Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Effect of Al2O3, ZnO and TiO2 Atomic Layer Deposition Grown Thin Films on the Electrochemical and Mechanical Properties of Sputtered Al-Zr Coating
Coatings 2023, 13(1), 65; https://doi.org/10.3390/coatings13010065 - 30 Dec 2022
Cited by 2 | Viewed by 1655
Abstract
The 316L stainless steels, often used in turbine blades for naval and marine applications, usually suffer from localized pitting corrosion after long exposure to chlorinated environments. The aluminum-zirconium coatings deposited by magnetron sputtering technique can be used to ensure cathodic protection for steels. [...] Read more.
The 316L stainless steels, often used in turbine blades for naval and marine applications, usually suffer from localized pitting corrosion after long exposure to chlorinated environments. The aluminum-zirconium coatings deposited by magnetron sputtering technique can be used to ensure cathodic protection for steels. In this work, we study the influence of atomic layer deposited (ALD) Al2O3, ZnO, and TiO2 thin films on the structural, mechanical, and electrochemical properties of Al-Zr (4 at.% Zr) magnetron sputtered coatings. The morphology, preferred orientation growth, mechanical properties, wettability, and corrosion resistance were investigated. The change in the sputtered Al-Zr morphology is mainly due to the insertion of the ALD layer. The Al-Zr layer deposited on ZnO and TiO2 layers presented a distinctive morphology. The agglomerate particles of AlZr/Al2O3/AlZr, AlZr/ZnO/AlZr and AlZr/TiO2/AlZr coatings exhibited a cauliflower shape. For ALD/PVD coatings, the insertion of an ALD oxide layer promoted the intensity of the peaks corresponding to the (111) crystallographic orientation. The nanoindentation measurements confirmed the enhancement in the mechanical properties, where the hardness increased by about 75%. The ALD oxide layers promoted the hydrophobicity of the coatings. The electrochemical characterization in a 3.5 wt.% NaCl solution also confirmed the role of the ALD oxides layers in delaying the pitting corrosion of the Al-Zr coating by widening the passive region and enhancing the protective efficiency of the passive film. Full article
(This article belongs to the Special Issue Chemical/Physical Vapor Deposition Coatings on Metallic Substrates)
Show Figures

Figure 1

Article
A Two-Dimensional Guidance Strategy to Fabricate Perovskite Gadolinium Aluminate Ceramic Film
Coatings 2022, 12(12), 1927; https://doi.org/10.3390/coatings12121927 - 08 Dec 2022
Viewed by 975
Abstract
Gadolinium aluminate is an effective host for doping with various ions, and it can emit various colors. However, it is not easy to prepare transparent ceramics of gadolinium aluminate using traditional methods, although transparent ceramics are very suitable for solid lighting. In this [...] Read more.
Gadolinium aluminate is an effective host for doping with various ions, and it can emit various colors. However, it is not easy to prepare transparent ceramics of gadolinium aluminate using traditional methods, although transparent ceramics are very suitable for solid lighting. In this work, a two-dimensional guidance strategy has been successfully carried out for perovskite-structured aluminate ceramic film. Through the two-dimensional interfacial reaction, GdAlO3:Eu3+ (GAP:Eu3+) transparent ceramic films were successfully fabricated using nanosheets exfoliated from layered gadolinium hydroxide, a rare earth source. The final films were tested by characterization techniques, including XRD, SEM, TEM, FT-IR, PLE/PL spectroscopy, temperature-dependent PL spectroscopy, and luminescence decay analysis. The perovskite film of transparent ceramics can be obtained by calcining LRH nanosheets on the substrate of amorphous alumina at 1550 °C in air with a reaction time of 2 h. During the interface reaction, temperature-dependent element diffusion takes the dominant role, and increased reactants take in the reaction with increasing calcination temperature. The grain for ceramic film is only 2–5 μm, which is much smaller than that for bulk ceramic. This is mainly due to the lower temperature and the interface diffusion. Ceramic film has a high transmittance larger than 90% at the visible range. Upon UV excitation at 254 nm, the film exhibits intense emission at the red wavelength range. The outcomes described in this work may have wide implications for transparent ceramics and layered rare-earth hydroxides. Full article
(This article belongs to the Special Issue Ceramic Films and Coatings: Properties and Applications)
Show Figures

