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Abstract: A self-healing coating with UV-shielding property was prepared in this paper.
The self-healing property was based on the inclusion between a host (β-CD-TiO2) and a guest
HEMA-Ad). After inclusion of the host and guest, the host–guest complex (HEMA-Ad/β-CD-TiO2)
was polymerized with other reactive monomers (HEMA and BA) to obtain the final coating.
The coating had good hydrophobicity (water contact angle >90◦, moisture absorption rate <2%) and
excellent UV-shielding performance (ultra-violet protect factor >90%), and could be firmly bonded to
a soft substrate. In addition, the coating had good self-healing property, which means that cracks in
the material can recover many times after being damaged and that the UV-shielding ability can be
fully restored with the self-healing process.
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1. Introduction

When an ordinary substrate is used outdoors, ultraviolet radiation will cause a series of
photodegradation reactions, resulting in fading and a decrease in the mechanical properties of
the substrate, thereby greatly shortening its life-span. If a layer of UV-shielding coating is applied on
the surface of such a substrate, it can be well protected from UV radiation. On the other hand, tiny
mechanical scratches can damage the coating and reduce its protective effects. For example, in the field
of power cables, the outer surface of the cable often accumulates tiny cracks due to dragging (or other
installation actions) and photoaging (usually ultraviolet light), which allows penetration of moisture
and oxygen, affecting the life-span of the cable. A UV-shielding coating with self-healing effect can
prevent the substrate from being damaged (i.e., the damage can be eliminated by self-healing of the
coating) and can delay its aging by ultraviolet irradiation, thereby improving the service life-span of
the substrate.

A self-healing material is a kind of smart material that can heal itself when damaged [1]. According
to their different healing principles, they are mainly divided into two categories. One is the filling
type, which exhibits the self-healing property via carriers that are dispersed in its polymer matrix,
such as microcapsules [2–4], hollow fibers [5,6] and microvasculatures [7,8]. However, it is difficult for
such materials to achieve repeated healing due to the limited capacity of the carriers. The other kind
is the intrinsic type, which heal wounds through the intermolecular interactions (including covalent
and non-covalent bonds) of their components. For materials that rely on covalent bonds to self-heal,
the covalent bonds can be reversibly broken and generated under heat [9], light [10] and pH [11]
treatments, allowing for the healing of damaged parts. For materials that rely on non-covalent bonds
to self-heal, they do not require external stimulus factors to activate the self-repair property, and
mainly depend on non-covalent bonds such as hydrogen bonding [12], π–π interaction [13], metal
coordination [14] and topology structure [15] to form stable supramolecular structures. The advantage
of these materials is that they can self-heal multiple times and are not restricted by the capacity of
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carriers. Among these supramolecular materials, the host–guest model has excellent self-healing
effects. A research group led by Professor Huang developed a line of supramolecular gels based on the
host–guest interaction. Their gels were capable of self-healing quickly with 10,000% deformation [16].
Mynar et al. prepared a self-healing gel by the inclusion interaction of clay and telechelic dendritic
macromolecules with multiple bonded ends, which was able to 100% self-heal [17]. Zhang et al.
fabricated a self-healing elastomer with excellent mechanical properties and demonstrated its ability to
restore 90% of its mechanical strength [18].

In order to prepare a coating that had both self-healing and UV-shielding properties, we selected a
polymer material comprised of a host–guest inclusion compound. Cyclodextrin grafted with titanium
dioxide nanoparticles (ultraviolet shielding agent) was used as the host molecule, and adamantane
grafted with a reactive monomer was used as the guest molecule. After the inclusion of the host
molecules and guest molecules, the host–guest complex was polymerized with other reactive monomers
to obtain a self-healing coating with UV-shielding property.

