Next Issue
Previous Issue

Table of Contents

Coatings, Volume 9, Issue 7 (July 2019)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Microencapsulated essential oils (EOs) are increasingly used to protect the safety of foods due to [...] Read more.
View options order results:
result details:
Displaying articles 1-53
Export citation of selected articles as:
Open AccessArticle
Biofouling of FeNP-Coated SWRO Membranes with Bacteria Isolated after Pre-Treatment in the Sea of Cortez
Coatings 2019, 9(7), 462; https://doi.org/10.3390/coatings9070462
Received: 14 June 2019 / Revised: 11 July 2019 / Accepted: 19 July 2019 / Published: 23 July 2019
Viewed by 626 | PDF Full-text (6313 KB) | HTML Full-text | XML Full-text
Abstract
Commercial seawater reverse osmosis (SWRO) membranes were coated with iron nanoparticles (FeNPs) and biofouled with a bacterium strain isolated from the Sea of Cortez, Mexico. This strain was selected and characterized, as it was the only cultivable strain in pretreated seawater. Molecular identification [...] Read more.
Commercial seawater reverse osmosis (SWRO) membranes were coated with iron nanoparticles (FeNPs) and biofouled with a bacterium strain isolated from the Sea of Cortez, Mexico. This strain was selected and characterized, as it was the only cultivable strain in pretreated seawater. Molecular identification of the strain showed that it belongs to Bacillus halotolerans MCC1. This strain was Gram positive with spore production, and was susceptible to Fe+2 toxicity with a minimum inhibitory concentration of 1.8 g L−1. Its biofouling potential on both uncoated and FeNP coated reverse osmosis (RO) membranes was measured via biofilm layer thickness, total cell count, optical density and organic matter. The FeNP-coated RO membrane presented a significant reduction in biofilm cake layer thickness (>90%), total cells (>67%), optical density (>42%) and organic matter (>92%) with respect to an uncoated commercial membrane. Thus, Bacillus halotolerans MCC1 shows great potential to biofoul RO membranes as it can pass through ultrafiltration membranes due to its spore producing ability; nonetheless, FeNP-coated membranes represent a potential alternative to mitigate RO membrane biofouling. Full article
(This article belongs to the Special Issue Novel Marine Antifouling Coatings)
Figures

Figure 1

Open AccessArticle
The Effect of Heat Treatment on Properties of Ni–P Coatings Deposited on a AZ91 Magnesium Alloy
Coatings 2019, 9(7), 461; https://doi.org/10.3390/coatings9070461
Received: 10 June 2019 / Revised: 15 July 2019 / Accepted: 19 July 2019 / Published: 23 July 2019
Viewed by 516 | PDF Full-text (3615 KB) | HTML Full-text | XML Full-text
Abstract
The present study reports the effect of phosphorus content in deposited electroless nickel (Ni–P) coatings, the heat treatment on the microhardness and its microstructural characteristics, and the influence of the temperature on the microstructure of the Mg alloy substrate during the heat treatment. [...] Read more.
The present study reports the effect of phosphorus content in deposited electroless nickel (Ni–P) coatings, the heat treatment on the microhardness and its microstructural characteristics, and the influence of the temperature on the microstructure of the Mg alloy substrate during the heat treatment. The deposition of Ni–P coatings was carried out in the electroless nickel bath, and the resulting P content ranged from 5.2 to 10.8 wt.%. Prepared samples were heat-treated in the muffle furnace at 400 °C for 1 h after the coating deposition. The cooling of the samples to room temperature was proceeded in the air. For as-deposited and heat-treated samples, it was determined that with the increasing P content, the microhardness was decreasing. This may be caused by the changes in the structure of the Ni–P coating. The X-ray diffraction patterns of the as-deposited Ni–P coatings showed that the microstructure changed their nature from crystalline to amorphous with the increasing P content. The heat treatment of prepared samples led to the significant increase of microhardness of Ni–P coatings. All the heat-treated samples showed the crystalline character, regardless of the P content and the presence of hard Ni3P phase, which can have a positive effect on the increase of microhardness. The metallographic analysis showed changes of substrate microstructure after the heat treatment. The prepared coatings were uniform and with no visible defects. Full article
(This article belongs to the Special Issue Surface Engineering of Light Alloys)
Figures

Figure 1

Open AccessReview
Porosity and Its Significance in Plasma-Sprayed Coatings
Coatings 2019, 9(7), 460; https://doi.org/10.3390/coatings9070460
Received: 11 June 2019 / Revised: 12 July 2019 / Accepted: 16 July 2019 / Published: 23 July 2019
Viewed by 525 | PDF Full-text (4654 KB) | HTML Full-text | XML Full-text
Abstract
Porosity in plasma-sprayed coatings is vital for most engineering applications. Porosity has its merits and demerits depending on the functionality of the coating and the immediate working environment. Consequently, the formation mechanisms and development of porosity have been extensively explored to find out [...] Read more.
Porosity in plasma-sprayed coatings is vital for most engineering applications. Porosity has its merits and demerits depending on the functionality of the coating and the immediate working environment. Consequently, the formation mechanisms and development of porosity have been extensively explored to find out modes of controlling porosity in plasma-sprayed coatings. In this work, a comprehensive review of porosity on plasma-sprayed coatings is established. The formation and development of porosity on plasma-sprayed coatings are governed by set spraying parameters. Optimized set spraying parameters have been used to achieve the most favorable coatings with minimum defects. Even with the optimized set spraying parameters, defects like porosity still occur. Here, we discuss other ways that can be used to control porosity in plasma-sprayed coating with emphasis to atmospheric plasma-sprayed chromium oxide coatings. Techniques like multilayer coatings, nanostructured coatings, doping with rare earth elements, laser surface re-melting and a combination of the above methods have been suggested in adjusting porosity. The influences of porosity on microstructure, properties of plasma-sprayed coatings and the measurement methods of porosity have also been reviewed. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Surface Activation and Characterization of Aluminum Alloys for Brazing Optimization
Coatings 2019, 9(7), 459; https://doi.org/10.3390/coatings9070459
Received: 17 June 2019 / Revised: 4 July 2019 / Accepted: 19 July 2019 / Published: 23 July 2019
Viewed by 903 | PDF Full-text (5643 KB) | HTML Full-text | XML Full-text
Abstract
Brazing of Al-alloys is of interest in many application fields (e.g., mechanical and automotive). The surface preparation of substrates and the in depth investigation of the interface reaction between aluminum substrates and brazing materials is fundamental for a proper understanding of the process [...] Read more.
Brazing of Al-alloys is of interest in many application fields (e.g., mechanical and automotive). The surface preparation of substrates and the in depth investigation of the interface reaction between aluminum substrates and brazing materials is fundamental for a proper understanding of the process and for its optimization. The interaction between two aluminum based substrates (Al5182 and Al6016) and two studied brazing materials (pure Zn and for the first time ZAMA alloy) has been studied in simulated brazing condition in order to define the best surface preparation conditions and combination substrate-brazing material to be used in real joining experiments. Three different surface preparations were considered: polishing and cleaning, application of flux and vacuum plasma etching (Ar) followed by sputtering coating with Zn. Macroscopic observation of the samples surface after “brazing”, optical microscopy, and microhardness measurements on the cross-section and XRD measurements on the top surface gave a comprehensive description of the phenomena occurring at the interface between the substrate and the brazing alloy which are of interest to understand the brazing process and for the detection of the best conditions to be used in brazing. Plasma etching (Ar) followed by sputtering coating with Zn resulted a promising solution in case of Al5182 brazed with Zn, while the addition of flux was more effective in case of Al6016 substrate. ZAMA alloy demonstrated good interface reactivity with both Al6016 and Al5182 alloys, particularly on only cleaned surfaces. Full article
(This article belongs to the Special Issue Surface Engineering of Light Alloys)
Figures