Figure 1

Article
Influence of Post-Deposition Thermal Treatments on the Morpho-Structural, and Bonding Strength Characteristics of Lithium-Doped Biological-Derived Hydroxyapatite Coatings
Coatings 2022, 12(12), 1883; https://doi.org/10.3390/coatings12121883 - 04 Dec 2022
Viewed by 1760
Abstract
We report on hydroxyapatite (HA) of biological-origin doped with lithium carbonate (LiC) and lithium phosphate (LiP) coatings synthesized by Pulsed laser deposition onto Ti6Al4V substrates fabricated by the Additive manufacturing technique. A detailed comparison from the structural, morphological, chemical composition, wetting behavior and [...] Read more.
We report on hydroxyapatite (HA) of biological-origin doped with lithium carbonate (LiC) and lithium phosphate (LiP) coatings synthesized by Pulsed laser deposition onto Ti6Al4V substrates fabricated by the Additive manufacturing technique. A detailed comparison from the structural, morphological, chemical composition, wetting behavior and bonding strength standpoints of as-deposited (NTT) and post-deposition thermal-treated (TT) coatings at temperatures ranging from 400 to 700 °C (i.e., TT400–TT700), was performed. Structural investigations indicated a complete crystallization of the initially amorphous HA-based layers at temperatures in excess of 500 °C. The morphological analyses emphasized the rough appearance of the film surfaces, consisting of particulates whose dimensions increased at higher temperatures, with an emphasis on LiC coatings. AFM investigations evidenced rough surfaces, with a clear tendency to increase in corrugation with the applied temperature, in the case of LiC coatings. A hydrophobic behavior was observed for control, NTT and TT400 samples, whilst a radical shift towards hydrophilicity was demonstrated for both types of structures at higher temperatures. In the case of TT500–TT700 coatings, the pull-out adherence values increased considerably compared to control ones. Taking into consideration the obtained results, the positive influence of post-deposition thermal treatments (performed at higher temperatures) on the physical–chemical and mechanical properties of LiC and LiP coatings was indicated. Alongside these improved characteristics observed at elevated temperatures, the sustainable nature of the used BioHA materials should recommend them as viable alternatives to synthetic HA ones for bone implant applications. Full article
(This article belongs to the Special Issue Synthetic and Biological-Derived Hydroxyapatite Implant Coatings)
Show Figures

Graphical abstract

Article
Effect of Annealing on the Microstructure, Opto-Electronic and Hydrogen Sensing Properties of V2O5 Thin Films Deposited by Magnetron Sputtering
Coatings 2022, 12(12), 1885; https://doi.org/10.3390/coatings12121885 - 04 Dec 2022
Viewed by 1092
Abstract
This paper reports results of investigations on selected properties of vanadium oxide thin films deposited using gas impulse magnetron sputtering and annealed at temperatures in the range of 423 K to 673 K. Post-process annealing was shown to allow phase transition of as-deposited [...] Read more.
This paper reports results of investigations on selected properties of vanadium oxide thin films deposited using gas impulse magnetron sputtering and annealed at temperatures in the range of 423 K to 673 K. Post-process annealing was shown to allow phase transition of as-deposited films from amorphous to nanocrystalline V2O5 with crystallite sizes in the range of 23 to 27 nm. Simultaneously, annealing resulted in an increase in surface roughness and grain size. Moreover, a decrease in transparency was observed in the visible wavelength range of approximately 50% to 30%, while the resistivity of formed vanadium pentoxide thin films was almost unchanged and was in the order of 102 Ω·cm. Simultaneously, the best optoelectronic performance, testified by evaluated figure of merit parameter, indicated the as-deposited amorphous films. Performed Seebeck coefficient measurements indicated the electron type of electrical conduction of each prepared thin film. Furthermore, gas sensing properties towards diluted hydrogen were investigated for annealed V2O5 thin films, and it was found that the highest senor response was obtained for a thin film annealed at 673 K and measured at operating temperature of 623 K. Full article
(This article belongs to the Special Issue Optical Properties of Crystals and Thin Films)
Show Figures