2. Principle

When the coating β-CD-TiO2/P(HEMA-co-BA) is mechanically damaged, there is dissociation
of the inclusion interaction between host–guest molecules, resulting in many free host and guest
molecules in the wound cross-section. After contact with moisture, the cross-section expands, causing
the two sides to touch each other. In this situation, the polymer molecular chains can become entangled
with one another, and the free host and guest molecules on the cross-section are re-integrated. With the
coaction of chain entanglement and host–guest interaction, the coating finally completes self-healing
(as shown in Figure 1).
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3. Materials and Methods

3.1. Materials

2-Hydroxyethyl-methacrylate (HEMA), β-cyclodextrin (β-CD), butyl acrylate (BA),
azobisisobutyronitrile (AIBN, 99%, recrystallization), TiO2 nanoparticles (10.5 nm), and
adamantanecarboxylic acid (Ad–COOH) were obtained from Aladdin Reagent Co., Ltd (Shanghai,
China). All the above-mentioned materials were analytically pure.
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3.2. Sample Fabrication

3.2.1. Preparation of the Guest Molecule 2-Hydroxyethyl-methacrylate-adamantane (HEMA-Ad)

We dissolved 2.3 g of Ad–COOH in 20.0 mL of thionyl chloride, followed by stirring at 80 ◦C for
2 h, after which the unreacted thionyl chloride was removed by rotary evaporation to obtain adamantyl
chloride. Then, the adamantyl chloride was dissolved in 100 mL of anhydrous dichloromethane and
added dropwise to a mixed solution containing 1.0 mL of HEMA and 1.6 mL of triethylamine at 0 ◦C.
After reacting for 5 h, the pale yellow solution obtained was washed successively with 100 mL of 1 M
HCl solution, 1 M NaHCO3 solution and water. After dehydration (by anhydrous sodium sulfate)
and drying, HEMA-Ad was obtained. The crude product obtained was purified by flash column
chromatography (the eluent was a mixed solution of n-hexane and ethyl acetate in a volume ratio of
40:1) to obtain a pale yellow oily liquid, which was allowed to stand for a period of time to obtain a
solid particle precipitate.

3.2.2. Preparation of the Host Molecule β-CD-TiO2

β-CD-TiO2 was prepared by a UV-irradiation method (improved according to the method reported
in Reference [19]). The procedure was as follows: TiO2 nano-particles were dispersed in aβ-CD aqueous
solution through ultrasonic vibration for 45 min. The resulting solution was then irradiated under
ultraviolet light for 48 h at room temperature and centrifuged to obtain a solid product. After washing
three times with ultrapure water, it was freeze-dried to obtain β-CD-TiO2.

3.2.3. Preparation of the β-CD-TiO2/P(HEMA-co-BA) Coating

We added 213 mg β-CD-TiO2 and 10 mg HEMA-Ad to 6.0 mL water for 30 min of ultrasonic
vibration. The mixture was then stirred at room temperature for 24 h, and freeze-dried to obtain a
HEMA-Ad/β-CD-TiO2 inclusion compound. Then, the HEMA-Ad/β-CD-TiO2 was dispersed into
6.0 mL of ethanol with ultrasonic vibration for 45 min. After that, 1.0 mL of HEMA, 1.2 mL of BA and
5.0 mg of AIBN were added. Under stirring, the mixture was polymerized at 55 ◦C in a protective
atmosphere of argon for 12 h to produce a white viscous polymer solution; that is, the anti-ultraviolet
self-healing coating β-CD-TiO2/P(HEMA-co-BA). The preparation process is shown in Figure 2.

3.3. Sample Characterization and Application

1H and 13C NMR spectra (Avance Bruker-600, Rheinstetten, Germany), mass spectra (Finnigan
LCQDECA, Thermo Fisher Scientific, Waltham, MA, USA), FT-IR (Nicolet 560, Austin, TX, USA),
XPS (ESCALAB 250Xi, Thermo Fisher Scientific, Waltham, MA, USA), XRD (EMPYREAN, Almelo,
Netherlands), and SEM (SIGMA 300, Zeiss, Oberkochen, Germany) were used to characterize the
inclusion complex formed by the host and guest. The water contact angle was used to measure
the hydrophobicity of the coating. UV-Vis spectra (Varioskan Flash, Thermo Fisher Scientific,
Waltham, MA, USA) and FT-IR spectra were used to measure the UV shielding performance.
A super-resolution confocal microscope (KEYENCE, Osaka Prefecture Japan) and SEM were used to
detect the self-healing effect.