Figure 1

Open AccessArticle
Mathematical Analysis of the Coating Process over a Porous Web Lubricated with Upper-Convected Maxwell Fluid
Coatings 2019, 9(7), 458; https://doi.org/10.3390/coatings9070458
Received: 12 May 2019 / Revised: 10 July 2019 / Accepted: 12 July 2019 / Published: 22 July 2019
Viewed by 588 | PDF Full-text (8169 KB) | HTML Full-text | XML Full-text
Abstract
The present study offers mathematical calculations of the roll-coating procedure lubricated with an upper-convected Maxwell fluid. An incompressible isothermal viscoelastic fluid was considered, with both the roll and the porous web having uniform velocities. By using the lubrication approximation theory, the desired equations [...] Read more.
The present study offers mathematical calculations of the roll-coating procedure lubricated with an upper-convected Maxwell fluid. An incompressible isothermal viscoelastic fluid was considered, with both the roll and the porous web having uniform velocities. By using the lubrication approximation theory, the desired equations of motion for the fluid applied to the porous web were modelled and analyzed. The suction rate on the web and the injection rate at the roll surface were proportionately anticipated. Results for the velocity profile and pressure gradient were received analytically. Fluid parameters of industrial significance (i.e., detachment point, pressure, sheet/roll separating force, power contribution, and coating thickness) were also calculated numerically. A substantial and monotonic increase was witnessed in these quantities with the increase of flow parameters. Full article
Figures

Figure 1

Open AccessArticle
Extrusion Coating of Paper with Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)—Packaging Related Functional Properties
Coatings 2019, 9(7), 457; https://doi.org/10.3390/coatings9070457
Received: 6 June 2019 / Revised: 9 July 2019 / Accepted: 17 July 2019 / Published: 22 July 2019
Viewed by 585 | PDF Full-text (82381 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Taking into account the current trend for environmentally friendly solutions, paper coated with a biopolymer presents an interesting field for future packaging applications. This study covers the application of the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) on a paper substrate via extrusion coating. The intention of [...] Read more.
Taking into account the current trend for environmentally friendly solutions, paper coated with a biopolymer presents an interesting field for future packaging applications. This study covers the application of the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) on a paper substrate via extrusion coating. The intention of this study is to analyse the effect of a plasticiser on the processability (melting point, film thickness) and the final properties (crystallinity, elongation at break) of PHBV. Up to 15 wt.% of the plasticisers triethyl citrate (TEC) and polyethylene glycol (PEG) were used as additive. The processing (including melt flow rate) as well as the structural properties (melting and crystallisation temperature, surface structure by atomic force microscopy (AFM), polarisation microscopy, scanning electron microscopy (SEM)), mechanical properties (elongation at break, tensile strength, elastic modulus, adhesion), and barrier properties (grease) of these blends and their coating behaviour (thickness on paper), were tested at different extrusion temperatures. The melting temperature (Tm) of PHBV was reduced by the plasticisers (from 172 °C to 164 resp. 169 °C with 15 wt.% TEC resp. PEG). The minimal achieved PHBV film thickness on paper was 30 µm owing to its low melt strength. The elastic modulus decreased with both plasticisers (from 3000 N/mm2 to 1200 resp. 1600 N/mm2 with 15 wt.% TEC resp. PEG). At 15 wt.% TEC, the elongation at break increased to 2.4 length-% (pure PHBV films had 0.9 length-%). The grease barrier (staining) was low owing to cracks in the PHBV layers. The extrusion temperature correlated with the grease barrier, mechanical properties, and bond strength. The bond strength was higher for films extruded with a temperature profile for constant melt flow rate at different plasticiser concentrations. The bond strength was max. 1.2 N/15 mm. Grease staining occurs because of cracks induced by the low elongation at break and high brittleness. Extrusion coating of the used specific PHBV on paper is possible. In further studies, the minimum possible PHBV film thickness needs to be reduced to be cost-effective. The flexibility needs to be increased to avoid cracks, which cause migration and staining. Full article
Figures

Graphical abstract

Open AccessArticle
Predictability of Microbial Adhesion to Dental Materials by Roughness Parameters
Coatings 2019, 9(7), 456; https://doi.org/10.3390/coatings9070456
Received: 7 June 2019 / Revised: 10 July 2019 / Accepted: 17 July 2019 / Published: 22 July 2019
Viewed by 546 | PDF Full-text (4383 KB) | HTML Full-text | XML Full-text
Abstract
Microbial adhesion to intraoral biomaterials is associated with surface roughness. For the prevention of oral pathologies, smooth surfaces with little biofilm formation are required. Ideally, appropriate roughness parameters make microbial adhesion predictable. Although a multitude of parameters are available, surface roughness is commonly [...] Read more.
Microbial adhesion to intraoral biomaterials is associated with surface roughness. For the prevention of oral pathologies, smooth surfaces with little biofilm formation are required. Ideally, appropriate roughness parameters make microbial adhesion predictable. Although a multitude of parameters are available, surface roughness is commonly described by the arithmetical mean roughness value (Ra). The present study investigates whether Ra is the most appropriate roughness parameter in terms of prediction for microbial adhesion to dental biomaterials. After four surface roughness modifications using standardized polishing protocols, zirconia, polymethylmethacrylate, polyetheretherketone, and titanium alloy specimens were characterized by Ra as well as 17 other parameters using confocal microscopy. Specimens of the tested materials were colonized by C. albicans or S. sanguinis for 2 h; the adhesion was measured via luminescence assays and correlated with the roughness parameters. The adhesion of C. albicans showed a tendency to increase with increasing the surface roughness—the adhesion of S. sanguinis showed no such tendency. Although Sa, that is, the arithmetical mean deviation of surface roughness, and Rdc, that is, the profile section height between two material ratios, showed higher correlations with the microbial adhesion than Ra, these differences were not significant. Within the limitations of this in-vitro study, we conclude that Ra is a sufficient roughness parameter in terms of prediction for initial microbial adhesion to dental biomaterials with polished surfaces. Full article
Figures