Figure 1

Article
Electrodeposition of Copper Oxides as Cost-Effective Heterojunction Photoelectrode Materials for Solar Water Splitting
Coatings 2022, 12(12), 1839; https://doi.org/10.3390/coatings12121839 - 28 Nov 2022
Cited by 3 | Viewed by 1874
Abstract
Photoelectrocatalytic hydrogen production is crucial to reducing greenhouse gas emissions for carbon neutrality and meeting energy demands. Pivotal advances in photoelectrochemical (PEC) water splitting have been achieved by increasing solar light absorption. P-type Cu-based metal oxide materials have a wide range of energy [...] Read more.
Photoelectrocatalytic hydrogen production is crucial to reducing greenhouse gas emissions for carbon neutrality and meeting energy demands. Pivotal advances in photoelectrochemical (PEC) water splitting have been achieved by increasing solar light absorption. P-type Cu-based metal oxide materials have a wide range of energy band gaps and outstanding band edges for PEC water splitting. In this study, we first prepared Cu2O thin films using electrodeposition and fabricated a heterojunction structure of CuO/Cu2O by controlling annealing temperatures. The surface morphological, optical, and electrochemical properties were characterized using various analytical tools. X-ray and Raman spectroscopic approaches were used to verify the heterojunction of CuO/Cu2O, while surface analyses revealed surface roughness changes in thin films as the annealing temperatures increased. Electrochemical impedance spectroscopic measurements in conjunction with the Mott–Schottky analysis confirm that the CuO/Cu2O heterojunction thin film can boost photocurrent generation (1.03 mA/cm2 at 0 V vs. RHE) via enhanced light absorption, a higher carrier density, and a higher flat band potential than CuO and Cu2O thin films (0.92 and 0.08 mA/cm2, respectively). Full article
(This article belongs to the Special Issue Advanced Electrochemical Surface Properties)
Show Figures

Figure 1

Article
Insights into the Electrical Characterization of Graphene-like Materials from Carbon Black
Coatings 2022, 12(11), 1788; https://doi.org/10.3390/coatings12111788 - 21 Nov 2022
Viewed by 1385
Abstract
A new class of graphene-related materials (GRMs) obtained as water suspensions through a two-step oxidation/reduction of a nanostructured carbon black, namely graphene-like (GL) materials, has recently emerged. GL materials undergo self-assembly in thin amorphous films after drying upon drop-casting deposition on different surfaces. [...] Read more.
A new class of graphene-related materials (GRMs) obtained as water suspensions through a two-step oxidation/reduction of a nanostructured carbon black, namely graphene-like (GL) materials, has recently emerged. GL materials undergo self-assembly in thin amorphous films after drying upon drop-casting deposition on different surfaces. The GL films, with thicknesses of less than a micron, were composed of clusters of nanoparticles each around 40 nm in size. The exploitation of the GL films for different options (e.g., bioelectronic, sensoristic, functional filler in composite) requires a deep characterization of the material in terms of their electric transport properties and their possible interaction with the surface on which they are deposited. In this work, a careful electrical characterization of GL films was performed at room temperature and the results were compared with those achieved on films of benchmark graphenic materials, namely graphene oxide (GO) materials, obtained by the exfoliation of graphite oxide, which differ both in morphology and in oxidation degree. The results indicate a non-linear current–voltage relationship for all the investigated films. The extrapolated dielectric constant (ε) values of the investigated GRMs (GL and GO materials) agree with the experimental and theoretically predicted values reported in the literature (ε~2–15). Because similar conductance values were obtained for the GL materials deposited on glass and silicon oxide substrates, no significant interactions of GL materials with the two different substrates were highlighted. These results are the starting point for boosting a feasible use of GL materials in a wide spectrum of applications, ranging from electronics to optics, sensors, membranes, functional coatings, and biodevices. Full article
Show Figures