When the coating was prepared, it was coated on the surface of substrates. After about 50 min,
most of the solvent (ethanol) volatilized to form a uniform protective film on the surface of the
substrates. Then, the coated substrates were dried at 30 ◦C for 6 h and at 60 ◦C for 8 h to obtain
substrates with self-healing coatings.
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4. Results and Discussion

4.1. Characterization of β-CD-TiO2/P(HEMA-co-BA)

4.1.1. Characterization of β-CD-TiO2 and HEMA-Ad

In this work, β-CD-TiO2 was prepared via a UV-irradiation method (described in Section 3.2.2).
FT-IR and XPS spectra were used to verify if the β-CD molecules successfully modified the surface of
the TiO2 nanoparticles. From the FT-IR spectra (shown in Figure 3a), both TiO2 and β-CD-TiO2 had
strong absorption peaks at 668 cm−1 due to the presence of Ti–O–Ti bonds. Furthermore, the absorption
peaks of β-CD-TiO2 at 2922, 1166 and 1064 cm−1 were found to correspond to the stretching vibration
of a C–H bond, stretching vibration of a C–O bond and anti-symmetric vibration of a C–O–C bond,
respectively. Compared with the XPS spectrum of TiO2, that of β-CD-TiO2 exhibited new bonds of
C–OH and C=O in the O1s region. The C–OH bond was derived from glucose units in β-CD, while the
C=O bond was likely derived from the oxidation of hydroxyl groups in β-CD (the holes generated
on the surface of TiO2 nanoparticles oxidized the hydroxyl groups in β-CD during UV irradiation).
The combined characterization by FT-IR and XPS analyses indicated that β-CD could be successfully
attached to the surface of TiO2 nanoparticles by UV irradiation. Moreover, XRD results indicated that
the β-CD molecule on the surface of TiO2 did not affect the crystal form of the TiO2 nanoparticles (as
shown in Figure 3d), thereby ensuring the functionality of the TiO2 nanoparticles (i.e., UV-shielding).

Thermogravimetric analysis (TGA) was used to estimate the content of β-CD in β-CD-TiO2. Then,
the number of β-CD molecules that attached on the surface of each TiO2 nanoparticle was calculated
(as shown in Figure 4). Based on the TGA results of TiO2 and β-CD-TiO2, we calculated that β-CD
content in β-CD-TiO2 was 0.012 mmol/g, and there were about 138 β-CD molecules on the surface of
each TiO2 nanoparticle (according to Reference [20]).
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In order to test the effect of adamantane grafted with HEMA, the 1H NMR and 13C NMR spectra
of the guest molecule HEMA-Ad were analyzed (shown in Figure 5).

In Figure 5a, there are signal peaks at δ 6.09 (s, 1H), 5.55 (s, 1H), 4.31 (t, 2H), 4.26 (t, 2H), and
1.68–1.92 (m, 15H). The peaks at 6.09 and 5.55 ppm correspond to the hydrogen atoms in the olefinic
bond of 2-hydroxyethyl-methacrylate, and the ratio of their peak area is 1:1. The peaks at 4.31 and
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4.26 ppm (position “4” and “5”) correspond to the methylene hydrogens that are adjacent to the ester
bond, and the ratio of their peak area is also 1:1, indicating the formation of ester bonds. The peak at
1.77 ppm corresponds to the hydrogen atom at the methylene (position “9”) in adamantane, and the
ratio of the peak area of position “9” and “1” is 6:1, which is in accordance with the hydrogen number
ratio of HEMA-Ad. This indicated that the HEMA-Ad product was successfully prepared.

As shown in Figure 5b, the two peaks at 177.40 and 167.30 ppm correspond to the two carbonyl
carbons, while the 136.01 and 125.90 ppm peaks correspond to the two carbons in the double bond.
The peaks at 62.40 and 61.71 ppm correspond to the two carbon atoms on –OCH2CH2O–. The four
peaks from 38.59 to 27.88 ppm correspond to the four types of carbon atoms in adamantane. The peak at
18.17 mmp corresponds to the methyl at position “2”. These findings also demonstrated the successful
preparation of HEMA-Ad.
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4.1.2. Polymerization of β-CD-TiO2/P(HEMA-co-BA)

The polymerization of HEMA-Ad, β-CD-TiO2, HEMA, and BA were carried out in ethanol.
Comparing the FT-IR spectra before and after polymerization (shown in Figure 6), we found that
the absorption peaks of C=C after polymerization (νC=C 1636 cm−1, ν=CH 985/948 cm−1 and ν=CH

903/886 cm−1) disappeared, indicating that the polymerization reaction proceeded smoothly.Coatings 2019, 9, x FOR PEER REVIEW 7 of 13 

 

 

Figure 6. FT-IR spectra of monomer (HEMA + BA) and polymer β-CD-TiO2/P(HEMA-co-BA). 