Figure 1

Open AccessArticle
In Situ Preparation and Corrosion Resistance of a ZrO2 Film on a ZrB2 Ceramic
Coatings 2019, 9(7), 455; https://doi.org/10.3390/coatings9070455
Received: 15 June 2019 / Revised: 12 July 2019 / Accepted: 18 July 2019 / Published: 21 July 2019
Viewed by 569 | PDF Full-text (24752 KB) | HTML Full-text | XML Full-text
Abstract
ZrO2 films were in situ prepared using the anodic passivation of a ZrB2 ceramic in alkaline solutions. The composition and structure of the films were characterized using field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The corrosion [...] Read more.
ZrO2 films were in situ prepared using the anodic passivation of a ZrB2 ceramic in alkaline solutions. The composition and structure of the films were characterized using field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The corrosion resistances were evaluated in 0.1 M oxalate solution using the potentiodynamic polarization method (PDP) and the electrochemical impedance spectroscopy (EIS) technique. The results show that ZrO2 films can be prepared using anodization from −0.8 to 0.8 V standard hydrogen electrode (SHE) in 2–16 M NaOH solutions. During the anodization, the dehydration reaction of Zr(OH)4 to ZrO2 caused the volume shrinkage and tensile stress of the films. When the thickness of the films exceeded a critical value, the mud-cracking morphology occurred. The films without cracks exhibited the inhibition effect and provided effective corrosion protection in a 0.1 M H2C2O4 solution, which had a positive correlation with the film thickness. The film obtained when put in an 8 M NaOH solution (near the critical thickness) was found to significantly improve its corrosion resistance when put in a 0.1 M H2C2O4 solution by almost one order of magnitude compared with the bare ceramic. Full article
Figures

Figure 1

Open AccessArticle
Surface Modification of Hemoglobin-Based Oxygen Carriers Reduces Recognition by Haptoglobin, Immunoglobulin, and Hemoglobin Antibodies
Coatings 2019, 9(7), 454; https://doi.org/10.3390/coatings9070454
Received: 3 July 2019 / Revised: 12 July 2019 / Accepted: 17 July 2019 / Published: 21 July 2019
Viewed by 613 | PDF Full-text (2549 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hemoglobin-based oxygen carriers (HBOCs) represent a propitious type of blood substitute to transport oxygen throughout the body while acting as a carrier in biomedical applications. However, HBOCs in blood are recognized and rapidly scavenged by the body’s innate immune systems. To overcome this [...] Read more.
Hemoglobin-based oxygen carriers (HBOCs) represent a propitious type of blood substitute to transport oxygen throughout the body while acting as a carrier in biomedical applications. However, HBOCs in blood are recognized and rapidly scavenged by the body’s innate immune systems. To overcome this problem, HBOCs require a surface modification that provides protection against detection and elimination in order to prolong their circulation time after administration. In this study, we investigated different surface modifications of hemoglobin submicron particles (HbMPs) by double/triple precipitation, as well as by adsorption of human serum albumin (HSA), hyaluronic acid (HA), and pluronic (Plu) to discover how diverse surface modifications influence the oxygen binding capacity and the binding of anti-hemoglobin (Hb) antibodies, immunoglobulin G (IgG), and haptoglobin (HP) to HbMPs. The particle size and zeta potential of the six types of HbMP modifications were analyzed by zeta sizer, confocal laser scanning microscopy, and transmission electron microscopy (TEM), and were compared to the unmodified HbMPs. The results revealed that all surface-modified HbMPs had a submicron size with a negative charge. A slight decrease in the oxygen binding capacity was noticed. The specific binding of anti-Hb antibodies, IgG, and HP to all surface-modified HbMPs was reduced. This indicates a coating design able to protect the particles from detection and elimination processes by the immune system, and should lead to a delayed clearance and the required and essential increase in half-life in circulation of these particles in order to fulfill their purpose. Our surface modification method reflects a promising strategy for submicron particle design, and can lead the way toward novel biomedical applications. Full article
Figures

Graphical abstract

Open AccessArticle
Hybrid Nanostructured Antireflection Coating by Self-Assembled Nanosphere Lithography
Coatings 2019, 9(7), 453; https://doi.org/10.3390/coatings9070453
Received: 14 June 2019 / Revised: 15 July 2019 / Accepted: 18 July 2019 / Published: 18 July 2019
Viewed by 624 | PDF Full-text (8548 KB) | HTML Full-text | XML Full-text
Abstract
Broadband antireflection (AR) coatings are essential elements for improving the photocurrent generation of photovoltaic modules or the enhancement of visibility in optical devices. In this paper, we report a hybrid nanostructured antireflection coating combination that is a clean and efficient method for fabricating [...] Read more.
Broadband antireflection (AR) coatings are essential elements for improving the photocurrent generation of photovoltaic modules or the enhancement of visibility in optical devices. In this paper, we report a hybrid nanostructured antireflection coating combination that is a clean and efficient method for fabricating a nanostructured antireflection coating (ARC). A multilayer thin-film was introduced between the ARC and substrate to solve the significant problem of preparing nanostructured ARCs on different substrates. In this way, we rebuilt a gradient refractive index structure and optimize the antireflective property by simply adjusting the moth-eye structure and multilayers. Subwavelength-structured cone arrays were directly patterned using a self-assembled single-layer polystyrene (PS) nanosphere array as an etching mask. Nanostructure coatings exhibited excellent broadband and wide-angle antireflective properties. The bottom-up preparation process and hybrid structural combination have the potential to significantly enhance the broadband and wide-angle antireflective properties for a number of optical systems that require high transparency, which is promising for reducing the manufacturing cost of nanostructured AR coatings. Full article
Figures

Figure 1

Open AccessReview
Robust Super-Hydrophobic Coating Prepared by Electrochemical Surface Engineering for Corrosion Protection
Coatings 2019, 9(7), 452; https://doi.org/10.3390/coatings9070452
Received: 22 May 2019 / Revised: 12 July 2019 / Accepted: 16 July 2019 / Published: 18 July 2019
Viewed by 594 | PDF Full-text (8631 KB) | HTML Full-text | XML Full-text
Abstract
Corrosion—reactions occuring between engineering materials and their environment—can cause material failure and catastrophic accidents, which have a serious impact on economic development and social stability. Recently, super-hydrophobic coatings have received much attention due to their effectiveness in preventing engineering materials from further corrosion. [...] Read more.
Corrosion—reactions occuring between engineering materials and their environment—can cause material failure and catastrophic accidents, which have a serious impact on economic development and social stability. Recently, super-hydrophobic coatings have received much attention due to their effectiveness in preventing engineering materials from further corrosion. In this paper, basic principles of wetting properties and corrosion protection mechanism of super-hydrophobic coatings are introduced firstly. Secondly, the fabrication methods by electrochemical surface engineering—including electrochemical anodization, micro-arc oxidation, electrochemical etching, and deposition—are presented. Finally, the stabilities and future directions of super-hydrophobic coatings are discussed in order to promote the movement of such coatings into real-world applications. The objective of this review is to bring a brief overview of the recent progress in the fabrication of super-hydrophobic coatings by electrochemical surface methods for corrosion protection of engineering materials. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings for Corrosion and Tribology)
Figures