Figure 1

Article
Photocatalytic Performance of ZnO/Ag(NPs) Nanocomposite Thin Films under Natural Conditions
Coatings 2022, 12(11), 1782; https://doi.org/10.3390/coatings12111782 - 21 Nov 2022
Viewed by 1262
Abstract
The original technique developed for the direct incorporation and efficient dispersion of silver metal NPs into ZnO precursor solution allowed us to elaborate nanocomposite thin films with a large effective surface area for interaction with the external environment as well as a large [...] Read more.
The original technique developed for the direct incorporation and efficient dispersion of silver metal NPs into ZnO precursor solution allowed us to elaborate nanocomposite thin films with a large effective surface area for interaction with the external environment as well as a large surface area for metal–semiconductor interaction suitable for surface photocatalysis reactions. Such photocatalysts have the advantage of being in solid form, combining the benefits of the semiconductor material and the metallic nanoparticles embedded in it, while being eco-friendly. Their photocatalytic performance was analyzed under different operating conditions. The improved photocatalytic performance, stability, and reusability of the nanocomposite were demonstrated under both laboratory and natural conditions of use. The results of the present study provide interesting perspectives for the application of these photocatalysts in water treatment. Full article
Show Figures

Figure 1

Article
High Temperature Low Friction Behavior of h-BN Coatings against ZrO2
Coatings 2022, 12(11), 1772; https://doi.org/10.3390/coatings12111772 - 19 Nov 2022
Cited by 2 | Viewed by 1342
Abstract
This paper presents high temperature low friction behaviors of the h-BN coatings, which were deposited on high-speed tool steel by radio frequency magnetron sputtering. A tribometer was used to investigate high temperature tribological properties of h-BN coatings against ZrO2 from 500 °C [...] Read more.
This paper presents high temperature low friction behaviors of the h-BN coatings, which were deposited on high-speed tool steel by radio frequency magnetron sputtering. A tribometer was used to investigate high temperature tribological properties of h-BN coatings against ZrO2 from 500 °C to 800 °C. The surface morphology, mechanical properties and chemical states of the worn surface of the friction pair were characterized and investigated systemically. The experimental results show that h-BN coatings are of significant importance to improve high temperature tribological properties of steel. Moreover, it is found that high temperature super low friction of the friction pairs is successfully achieved due to tribochemistry, which plays a key role in forming the in-situ generated Fe2O3/h-BN composites on the worn surface of h-BN coatings. CoFs of the friction pair are as super low as about 0.02 at 800 °C and around 0.03 at 600 °C at the stable stage. The high temperature super low friction mechanism of the friction pair is discussed in detail. The present study opens a new strategy to achieve high temperature super low friction of the friction system during sliding. Full article
(This article belongs to the Special Issue Technologies of Coatings and Surface Hardening for Tool Industry II)
Show Figures