4.2. Mechanical Properties and Wear Resistance of Coatings 

In order to test the mechanical properties of this coating, a stress–strain curve was used for 
evaluation. It can be seen from Figure 7a that the maximum tensile strength of the P(HEMA-co-BA) 
was 2.03 MPa, and it increased to 2.69 MPa when TiO2 nanoparticles were added. Compared with 
the two, the maximum tensile strength increased to 4.50 MPa with the addition of HEMA-Ad/β-CD-
TiO2 inclusion complex, meaning that the addition of HEMA-Ad/β-CD-TiO2 significantly enhanced 
the mechanical properties of the coating. This is mainly due to the addition of the host–guest inclusion 
complex: The surface of HEMA-Ad/β-CD-TiO2 has a plurality of bonds which can participate in the 
polymerization reaction, and act as “crosslinking agents” in the polymerization process to enhance 
the network structure of the coating. 

Wear resistance is an important indicator for evaluating the mechanical stability of coatings. We 
used a sandpaper friction test method to evaluate the wear resistance of the coatings according to the 
test method for rubber wear resistance. After the coating was formed on the base material, the 
sandpaper (with a weight of 1 kg) was dragged 20 cm in 15 s to calculate the mass loss rate (MLR). 
The lower the MLR, the better the wear resistance. As shown in Figure 7b, the MLR value of the 
P(HEMA-co-BA), TiO2/P(HEMA-co-BA) and β-CD-TiO2/P(HEMA-co-BA) coatings were measured. 
The results showed that the MLR value of P(HEMA-co-BA) and TiO2/P(HEMA-co-BA) were higher 
than that of the self-healing coating, which meant the scratch resistance of the coating without 
utilization of the self-healing effect was not as good as that of the self-healing coating. This can be 
explained by two factors. Firstly, the organic molecules (β-CD + HEMA-Ad) were modified on the 
surface of TiO2 nanoparticles to improve their compatibility with the polymer networks of the self-
healing coating. Secondly, the host and guest groups acted as a cross-linking agent during the 
polymerization process, which not only improved the stability of the nanoparticles in the polymer 
network, but also significantly enhanced the overall mechanical properties of the coating. Therefore, 
the β-CD-TiO2/P(HEMA-co-BA) coating exhibits the best wear resistance. 

Figure 6. FT-IR spectra of monomer (HEMA + BA) and polymer β-CD-TiO2/P(HEMA-co-BA).



Coatings 2019, 9, 421 7 of 13

4.2. Mechanical Properties and Wear Resistance of Coatings

In order to test the mechanical properties of this coating, a stress–strain curve was used for
evaluation. It can be seen from Figure 7a that the maximum tensile strength of the P(HEMA-co-BA)
was 2.03 MPa, and it increased to 2.69 MPa when TiO2 nanoparticles were added. Compared with the
two, the maximum tensile strength increased to 4.50 MPa with the addition of HEMA-Ad/β-CD-TiO2

inclusion complex, meaning that the addition of HEMA-Ad/β-CD-TiO2 significantly enhanced the
mechanical properties of the coating. This is mainly due to the addition of the host–guest inclusion
complex: The surface of HEMA-Ad/β-CD-TiO2 has a plurality of bonds which can participate in the
polymerization reaction, and act as “crosslinking agents” in the polymerization process to enhance the
network structure of the coating.