Figure 1

Open AccessFeature PaperArticle
The Influence of Polymer Blends on Regulating Chondrogenesis
Coatings 2019, 9(7), 451; https://doi.org/10.3390/coatings9070451
Received: 29 May 2019 / Revised: 9 July 2019 / Accepted: 15 July 2019 / Published: 18 July 2019
Viewed by 644 | PDF Full-text (2443 KB) | HTML Full-text | XML Full-text
Abstract
The influence of polymer blend coatings on the differentiation of mouse mesenchymal stem cells was investigated. Polymer blending is a common means of producing new coating materials with variable properties. Stem cell differentiation is known to be influenced by both chemical and mechanical [...] Read more.
The influence of polymer blend coatings on the differentiation of mouse mesenchymal stem cells was investigated. Polymer blending is a common means of producing new coating materials with variable properties. Stem cell differentiation is known to be influenced by both chemical and mechanical properties of the underlying scaffold. We therefore selected to probe the response of stem cells cultured separately on two very different polymers, and then cultured on a 1:1 blend. The response to mechanical properties was probed by culturing the cells on polybutadiene (PB) films, where the film moduli was varied by adjusting film thickness. Cells adjusted their internal structure such that their moduli scaled with the PB films. These cells expressed chondrocyte markers (osterix (OSX), alkaline phosphatase (ALP), collagen X (COL-X), and aggrecan (ACAN)) without mineralizing. In contrast, cells on partially sulfonated polystyrene (PSS28) deposited large amounts of hydroxyapatite and expressed differentiation markers consistent with chondrocyte hypertrophy (OSX, ALP, COL-X, but not ACAN). Cells on phase-segregated PB and PSS28 films differentiated identically to those on PSS28, underscoring the challenges of using polymer templates for cell patterning in tissue engineering. Full article
Figures

Figure 1

Open AccessArticle
High Temperature Anti-Friction Behaviors of a-Si:H Films and Counterface Material Selection
Coatings 2019, 9(7), 450; https://doi.org/10.3390/coatings9070450
Received: 21 June 2019 / Revised: 12 July 2019 / Accepted: 13 July 2019 / Published: 18 July 2019
Viewed by 542 | PDF Full-text (9930 KB) | HTML Full-text | XML Full-text
Abstract
In the present paper, the influence of self-mated friction materials on the tribological properties of hydrogenated amorphous silicon films (a-Si:H films) is studied systemically at high temperature. The results are obtained by comparing the tribological properties of a-Si:H films under different friction pair [...] Read more.
In the present paper, the influence of self-mated friction materials on the tribological properties of hydrogenated amorphous silicon films (a-Si:H films) is studied systemically at high temperature. The results are obtained by comparing the tribological properties of a-Si:H films under different friction pair materials and temperatures. The a-Si:H films exhibit super-low friction of 0.07 at a temperature of 600 °C, and ceramic materials are appropriate for anti-friction behaviors of a-Si:H films at high temperature. The results of tribotests and observations of the fundamental friction mechanism show that super-low friction of a-Si:H films and ceramic materials of the friction system are involved in high temperature oxidation; this also applies to the tribochemical reactions of a-Si:H films, steel and iron silicate in open air at elevated temperature in the friction process. Full article
(This article belongs to the Special Issue Science and Technology of Thermal Barrier Coatings)
Figures

Figure 1

Open AccessArticle
The Implication of Benzene–Ethanol Extractive on Mechanical Properties of Waterborne Coating and Wood Cell Wall by Nanoindentation
Coatings 2019, 9(7), 449; https://doi.org/10.3390/coatings9070449
Received: 24 June 2019 / Revised: 13 July 2019 / Accepted: 15 July 2019 / Published: 18 July 2019
Viewed by 571 | PDF Full-text (5059 KB) | HTML Full-text | XML Full-text
Abstract
The waterborne coating uses water as its solvent, which will partially dissolve wood extractives when it is applied to wood surfaces. This influences both the coating curing process and the mechanical properties of the cured coating. To investigate these influences, the mechanical properties [...] Read more.
The waterborne coating uses water as its solvent, which will partially dissolve wood extractives when it is applied to wood surfaces. This influences both the coating curing process and the mechanical properties of the cured coating. To investigate these influences, the mechanical properties of waterborne polyacrylic coating on control and extractive-free wood surfaces were investigated by nanoindentation. Reductions to elastic modulus (Er) and hardness (H) of the coating layer was observed in the wood cell walls adjacent to or away from coating layers. Extraction treatment resulted in significant decrease of the Er and H of the coating layer on extractive-free wood surface comparing with control wood, but the values slightly increased for extractive-free wood cell walls compared to a control. Er and H of coating in wood cell lumen were higher than the average value of coating layer on wood surface in both the control and extractive-free wood. The Er of wood cell wall without coating filled in lumen was significantly higher than those of filling with coating. However, there was no distinct difference of H. The Er and H of CCML in extractive-free wood were 15% and 6% lower than those in control ones, respectively. Full article
(This article belongs to the Special Issue Coatings and Interfaces)
Figures

Figure 1

Open AccessArticle
Phase Selectivity in Cr and N Co-Doped TiO2 Films by Modulated Sputter Growth and Post-Deposition Flash-Lamp-Annealing
Coatings 2019, 9(7), 448; https://doi.org/10.3390/coatings9070448
Received: 11 June 2019 / Revised: 9 July 2019 / Accepted: 14 July 2019 / Published: 17 July 2019
Viewed by 535 | PDF Full-text (4394 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, we report on the phase selectivity in Cr and N co-doped TiO2 (TiO2:Cr,N) sputtered films by means of interface engineering. In particular, monolithic TiO2:Cr,N films produced by continuous growth conditions result in the formation of [...] Read more.
In this paper, we report on the phase selectivity in Cr and N co-doped TiO2 (TiO2:Cr,N) sputtered films by means of interface engineering. In particular, monolithic TiO2:Cr,N films produced by continuous growth conditions result in the formation of a mixed-phase oxide with dominant rutile character. On the contrary, modulated growth by starting with a single-phase anatase TiO2:N buffer layer, can be used to imprint the anatase structure to a subsequent TiO2:Cr,N layer. The robustness of the process with respect to the growth conditions has also been investigated, especially regarding the maximum Cr content (<5 at.%) for single-phase anatase formation. Furthermore, post-deposition flash-lamp-annealing (FLA) in modulated coatings was used to improve the as-grown anatase TiO2:Cr,N phase, as well as to induce dopant activation (N substitutional sites) and diffusion. In this way, Cr can be distributed through the whole film thickness from an initial modulated architecture while preserving the structural phase. Hence, the combination of interface engineering and millisecond-range-FLA opens new opportunities for tailoring the structure of TiO2-based functional materials. Full article
(This article belongs to the Special Issue Advanced Strategies in Thin Film Engineering by Magnetron Sputtering)
Figures