Figure 1

Article
Chemical Structure, Optical and Dielectric Properties of PECVD SiCN Films Obtained from Novel Precursor
Coatings 2022, 12(11), 1767; https://doi.org/10.3390/coatings12111767 - 18 Nov 2022
Cited by 3 | Viewed by 1696
Abstract
A phenyl derivative of hexamethyldisilazane—bis(trimethylsilyl)phenylamine—was first examined as a single-source precursor for SiCN film preparation by plasma enhanced chemical vapor deposition. The use of mild plasma (20 W) conditions allowed the preparation of highly hydrogenated polymeric-like films. The synthesis was carried out under [...] Read more.
A phenyl derivative of hexamethyldisilazane—bis(trimethylsilyl)phenylamine—was first examined as a single-source precursor for SiCN film preparation by plasma enhanced chemical vapor deposition. The use of mild plasma (20 W) conditions allowed the preparation of highly hydrogenated polymeric-like films. The synthesis was carried out under an inert He atmosphere or under that of NH3 with the deposition temperature range from 100 to 400 °C. The chemical bonding structure and elemental composition were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray analysis and X-ray photoelectron spectroscopy. The surface morphology was investigated by scanning electron microscopy. Ellipsometric porosimetry, a unique high-precision technique to investigate the porosity of thin films, was applied to examine the porosity of SiCN samples. The films were found to possess a morphologically homogenous dense defect-free structure with a porosity of 2–3 vol.%. SiCN films were studied in terms of their optical and dielectric properties. Depending on the deposition conditions the refractive index ranged from 1.53 to 1.78. The optical bandgap obtained using UV-Vis spectroscopy data varied from 2.7 eV for highly hydrogenated polymeric-like film to 4.7 eV for cross-linked nitrogen-rich film. The dielectric constant was found to decrease from 3.51 to 2.99 with the rise of hydrocarbon groups’ content. The results obtained in this study were compared to the literature data to understand the influence of precursor design to the optical and electrical properties of the films. Full article
Show Figures

Figure 1

Review
Magnetron Sputtering of Transition Metal Nitride Thin Films for Environmental Remediation
Coatings 2022, 12(11), 1746; https://doi.org/10.3390/coatings12111746 - 14 Nov 2022
Cited by 9 | Viewed by 2453
Abstract
The current economic and ecological situation encourages the use of steel to push the technological limits and offer more cost-effective products. The enhancement of steel properties like wear, corrosion, and oxidation resistance is achieved by the addition of small amounts of chemical elements [...] Read more.
The current economic and ecological situation encourages the use of steel to push the technological limits and offer more cost-effective products. The enhancement of steel properties like wear, corrosion, and oxidation resistance is achieved by the addition of small amounts of chemical elements such as Cr, Ni, Si, N, etc. The steel surface can be protected by different treatments such as heating and coating, among others. For many decades, coatings have been an effective solution to protect materials using thin hard films. Several technologies for thin film deposition have been developed. However, some of them are restricted to certain fields because of their complex operating conditions. In addition, some deposition techniques cannot be applied to a large substrate surface type. The magnetron sputtering deposition process is a good option to overcome these challenges and can be used with different substrates of varying sizes with specific growth modes and for a wide range of applications. In this review article, we present the sputtering mechanism and film growth modes and focus on the mechanical and tribological behavior of nitride thin films deposited by the magnetron sputtering technique as a function of process conditions, particularly bias voltage and nitrogen percentage. The biomedical properties of transition metal nitride coatings are also presented. Full article
Show Figures