Wear resistance is an important indicator for evaluating the mechanical stability of coatings.
We used a sandpaper friction test method to evaluate the wear resistance of the coatings according
to the test method for rubber wear resistance. After the coating was formed on the base material,
the sandpaper (with a weight of 1 kg) was dragged 20 cm in 15 s to calculate the mass loss rate (MLR).
The lower the MLR, the better the wear resistance. As shown in Figure 7b, the MLR value of the
P(HEMA-co-BA), TiO2/P(HEMA-co-BA) and β-CD-TiO2/P(HEMA-co-BA) coatings were measured.
The results showed that the MLR value of P(HEMA-co-BA) and TiO2/P(HEMA-co-BA) were higher than
that of the self-healing coating, which meant the scratch resistance of the coating without utilization of
the self-healing effect was not as good as that of the self-healing coating. This can be explained by
two factors. Firstly, the organic molecules (β-CD + HEMA-Ad) were modified on the surface of TiO2

nanoparticles to improve their compatibility with the polymer networks of the self-healing coating.
Secondly, the host and guest groups acted as a cross-linking agent during the polymerization process,
which not only improved the stability of the nanoparticles in the polymer network, but also significantly
enhanced the overall mechanical properties of the coating. Therefore, the β-CD-TiO2/P(HEMA-co-BA)
coating exhibits the best wear resistance.Coatings 2019, 9, x FOR PEER REVIEW 8 of 13 
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rate between self-made coatings and commercial coating (Nippon paint).

4.3. Adhesion of Coating

In order to detect the adhesion of the coating on the substrate, the substrates that were coated
with the β-CD-TiO2/P(HEMA-co-BA) coating were twisted and bent to observe if any coating peeled
off. As shown in Figure 8, the coating did not fall off after one or more bending actions, and there
were no micro-cracks on the curved surface, indicating that the β-CD-TiO2/P(HEMA-co-BA) coating
adhered well on the surface of the substrates.
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4.4. Hydrophobicity and Hygroscopicity of Coatings

The hydrophobic properties of the coating were measured by water contact angle and moisture
absorption. The water contact angle and moisture absorption rate of the coating under different
humidity conditions were measured, as shown in Figures 9 and 10. It can be seen from Figure 9
that even if the β-CD-TiO2/P(HEMA-co-BA) coating was placed in an environment with a humidity
of 76% RH, it maintained a hydrophobic surface (water contact angle >90◦). This is because after
polymerization of HEMA (CH2=CCH3COOCH2CH2OH) and BA (CH2CHCOOC4H9), a large amount
of –CH2– exists in the molecular chain, which has a hydrophobic role. On the other hand, the moisture
sorption ratio of the coating was only 2.0% when it was in an environment with a humidity of 54% RH
(as seen in Figure 10), indicating that the coating almost does not absorb moisture from the air under
normal circumstances. However, in a high humidity environment (such as 100% RH), the moisture
sorption ratio of this coating increased to a certain extent.
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4.5. Coating UV-Shielding Performance

The UV-shielding performance of the β-CD-TiO2/P(HEMA-co-BA) coating was measured by
UV-Vis spectroscopy. As shown in Figure 11a, the β-CD-TiO2/P(HEMA-co-BA) coating exhibited a
strong absorption capacity (absorption rate >90%) in the range of 200–350 nm. This excellent UV
absorption capacity is derived from the added TiO2 nanoparticles: On one hand, TiO2 can absorb
ultraviolet light with energy higher than its band gap (3.0 eV for band gap of rutile TiO2 and 3.2 eV
for anatase TiO2); on the other hand, due to the high refractive index of the surface of the TiO2

nanoparticles, ultraviolet rays that are outside the absorption range can be “consumed” by scattering.
UV accelerated aging experiments were used to verify the UV-shielding effect of the β-CD-TiO2/

P(HEMA-co-BA) coating. As shown in Figure 11b, the initial PVC sample was colorless and transparent
(Sample I). However, the color of the PVC sample without the coating changed to brown under the
ultraviolet accelerated aging test (Sample III). Moreover, the FT-IR spectrum of Sample III, shown
in Figure 11c, exhibited a strong absorption near 1659 cm−1, indicating a large amount of carbonyl
formed in the PVC. The UV-Vis spectrum of Sample III (Figure 11d) showed a strong absorption in
the range of 220–300 nm, indicating that conjugated structures were formed in the PVC. These results
indicate that Sample III experienced a relatively severe degradation reaction. In contrast to Sample
III, the PVC sample coated by β-CD-TiO2/P(HEMA-co-BA) (Sample II) remained colorless under the
ultraviolet accelerated aging test. Moreover, not only was the appearance essentially consistent with
Sample I, but so too was the FT-IR and UV-Vis spectra, despite Sample I not undergoing ultraviolet
accelerated aging. This indicates that the β-CD-TiO2/P(HEMA-co-BA) coating on Sample II had a good
UV-shielding performance.
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Figure 11. UV-shielding properties of the β-CD-TiO2/P(HEMA-co-BA) coating: (a) UV-Vis absorption
and diffuse reflectance spectroscopy; (b) photographs of three sample strips; (c) FT-IR spectra of
three samples; (d) UV-Vis absorption spectra of three samples (I: PVC initial sample; II: PVC sample
subjected to UV-vis accelerated aging with coating; III: PVC sample subjected to UV-vis accelerated
aging without coating).