Figure 1

Open AccessArticle
Bio-Based Composites with Enhanced Matrix-Reinforcement Interactions from the Polymerization of α-Eleostearic Acid
Coatings 2019, 9(7), 447; https://doi.org/10.3390/coatings9070447
Received: 25 June 2019 / Revised: 9 July 2019 / Accepted: 9 July 2019 / Published: 17 July 2019
Viewed by 544 | PDF Full-text (3811 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Vegetable oil-based composites have been proposed as interesting bio-based materials in the recent past. The carbon–carbon double bonds in unsaturated vegetable oils are ideal reactive sites for free radical polymerization. Without the presence of a reinforcement, typical vegetable oil-based polymers cannot achieve competitive [...] Read more.
Vegetable oil-based composites have been proposed as interesting bio-based materials in the recent past. The carbon–carbon double bonds in unsaturated vegetable oils are ideal reactive sites for free radical polymerization. Without the presence of a reinforcement, typical vegetable oil-based polymers cannot achieve competitive thermo-mechanical properties. Compatibilizers have been utilized to enhance the adhesion between resin and reinforcement. This work discusses the antagonist implications of polarity and crosslink density of an unprecedented polar α-eleostearic acid-based resin reinforced with α-cellulose, eliminating the need of a compatibilizer. It is shown that the polar regions of α-eleostearic acid can interact directly with the polar reinforcement. The successful isolation of α-eleostearic acid from tung oil was verified via GC-MS, 1H NMR, Raman, and FT-IR spectroscopies. The optimal cure schedule for the resin was determined by DSC and DEA. The composites’ thermo-mechanical properties were assessed by TGA, DSC, and DMA. Full article
Figures

Figure 1

Open AccessArticle
Influence of MHD on Thermal Behavior of Darcy-Forchheimer Nanofluid Thin Film Flow over a Nonlinear Stretching Disc
Coatings 2019, 9(7), 446; https://doi.org/10.3390/coatings9070446
Received: 5 June 2019 / Revised: 6 July 2019 / Accepted: 9 July 2019 / Published: 17 July 2019
Viewed by 619 | PDF Full-text (2112 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this research work is to increase our understanding of the exhaustion of energy in engineering and industrial fields. The study of nanofluids provides extraordinary thermal conductivity and an increased heat transmission coefficient compared to conventional fluids. These specific sorts of [...] Read more.
The aim of this research work is to increase our understanding of the exhaustion of energy in engineering and industrial fields. The study of nanofluids provides extraordinary thermal conductivity and an increased heat transmission coefficient compared to conventional fluids. These specific sorts of nanofluids are important for the succeeding generation of flow and heat transfer fluids. Therefore, the investigation of revolutionary new nanofluids has been taken up by researchers and engineers all over the world. In this article, the study of the thin layer flow of Darcy-Forchheimer nanofluid over a nonlinear radially extending disc is presented. The disc is considered as porous. The impacts of thermal radiation, magnetic field, and heat source/sink are especially focused on. The magnetic field, positive integer, porosity parameter, coefficient of inertia, and fluid layer thickness reduce the velocity profile. The Prandtl number and fluid layer thickness reduce the temperature profile. The heat source/sink, Eckert number, and thermal radiation increase the temperature profile. The suggested model is solved analytically by the homotopy analysis method (HAM). The analytical and numerical techniques are compared through graphs and tables, and have shown good agreement. The influences of embedded parameters on the flow problem are revealed through graphs and tables. Full article
(This article belongs to the Special Issue Recent Trends in Coatings and Thin Film–Modeling and Application)
Figures

Figure 1

Open AccessArticle
Stress Corrosion Cracking Resistance of Cold-Sprayed Al 6061 Deposits Using a Newly Developed Test Fixture
Coatings 2019, 9(7), 445; https://doi.org/10.3390/coatings9070445
Received: 10 June 2019 / Revised: 9 July 2019 / Accepted: 11 July 2019 / Published: 17 July 2019
Viewed by 585 | PDF Full-text (14067 KB) | HTML Full-text | XML Full-text
Abstract
The stress corrosion cracking (SCC) response of Al 6061 bulk deposits produced by high-pressure cold spray (HPCS) was investigated and compared to commercial wrought Al 6061-T6 material. Representative tensile coupons were stressed to 25%, 65% and 85% of their respective yield strength and [...] Read more.
The stress corrosion cracking (SCC) response of Al 6061 bulk deposits produced by high-pressure cold spray (HPCS) was investigated and compared to commercial wrought Al 6061-T6 material. Representative tensile coupons were stressed to 25%, 65% and 85% of their respective yield strength and exposed to ASTM B117 salt fog for 90 days. After exposure, the samples were mechanically tested to failure, and subsequently investigated for stress corrosion cracking via optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy (EDS). The results were compared to the wrought Al 6061-T6 properties and correlated with the observed microstructures. Wrought samples showed the initiation of stress corrosion cracking, while the cold-sprayed deposits appeared to be unaffected or affected by general corrosion only. Optical microscopy revealed evidence of stress corrosion cracking in the form of intergranular corrosion in the wrought samples, while no significant corrosion was observed in the cold-sprayed deposits. Fractography revealed wrought samples failed due to multiple mechanisms, with predominant cleavage and intergranular failure, but cold-sprayed samples only failed by ductile dimple rupture. The difference in SCC response between the differently processed materials is attributed to the documented benefits of the cold spray process, which includes maintaining fine grain structure of the feedstock powder and high density after consolidation, low oxidation, and work hardening effect. Full article
(This article belongs to the Special Issue Cold Spraying: Recent Trends and Future Views)
Figures