Figure 1

Article
Water-Repellent Coatings on Corrosion Resistance by Femtosecond Laser Processing
Coatings 2022, 12(11), 1736; https://doi.org/10.3390/coatings12111736 - 13 Nov 2022
Cited by 1 | Viewed by 1395
Abstract
Metal corrosion causes huge economic losses and major disasters every year. Inspired by the lotus leaf and nepenthes pitcher, the superhydrophobic surfaces (SHS) and the slippery liquid-infused porous surfaces (SLIPS) were produced as a potential strategy to prevent metal corrosion. However, how to [...] Read more.
Metal corrosion causes huge economic losses and major disasters every year. Inspired by the lotus leaf and nepenthes pitcher, the superhydrophobic surfaces (SHS) and the slippery liquid-infused porous surfaces (SLIPS) were produced as a potential strategy to prevent metal corrosion. However, how to prepare stable water-repellent coatings that can prevent the intrusion of corrosive ions remains to investigate. In this work, we first fabricated a micro/nano hierarchical structure on the aluminum surface by femtosecond laser processing. Then, the SHS was prepared on the above structure by fluorosilane modification. Finally, the SLIPS was fabricated on the SHS by coating lubricant. The morphology and wettability of the fabricated samples were evaluated by scanning electron microscopy and contact angle measurements. Furthermore, the corrosion resistance properties of SHS and SLIPS in simulated seawater were characterized by electrochemical measurements. From the comparison of the electrochemical parameters of different immersion times, both water-repellent coatings are effective in protecting the aluminum alloy from corrosion in simulated seawater due to reduced contact area between the metal substrate and corrosive solution. In comparison with the SHS, the SLIPS has a corrosion inhibition efficiency of up to 99.95% and it maintains long-term stability in the corrosive solution. This work also provides a promising method for the water-repellent coatings by femtosecond laser processing for metal corrosion prevention in practical industrial applications. Full article
(This article belongs to the Special Issue Novel Coatings for Preventing Marine Biofouling and Corrosion)
Show Figures

Figure 1

Review
Corrosion of Laser Cladding High-Entropy Alloy Coatings: A Review
Coatings 2022, 12(11), 1669; https://doi.org/10.3390/coatings12111669 - 03 Nov 2022
Cited by 3 | Viewed by 1622
Abstract
Material corrosion is a common phenomenon. Severe corrosion not only causes material failure, but may also lead to unexpected catastrophic accidents. Therefore, reducing the loss caused by corrosion has become a problem faced by countries around the world. As a surface modification technology, [...] Read more.
Material corrosion is a common phenomenon. Severe corrosion not only causes material failure, but may also lead to unexpected catastrophic accidents. Therefore, reducing the loss caused by corrosion has become a problem faced by countries around the world. As a surface modification technology, laser cladding (LC) can be used to prepare coatings that can achieve metallurgical bonding with the substrate. High-entropy alloys (HEAs) are a new material with superior anti-corrosion ability. Therefore, HEA coatings prepared by LC have become a research hotspot to improve the anti-corrosive ability of material surfaces. In this work, the effects of LC process parameters, post-processing, and the HEA material system on the anti-corrosion ability of HEA coatings and their mechanisms are reviewed. Among them, the LC process parameters influence the anti-corrosion ability by affecting the macroscopic quality, dilution rate, and uniformity of the coatings. The post-processing enhances the anti-corrosion ability of the coatings by improving the internal defects and refining the grain structure. The anti-corrosion ability of the coatings can be improved by appropriately adding transition metal elements such as Ni, Cr, Co, and rare earth elements such as Ce and Y. However, the lattice distortion, diversification of phase composition, and uneven distribution caused by excess elements will weaken the corrosion protection of the coatings. We reviewed the impact of corrosion medium on the anti-corrosion ability of coatings, in which the temperature and pH value of the corrosion medium affect the quality of the passive film on the surface of the coatings, thereby affecting the anti-corrosion ability of the coatings. Finally, to provide references for future research, the development trend of preparing HEA coatings by LC technology is prospected. Full article
(This article belongs to the Special Issue Laser Cladding Coatings: Microstructure, Properties, and Applications)
Show Figures

Figure 1

Article
Oxidation and Mechanical Behavior of Cr-Coated Laser Beam Welds Made from E110 Zirconium Alloy
Coatings 2022, 12(11), 1623; https://doi.org/10.3390/coatings12111623 - 26 Oct 2022
Cited by 1 | Viewed by 1209
Abstract
This article describes the oxidation resistance of laser beam welds made from E110 zirconium alloy with a chromium coating obtained using multi-cathode magnetron sputtering. Oxidation tests of the welded Zr alloy without and with Cr coating were performed in an air atmosphere at [...] Read more.
This article describes the oxidation resistance of laser beam welds made from E110 zirconium alloy with a chromium coating obtained using multi-cathode magnetron sputtering. Oxidation tests of the welded Zr alloy without and with Cr coating were performed in an air atmosphere at 1100 °C for 2–90 min. Then, analysis of their cross-section microstructure in different regions (weld, heat-affected, and bulk zones) was done using optical microscopy. Hardness measurements and three-point bending tests demonstrated the hardening of the Cr-coated welded Zr alloy after the oxidation that is discussed in the article. Brittle fracture behavior was observed for uncoated Zr weld even after a short period of high-temperature oxidation. Full article
(This article belongs to the Special Issue Advanced Coatings for Accident Tolerant Fuel Claddings)
Show Figures