4.6. Self-Healing Properties

4.6.1. Self-Healing of Mechanical Property

To evaluate the self-healing properties of the coating, a super-resolution confocal microscope was
used to observe its surface. As shown in Figure 12a, the cross-sectional area of the wound on the
surface of the coating was about 7282 µm2 before self-healing. When 20 µL of water was added to
the wound surface and 15 min was allowed to pass, the cross-sectional area of the wound changed
to 0 µm2 (i.e., the wound almost disappeared). In order to observe the self-healing properties of the
coating more intuitively, SEM was used to observe the wound. As shown in Figure 12b, the wound
was able to heal itself after a period of time, indicating that the β-CD-TiO2/P(HEMA-co-BA) coating
did have the ability of self-healing.

In Figure 13, the self-healing ability of the β-CD-TiO2/P(HEMA-co-BA) coating is shown to occur
multiple times, as the coating is subjected to at least three self-healing events at the same position.
This is because the self-healing ability of the coating is derived from the entanglement of the molecular
chains and the host–guest inclusion, both of which are reversible. Thus, the coating can perform
multiple self-healing episodes.
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Figure 12. Self-healing properties of the β-CD-TiO2/P(HEMA-co-BA) coating: (a) Super-resolution
confocal microscope images of the coating before and after self-healing—the upper image is a
contour view and the lower image is a cross-sectional view; (b) SEM image of the coating before and
after self-healing.
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4.6.2. Self-Healing of UV-Shielding Property

The UV degradation of rhodamine B (Rh B) was used to evaluate the coatings’ self-healing
of the UV-shielding property, as Rh B degrades under UV irradiation and its concentration can be
measured by fluorometry. Firstly, the outer surfaces of two identical quartz tubes were coated with
the β-CD-TiO2/P(HEMA-co-BA) coating, after which an equal number of scratches were made on
the surface of the coating. Then, the tubes were divided into two groups: The first group (UV-1)
was covered with wet filter paper on the coating for 24 h to self-heal; the second group (UV-2) was
placed in a dry place (in this case, it is difficult for the coating to self-heal) so that the surface remained
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scratched after 24 h. Next, an equal amount of the Rh B solution was added to UV-1 and UV-2, and the
concentration of Rh B was detected after ultraviolet irradiation for a certain period of time. The results
are shown in Figure 14. It can be seen that the degradation rate of Rh B in UV-2 was 25%, indicating
that if the wound is not healed, the UV-shielding ability of the coating will be reduced. In contrast,
the concentration of Rh B in UV-1 was the same as the original concentration, indicating that the
coating completely shielded the ultraviolet radiation; that is, the UV-shielding ability of the coating is
completely restored after self-healing.
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5. Conclusions

A novel UV-shielding coating with self-healing properties was prepared. The coating was
synthesized by radical polymerization using HEMA, BA and a host–guest assembly (β-CD-TiO2

nanoparticles acted as the host, while HEMA-Ad acted as the guest). The introduction of the host–guest
inclusion complex in the coating not only enhanced the compatibility of the nanoparticles in the
polymer network, but also acted as a “cross-linking agent” in the polymerization process, which
significantly enhanced the mechanical properties and wear resistance of the coating. The coating had
good hydrophobic property (water contact angle >90◦ at normal humidity) and UV-shielding property
(UV absorption rate >90% in the range of 200–350 nm), and adhered well on the surface of substrate.
With the coaction of chain entanglement and host–guest interaction, the coating was able to heal the
wound spontaneously multiple times in the same location. In addition, the UV-shielding ability was
fully restored with the self-healing process.
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