Figure 1

Open AccessArticle
Effect of High-Temperature Calcined Wheat Straw Powder after Lignin Removal on Properties of Waterborne Wood Coatings
Coatings 2019, 9(7), 444; https://doi.org/10.3390/coatings9070444
Received: 7 June 2019 / Revised: 12 July 2019 / Accepted: 14 July 2019 / Published: 16 July 2019
Viewed by 548 | PDF Full-text (4673 KB) | HTML Full-text | XML Full-text
Abstract
The effect of adding wheat straw powder after lignin removal (WSPALR) and high-temperature calcined WSPALR on the hardness, adhesion, and resistance to impact, color difference, and mold resistance of waterborne coatings was studied. The results showed that the hardness was the highest of [...] Read more.
The effect of adding wheat straw powder after lignin removal (WSPALR) and high-temperature calcined WSPALR on the hardness, adhesion, and resistance to impact, color difference, and mold resistance of waterborne coatings was studied. The results showed that the hardness was the highest of 6H when the concentration of WSPALR was 1.0%–2.0%. WSPALR and high-temperature calcined WSPALR had little effect on the adhesion and impact resistance of waterborne coatings, and the resistance to impact was about 10.0 kg cm. When both the concentration of WSPALR and high-temperature calcined WSPALR were 0.5%, the waterborne coating had the best adhesion of Level 1. The addition of high-temperature calcined WSPALR maintained the color difference of the original coatings. A high WSPALR concentration showed better mold resistance than a low concentration WSPALR, and the inhibition effect of high-temperature calcined WSPALR on Trichoderma was better than that of WSPALR. When the concentration of WSPALR calcined at a high temperature was 0.5%, it showed a better hardness of 4H, Level 1 adhesion, 10.0 kg cm resistance to impact, and 1.1 color difference of the waterborne coating. This work has important application value for mold resistance of wood coatings. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Manufacturing and Assessment of Electrospun PVP/TEOS Microfibres for Adsorptive Heat Transformers
Coatings 2019, 9(7), 443; https://doi.org/10.3390/coatings9070443
Received: 7 June 2019 / Revised: 29 June 2019 / Accepted: 11 July 2019 / Published: 16 July 2019
Viewed by 573 | PDF Full-text (5849 KB) | HTML Full-text | XML Full-text
Abstract
A new adsorbent coating for the adsorber unit of an adsorption heat pump made of hybrid, organic–inorganic microfibres was prepared and characterized. Different coatings were obtained by the electrospinning of polyvinylpyrrolidone (PVP) solutions added with different quantities of tetraethyl orthosilicate (TEOS). PVP is [...] Read more.
A new adsorbent coating for the adsorber unit of an adsorption heat pump made of hybrid, organic–inorganic microfibres was prepared and characterized. Different coatings were obtained by the electrospinning of polyvinylpyrrolidone (PVP) solutions added with different quantities of tetraethyl orthosilicate (TEOS). PVP is a polymer with water adsorption capability and the TEOS addition allowed to increase the thermal stability of microfibres. The aim, indeed, was to preserve the polymeric structure of microfibres in order to obtain coatings with high flexibility and mechanical strength. The results demonstrated that TEOS concentrations in the range of 5–13 wt.% produced microfibre coatings of non-woven textile structure with both good water affinity and good thermal stability. SEM images of coatings showed that the deposited microfibre layers have both a high surface area and a high permeability representing a significant advantage in adsorption systems. Full article
Figures

Figure 1

Open AccessArticle
RF Magnetron Sputtering Deposition of TiO2 Thin Films in a Small Continuous Oxygen Flow Rate
Coatings 2019, 9(7), 442; https://doi.org/10.3390/coatings9070442
Received: 21 May 2019 / Revised: 13 June 2019 / Accepted: 12 July 2019 / Published: 16 July 2019
Viewed by 595 | PDF Full-text (5809 KB) | HTML Full-text | XML Full-text
Abstract
Rutile titanium oxide (TiO2) thin films require more energy to crystallize than the anatase phase of TiO2. It is a prime candidate for micro-optoelectronics and is usually obtained either by high substrate temperature, applying a substrate bias, pulsed gas [...] Read more.
Rutile titanium oxide (TiO2) thin films require more energy to crystallize than the anatase phase of TiO2. It is a prime candidate for micro-optoelectronics and is usually obtained either by high substrate temperature, applying a substrate bias, pulsed gas flow to modify the pressure, or ex situ annealing. In the present work, we managed to obtain high enough energy at the substrate in order for the particles to form rutile TiO2 at room temperature without any intentional substrate bias in a continuous gas flow. The rutile TiO2 thin films were deposited by a reactive radiofrequency magnetron sputtering system from a titanium target, in an argon/oxygen gas mixture. Investigations regarding the film’s structure and morphology were performed by X-ray diffraction (XRD), X-ray reflectivity (XRR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDAX), while the optical properties were investigated by means of ellipsometry. Full article
Figures

Figure 1

Open AccessArticle
Deposition of TiO2 Thin Films on Wood Substrate by an Air Atmospheric Pressure Plasma Jet
Coatings 2019, 9(7), 441; https://doi.org/10.3390/coatings9070441
Received: 13 June 2019 / Revised: 10 July 2019 / Accepted: 11 July 2019 / Published: 15 July 2019
Viewed by 714 | PDF Full-text (11965 KB) | HTML Full-text | XML Full-text
Abstract
In the present work, titanium dioxide (TiO2) coatings were deposited on wood surfaces by an atmospheric pressure plasma jet using titanium tetraisopropoxide (TTIP) as a precursor to improve the wood’s stability against ultraviolet (UV) light and its moisture resistance capability. The [...] Read more.
In the present work, titanium dioxide (TiO2) coatings were deposited on wood surfaces by an atmospheric pressure plasma jet using titanium tetraisopropoxide (TTIP) as a precursor to improve the wood’s stability against ultraviolet (UV) light and its moisture resistance capability. The surface topology and morphology of the wood specimens were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface chemical compositions of the specimens were characterized by X-ray photoelectron spectroscopy (XPS) and by Fourier transform infrared (FTIR) spectroscopy. The wettability of the coated wood was investigated by measuring the sessile contact angle. SEM and AFM showed the presence of small globules of TiO2 with some areas agglomerated on the coated wood surface. The coated surface roughness increased with increasing deposition time. FTIR analysis showed the existence of a Ti–O–Ti band at 800–400 cm−1 on the coated wood surfaces. The results obtained from FTIR were confirmed by XPS measurements. The hydrophilic wood surfaces were transformed to become hydrophobic or superhydrophobic after coating with TiO2, depending on the deposition parameters. The changes of colour during UV-exposure for both uncoated and coated wood specimens were measured using the CIELab colour system. The TiO2 coated wood became more resistant to colour change after UV radiation exposure than did untreated wood. Full article
Figures

Graphical abstract

Open AccessArticle
Characterisation of NiTi Orthodontic Archwires Surface after the Simulation of Mechanical Loading in CACO2-2 Cell Culture
Coatings 2019, 9(7), 440; https://doi.org/10.3390/coatings9070440
Received: 17 June 2019 / Revised: 9 July 2019 / Accepted: 10 July 2019 / Published: 15 July 2019
Viewed by 576 | PDF Full-text (2194 KB) | HTML Full-text | XML Full-text
Abstract
Nickel-titanium (NiTi) orthodontic archwires are crucial in the initial stages of orthodontic therapy when the movement of teeth and deflection of the archwire are the largest. Their great mechanical properties come with their main disadvantage—the leakage of nickel. Various in vitro studies measured [...] Read more.
Nickel-titanium (NiTi) orthodontic archwires are crucial in the initial stages of orthodontic therapy when the movement of teeth and deflection of the archwire are the largest. Their great mechanical properties come with their main disadvantage—the leakage of nickel. Various in vitro studies measured nickel leakage from archwires that were only immersed in the medium with little or minimal simulation of all stress and deflection forces that affect them. This study aims to overcome that by simulating deflection forces that those archwires are exposed to inside the mouth of a patient. NiTi orthodontic archwires were immersed in CACO2-2 cell culture medium and then immediately loaded while using a simulator of multiaxial stress for 24 h. After the experiment, the surface of the NiTi orthodontic archwires were analysed while using scanning electron microscopy (SEM) and auger electron spectroscopy (AES). The observations showed significant microstructural and compositional changes within the first 51 nm thickness of the archwire surface. Furthermore, the released nickel and titanium concentrations in the CACO2-2 cell culture medium were measured while using Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). It was found out that the level of released nickel ions was 1.310 µg/L, which can be assigned as statistically significant results. These data represent the first mention of the already detectable release of Ni ions after 24 h during the simulation of mechanical loading in the CACO2-2 cell culture medium, which is important for clinical orthodontic praxis. Full article
(This article belongs to the Special Issue Anticorrosion Protection of Nonmetallic and Metallic Coatings)
Figures