Figure 1

Article
Solidification Microstructure Prediction of Ti-6Al-4V Alloy Produced by Laser Melting Deposition
Coatings 2022, 12(11), 1610; https://doi.org/10.3390/coatings12111610 - 22 Oct 2022
Cited by 1 | Viewed by 1184
Abstract
The ability to achieve a predictable solidification microstructure would greatly accelerate the qualification of the additive manufacturing process. Solidification microstructure control is a challenging issue for the additive manufacturing of metallic components using the laser melting deposition (LMD) method. To obtain desirable microstructure [...] Read more.
The ability to achieve a predictable solidification microstructure would greatly accelerate the qualification of the additive manufacturing process. Solidification microstructure control is a challenging issue for the additive manufacturing of metallic components using the laser melting deposition (LMD) method. To obtain desirable microstructure characteristics and mechanical properties, it is essential to research the solidification mechanism of microstructures initiated during the LMD process. In this study, the grain morphology and size of an LMD-fabricated Ti-6Al-4V alloy were predicted using a three-dimensional cellular automaton (CA) model coupled with a finite element (FE) model (CA–FE). First, the temperature distribution and solidification microstructure were established with the multi-scale CA–FE model, and the simulated results were shown to be in qualitative agreement with the experimental results. Moreover, the effects of the process parameters on both the thermal characteristics and the solidification microstructure were identified, and the morphologies and sizes of prior β grains under different laser power levels and scanning speeds were compared. The average grain size of the molten pool was shown to decrease with decreasing incident energy (lower laser power/higher scanning speed), and columnar-to-equiaxed transformation could be achieved under the proper processing parameters. This work will serve as a guide for the optimization and regulation of microstructures in the LMD process. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

Article
Finite Element Analysis of Nanoindentation Responses in Bi2Se3 Thin Films
Coatings 2022, 12(10), 1554; https://doi.org/10.3390/coatings12101554 - 15 Oct 2022
Viewed by 1359
Abstract
In this study, the nanoindentation responses of Bi2Se3 thin film were quantitatively analyzed and simulated by using the finite element method (FEM). The hardness and Young’s modulus of Bi2Se3 thin films were experimentally determined using the continuous [...] Read more.
In this study, the nanoindentation responses of Bi2Se3 thin film were quantitatively analyzed and simulated by using the finite element method (FEM). The hardness and Young’s modulus of Bi2Se3 thin films were experimentally determined using the continuous contact stiffness measurements option built into a Berkovich nanoindenter. Concurrently, FEM was conducted to establish a model describing the contact mechanics at the film/substrate interface, which was then used to reproduce the nanoindentation load-depth and hardness-depth curves. As such, the appropriate material parameters were obtained by correlating the FEM results with the corresponding experimental load-displacement curves. Moreover, the detailed nanoindentation-induced stress distribution in the vicinity around the interface of Bi2Se3 thin film and c-plane sapphires was mapped by FEM simulation for three different indenters, namely, the Berkovich, spherical and flat punch indenters. The results indicated that the nanoindentation-induced stress distribution at the film/substrate interface is indeed strongly dependent on the indenter’s geometric shape. Full article
(This article belongs to the Special Issue Recent Advances in the Growth and Characterizations of Thin Films)
Show Figures

