MPa (1 wt%) | |||||
Yield strain and strain at break decreased after addition of ChNCs | |||||
Shape recovery values increased from 82.3 to 85.5% (5 wt%) | |||||
Liquified Chitin | PU | Solution Casting | 4–6 | Tensile strength increased from 17.6 to 43.3 MPa (5 wt%) | [89] |
Toughness increased from 148.9 to 417.6 MPa (5 wt%) | |||||
Elongation at break increased from 1612 to 2022% (6 wt%) | |||||
Ball-Mill Treated Chitin | PU | Foamed by Casting | 45 | Tensile strength increased from 210.5 to 260.3 kPa with 2.5% flame retardant | [90] |
Compressive strength increased from 87.6 to 114.9 kPa with 2.5% flame retardant | |||||
LOI increased from 19.5% to 28% with 7.5% flame retardant, indicating improved flame retardancy | |||||
CNCs | Solvent-Free Reactive PU | Casting | 0.2–1.5 | Tensile strength increased from 4.3 to 25.4 MPa (1 wt%) | [91] |
Elongation at break increased from 649 to 748% (1 wt%) | |||||
CNCs | PU | Solution Casting | N/A a | Tensile strength increased from 35 to 47 MPa | [92] |
Hardness increased from 72 to 80 HD | |||||
CNCs | Green Polyurethane (GPU) from Castor Oil | Direct Solvent Substitution Followed by Molding | 1–3 | Tensile strength increased by 267% (2 wt%) | [93] |
Elastic modulus increased by 118% (3 wt%) | |||||
Toughness increased by over 400% (2 wt%) | |||||
CNCs | Polyurethane Acrylates (PUA) | In Situ Polymerization | 0.5–2 | Tensile strength increased from 18.9 to 23.9 MPa (2 wt%) | [94] |
Modulus increased from 33.2 to 53.3 MPa (2 wt%) | |||||
Elongation at break increased from 458.5 to 658.4% (2 wt%) | |||||
S-CNCs | Polyurethane Acrylates (PUA) | In Situ Polymerization | 0.5–2 | Tensile strength increased from 18.9 to 23.2 MPa (0.5 wt%) | |
Modulus increased from 33.2 to 49.1 MPa (0.5 wt%) | |||||
Elongation at break increased from 458.5 to 667.1% (2 wt%) | |||||
Surface-Modified CNCs with Epoxy-Functionalized Silane (ES) | PU | Surface Grafting Followed by Homogenization | 1–5 | Storage modulus increased up to 3 wt% | [95] |
Water absorbance reduced substantially at 3 wt% | |||||
Excellent anticorrosion at 3 wt% | |||||
CNFs | Thermoplastic Polyurethane (TPU) | Internal Mixing Followed by Hot Pressing | 1–4 | Tensile strength increased by 19% (1 wt%) | [96] |
CNCs | PU | Wet Spinning | 1–10 | Tensile strength increased by 44.93% (7 wt%) | [97] |
Elongation at break increased by 33.92% (1 wt%) | |||||
Self-healing efficiency increased up to 7 wt% |
Feedstock | Technique | Products | Total Capital Investment | Processing Capacity | Production Capacity | Unit Production Cost | MSP | References |
---|---|---|---|---|---|---|---|---|
Lignin (black liquor from alkali pretreatment and lignin cake after enzymatic hydrolysis) from a corn-stover-to-ethanol plant | Aqueous lignin purification with hot agents (ALPHA) process | Bioethanol, PU foam, activated carbon, carbon fiber | – | 130,000 dry MT/yr of lignin | 721,000 tons/yr | USD 7.34/kg | USD 838/ton with use of acetic acid USD 463/ton with ethanol | [100] |
Yellow birch (Betula alleghaniensis) black spruce (Picea mariana) | Soda pulp for lignin extraction | Tannins, PU bio-based foam, bio-based composite | USD 1000–1240 million | 900 tons/day | – | – | – | [101] |
Kraft lignin from softwood | KL depolymerization using direct hydrolysis in polyalcohol | Production of DKL as a bio-substitute for polyol for the production of bio-based PU | USD 4.04 million | 3000 tons of KL/yr | DKL_polyol-3752.5 t/yr | – | DKL-polyol—USD 1440/ton | [102] |
Lignin | Step-growth polymerization reaction between a diisocyanate and a polyol | – | USD 2.35 million | 451 kg/h | 7,341,032 kg/yr | USD 2.32 kg | – | [103] |
Food waste lipids | Epoxidation and oxirane ring-opening | PU rigid foam, animal feed, and glucose-rich hydrolysate | USD 17.1 million | 10 MT/h of food waste | 25,321 MT/yr | USD 2.04/kg | USD 2.5/kg | [104] |
Algal biomass | One-step epoxidation and ring-opening | Fuel, polyol, and PU co-production; PU is a co-product | USD 339 million | 565 tons/day of dry algal biomass | 122.8 MT/day | - | USD 5.50/kg | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayalath, P.; Ananthakrishnan, K.; Jeong, S.; Shibu, R.P.; Zhang, M.; Kumar, D.; Yoo, C.G.; Shamshina, J.L.; Therasme, O. Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights. Processes 2025, 13, 1591. https://doi.org/10.3390/pr13051591
Jayalath P, Ananthakrishnan K, Jeong S, Shibu RP, Zhang M, Kumar D, Yoo CG, Shamshina JL, Therasme O. Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights. Processes. 2025; 13(5):1591. https://doi.org/10.3390/pr13051591
Chicago/Turabian StyleJayalath, Piumi, Kalyani Ananthakrishnan, Soyeon Jeong, Reshma Panackal Shibu, Mairui Zhang, Deepak Kumar, Chang Geun Yoo, Julia L. Shamshina, and Obste Therasme. 2025. "Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights" Processes 13, no. 5: 1591. https://doi.org/10.3390/pr13051591
APA StyleJayalath, P., Ananthakrishnan, K., Jeong, S., Shibu, R. P., Zhang, M., Kumar, D., Yoo, C. G., Shamshina, J. L., & Therasme, O. (2025). Bio-Based Polyurethane Materials: Technical, Environmental, and Economic Insights. Processes, 13(5), 1591. https://doi.org/10.3390/pr13051591