Graphical abstract

Open AccessArticle
The Influence of Surface Treatment of PVD Coating on Its Quality and Wear Resistant
Coatings 2019, 9(7), 439; https://doi.org/10.3390/coatings9070439
Received: 20 May 2019 / Revised: 2 July 2019 / Accepted: 11 July 2019 / Published: 13 July 2019
Viewed by 613 | PDF Full-text (13630 KB) | HTML Full-text | XML Full-text
Abstract
The article deals with a determination of the influence of a cutting edge preparation on the quality and wear resistance of coated cutting tools. Cutting inserts made from a sintered carbide with a deposited layer of PVD coating were selected for measurement. Non-homogeneity [...] Read more.
The article deals with a determination of the influence of a cutting edge preparation on the quality and wear resistance of coated cutting tools. Cutting inserts made from a sintered carbide with a deposited layer of PVD coating were selected for measurement. Non-homogeneity caused by the creation of droplets arises in the application layer during the process of applying the coating by the PVD method. These droplets make the surface roughness of the PVD coating worse, increase the friction and thereby the thermal load of the cutting tool as well. Also, the droplets could be the cause of the creation and propagation of droplets in the coating and they can cause quick cutting tool wear during machining. Cutting edge preparations were suggested for the improvement of the surface integrity of deposited layers of PVD coating, namely the technology of drag finishing and abrasive jet machining. After their application, the areal surface roughness was measured on the surface of coated cutting inserts, the occurrence of droplets was tracked and the surface structure was explored. A tool-life test of cutting inserts was carried out for verification of the influence of surface treatment on the wear resistance of cutting inserts during the milling process. The cutting inserts with a layer of PVD coatings termed as samples A, B, and C were used for the tool-life test. The first sample, A, represented the coating before the application of cutting edge preparations and samples B and C were after the application of the cutting edge preparation. A carbon steel termed C45 was used for the milling process and cutting conditions were suggested. The visual control of surface of cutting inserts, intensity of wear and occurrence of thermal cracks in deposited PVD layers were the criterion for the evaluation of the individual tests. Full article
(This article belongs to the Special Issue Physical Vapor Deposition)
Figures

Figure 1

Open AccessFeature PaperArticle
Two Different Scenarios for the Equilibration of Polycation—Anionic Solutions at Water–Vapor Interfaces
Coatings 2019, 9(7), 438; https://doi.org/10.3390/coatings9070438
Received: 24 June 2019 / Revised: 10 July 2019 / Accepted: 11 July 2019 / Published: 13 July 2019
Viewed by 649 | PDF Full-text (1741 KB) | HTML Full-text | XML Full-text
Abstract
The assembly in solution of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) and two different anionic surfactants, sodium lauryl ether sulfate (SLES) and sodium N-lauroyl-N-methyltaurate (SLMT), has been studied. Additionally, the adsorption of the formed complexes at the water–vapor interface have been measured to [...] Read more.
The assembly in solution of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) and two different anionic surfactants, sodium lauryl ether sulfate (SLES) and sodium N-lauroyl-N-methyltaurate (SLMT), has been studied. Additionally, the adsorption of the formed complexes at the water–vapor interface have been measured to try to shed light on the complex physico-chemical behavior of these systems under conditions close to that used in commercial products. The results show that, independently of the type of surfactant, polyelectrolyte-surfactant interactions lead to the formation of kinetically trapped aggregates in solution. Such aggregates drive the solution to phase separation, even though the complexes should remain undercharged along the whole range of explored compositions. Despite the similarities in the bulk behavior, the equilibration of the interfacial layers formed upon adsorption of kinetically trapped aggregates at the water–vapor interface follows different mechanisms. This was pointed out by surface tension and interfacial dilational rheology measurements, which showed different equilibration mechanisms of the interfacial layer depending on the nature of the surfactant: (i) formation layers with intact aggregates in the PDADMAC-SLMT system, and (ii) dissociation and spreading of kinetically trapped aggregates after their incorporation at the fluid interface for the PDADMAC-SLES one. This evidences the critical impact of the chemical nature of the surfactant in the interfacial properties of these systems. It is expected that this work may contribute to the understanding of the complex interactions involved in this type of system to exploit its behavior for technological purposes. Full article
(This article belongs to the Special Issue Fluid Interfaces)
Figures

Figure 1

Open AccessArticle
Enhancement of Critical Current Density by Establishing a YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x Quasi-Trilayer Architecture Using the Sol-Gel Method
Coatings 2019, 9(7), 437; https://doi.org/10.3390/coatings9070437
Received: 1 July 2019 / Revised: 8 July 2019 / Accepted: 10 July 2019 / Published: 13 July 2019
Viewed by 661 | PDF Full-text (3274 KB) | HTML Full-text | XML Full-text
Abstract
We developed a solution-derived method to establish a YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x quasi-trilayer architecture. Using the method, nano-scale pinning sites were induced into the quasi-trilayer architecture and yielded an apparent improvement [...] Read more.
We developed a solution-derived method to establish a YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x quasi-trilayer architecture. Using the method, nano-scale pinning sites were induced into the quasi-trilayer architecture and yielded an apparent improvement in the in-field critical current density (Jc) of high-quality YBa2Cu3O7−x (YBCO). The improvement in the in-field Jc of the films was closely related to the thickness of the LaAlO3 (LAO) interlayer. In this paper it is demonstrated that when the nominal interlayer thickness approximates 20 nm, which is slightly higher than the roughness of the YBa2Cu3O7−x surface, the LaAlO3 interlayer is discontinuous due to synchromesh-like growth of the LaAlO3 layer on relatively rough YBa2Cu3O7−x surface resulting from the mobility of the solution. Nanoscale defects, such as particles, some amorphous phases, and especially their concomitant lattice defects (such as stacking faults and plane buckling) arise in YBa2Cu3O7−x layers. These nanoscale defects could play a role in flux pinning and thus enhancing Jc. The effective non-vacuum solution to induce vortex pinning into YBa2Cu3O7−x films could be a reference for the further design of an optimal pinning landscape for higher Jc. Full article
(This article belongs to the Special Issue Superconducting Films and Nanostructures)
Figures

Figure 1

Open AccessArticle
Tribological Performance of CF-PEEK Sliding against 17-4PH Stainless Steel with Various Cermet Coatings for Water Hydraulic Piston Pump Application
Coatings 2019, 9(7), 436; https://doi.org/10.3390/coatings9070436
Received: 19 June 2019 / Revised: 5 July 2019 / Accepted: 5 July 2019 / Published: 11 July 2019
Viewed by 616 | PDF Full-text (5778 KB) | HTML Full-text | XML Full-text
Abstract
To improve the abrasion resistance performance of the critical tribopairs within water hydraulic piston pumps, tribological characteristics of the stainless steel 17-4PH and 17-4PH coated with Cr3C2-NiCr, WC-10Co-4Cr, Cr2O3 and Al2O3-13%TiO2 [...] Read more.
To improve the abrasion resistance performance of the critical tribopairs within water hydraulic piston pumps, tribological characteristics of the stainless steel 17-4PH and 17-4PH coated with Cr3C2-NiCr, WC-10Co-4Cr, Cr2O3 and Al2O3-13%TiO2 sliding against carbon fiber reinforced polyetheretherketone (CF-PEEK) composite under water-lubricated condition were experimentally studied using a pin-on-ring test bench with different working conditions. It has been demonstrated by the experimental results that the tribological behaviors of CF-PEEK/cermet coatings tribipairs were better than that of CF-PEEK/17-4PH tribopair under water lubrication. However, the Cr3C2-NiCr coating could be damaged under high rotational speed. Due to the reaction film produced by the Al2O3-13%TiO2 and water, the CF-PEEK/Al2O3-13%TiO2 material combination exhibits more excellent tribological behaviors than other tribopairs lubricated with water, and could preferentially be used in water hydraulic piston pumps. Full article
Figures

Figure 1

Open AccessArticle
PL Study on the Effect of Cu on the Front Side Luminescence of CdTe/CdS Solar Cells
Coatings 2019, 9(7), 435; https://doi.org/10.3390/coatings9070435
Received: 29 January 2019 / Revised: 24 June 2019 / Accepted: 4 July 2019 / Published: 11 July 2019
Viewed by 550 | PDF Full-text (1682 KB) | HTML Full-text | XML Full-text
Abstract
The effect of Cu on highly efficient CdTe thin solid film cells with a glass/TCO/CdS/CdTe structure subjected to CdCl2 treatment was investigated by low-temperature photoluminescence (PL). The PL of the CdS/CdTe junction in samples without Cu deposition revealed a large shift in [...] Read more.
The effect of Cu on highly efficient CdTe thin solid film cells with a glass/TCO/CdS/CdTe structure subjected to CdCl2 treatment was investigated by low-temperature photoluminescence (PL). The PL of the CdS/CdTe junction in samples without Cu deposition revealed a large shift in the bound exciton position due to the formation of CdSxTe1−x alloys with Eg (alloy) ≅ 1.557 eV at the interface region. After Cu deposition on the CdTe layer and subsequent heat treatment, a neutral acceptor-bound exciton (A0Cu,X) line at 1.59 eV and two additional band-edge peaks at 1.54 and 1.56 eV were observed, indicating an increase in the energy gap value in the vicinity of the CdTe/CdS interface to that characteristic of bulk CdTe. These results may suggest the disappearance of the intermixing phase at the CdTe/CdS interface due to the presence of Cu atoms in the junction area and the interaction of the Cu with sulfur atoms. Furthermore, an increase in the intensity of CdS-related peaks in Cu-doped samples was observed, implying that Cu atoms were incorporated into CdS after heat treatment. Full article
(This article belongs to the Special Issue Advanced Thin Film Materials for Photovoltaic Applications)
Figures

Figure 1

Open AccessArticle
Enhancement of Tribological Behavior of Rolling Bearings by Applying a Multilayer ZrN/ZrCN Coating
Coatings 2019, 9(7), 434; https://doi.org/10.3390/coatings9070434
Received: 14 May 2019 / Revised: 4 July 2019 / Accepted: 8 July 2019 / Published: 10 July 2019
Viewed by 693 | PDF Full-text (12965 KB) | HTML Full-text | XML Full-text
Abstract
This paper focuses on the tribological behaviour of ZrN/ZrCN coating on bearing steel substrates DIN 17230, 100Cr6/1.3505. Coatings are applied at room temperature processes by means of Cathodic Arc Evaporation (CAE), a kind of Physical Vapor Deposition (PVD) technique. In order to achieve [...] Read more.
This paper focuses on the tribological behaviour of ZrN/ZrCN coating on bearing steel substrates DIN 17230, 100Cr6/1.3505. Coatings are applied at room temperature processes by means of Cathodic Arc Evaporation (CAE), a kind of Physical Vapor Deposition (PVD) technique. In order to achieve a satisfactory compromise between coating-substrate adhesion and the surface roughness requirement of the bearing rings, a polish post-processing is proposed. Different polish post-processing times and conditions are applied. The coated and polished bearing rings are tested under real friction torque test protocols. These tests show that the application of the coating does not entail a significant improvement in friction performance of the bearing. However, fatigue tests in real test bench are pending to evaluate the possible improvement in bearing life time. Full article
Figures

Figure 1

Open AccessArticle
Size-Controlled Transparent Jute Fiber for Replacing Transparent Wood in Industry Production Area
Coatings 2019, 9(7), 433; https://doi.org/10.3390/coatings9070433
Received: 15 May 2019 / Revised: 5 July 2019 / Accepted: 6 July 2019 / Published: 10 July 2019
Viewed by 610 | PDF Full-text (4474 KB) | HTML Full-text | XML Full-text
Abstract
Transparent jute fiber (TJF) was prepared from delignified jute fiber (DJF) and was subjected to various surface knitting densities (190 and 340 g/m2) before epoxy resin (ER) impregnation under vacuum. The preparation process and properties of TJF were evaluated. The mechanical [...] Read more.
Transparent jute fiber (TJF) was prepared from delignified jute fiber (DJF) and was subjected to various surface knitting densities (190 and 340 g/m2) before epoxy resin (ER) impregnation under vacuum. The preparation process and properties of TJF were evaluated. The mechanical properties and surface morphology of the jute fiber samples were also studied. The mechanical properties were compared with transparent coir fiber (TCF) and transparent balsa wood (TBW). Optical properties, such as surface color, optical transmittance, and visual haze, of natural jute fiber (JF) and TJF were measured to better understand the influence of delignification. The experimental results showed transparency of 51% even for dense jute fiber cloth, and the maximum transmittance was as high as 60% with a low surface density. TJF had similar tensile strength as TBW but was higher than TCF, indicating a maximum tensile strength of 43.25 MPa with a surface density of 340 g/m2. These results suggest that TJF has the potential to meet the particular optical and mechanical properties of transparent wood. Transparent jute fiber can replace transparent wood for industrial production because of the simple preparation process and lower price. Full article
Figures

Figure 1

Coatings EISSN 2079-6412 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top