Figure 1

Article
Application of the Holomorphic Tauc-Lorentz-Urbach Function to Extract the Optical Constants of Amorphous Semiconductor Thin Films
Coatings 2022, 12(10), 1549; https://doi.org/10.3390/coatings12101549 - 14 Oct 2022
Cited by 3 | Viewed by 1619
Abstract
The Tauc–Lorentz–Urbach (TLU) dispersion model allows us to build a dielectric function from only a few parameters. However, this dielectric function is non-analytic and presents some mathematical drawbacks. As a consequence of this issue, the model becomes inaccurate. In the present work, we [...] Read more.
The Tauc–Lorentz–Urbach (TLU) dispersion model allows us to build a dielectric function from only a few parameters. However, this dielectric function is non-analytic and presents some mathematical drawbacks. As a consequence of this issue, the model becomes inaccurate. In the present work, we will adopt a procedure to conveniently transform the TLU model into a self-consistent dispersion model. The transformation involves the integration of the original TLU imaginary dielectric function ϵ2 by using a Lorentzian-type function of semi-width, Γ. This novel model is analytic and obeys the other necessary mathematical requirements of the optical constants of solid-state materials. The main difference with the non-analytic TLU model occurs at values of the photon energy near or lower than that of the bandgap energy (within the Urbach absorption region). In particular, this new model allows us to reliably extend the optical characterization of amorphous-semiconductor thin films within the limit to zero photon energy. To the best of our knowledge, this is the first time that the analytic TLU model has been successfully used to accurately determine the optical constants of unhydrogenated a-Si films using only their normal-incidence transmission spectra. Full article
(This article belongs to the Special Issue New Advances in Novel Optical Materials and Devices)
Show Figures

Figure 1

Article
Characterization and Tribological Behavior of Electroless-Deposited Ni-P-PTFE Films on NBR Substrates for Dynamic Contact Applications
Coatings 2022, 12(10), 1410; https://doi.org/10.3390/coatings12101410 - 27 Sep 2022
Cited by 1 | Viewed by 1394
Abstract
The use of rubber in dynamic contacts often results in severe degradation and wear of the rubber surface, which is why dynamic rubber seal contacts are usually oil lubricated to ensure their functionality. However, the increasing demand for more convenient and environmentally friendly [...] Read more.
The use of rubber in dynamic contacts often results in severe degradation and wear of the rubber surface, which is why dynamic rubber seal contacts are usually oil lubricated to ensure their functionality. However, the increasing demand for more convenient and environmentally friendly sealing solutions has prompted the development of dry low-friction rubber coatings. In this work, and for the first time, Ni-P and polytetrafluoroethylene (PTFE) particles were co-deposited by electroless plating on Nitrile Butadiene Rubber (NBR), as a low-cost solution to improve the NBR tribological behavior. A cationic surfactant, cetyltrimethylammonium bromide (CTAB), was added to the plating bath to ensure a homogeneous and efficient incorporation of PTFE into the Ni-P. The optimized PTFE incorporation reached 6.8%, and the composite coating adhesion to NBR was 20% higher than that of nickel-phosphorous (Ni-P) films. The tribological properties of the coatings evaluated by pin-on-disk tests showed a marginal decrease in the coefficient of friction (CoF) (10%, 1 N load), compared to that of Ni-P. However, the tested PTFE-based coatings displayed significantly smoother surfaces with less debris and cracks, clearly demonstrating the benefits of the PTFE in terms of wear resistance for loads up to 5 N. Full article
Show Figures

Graphical abstract

Article
Gold Nanoparticles Decorated Titanium Oxide Nanotubes with Enhanced Antibacterial Activity Driven by Photocatalytic Memory Effect
Coatings 2022, 12(9), 1351; https://doi.org/10.3390/coatings12091351 - 16 Sep 2022
Cited by 1 | Viewed by 1307
Abstract
Titanium and its alloys have been widely used for orthopedic and dental implants. However, implant failures often occur due to the implant-related bacterial infections. Herein, titanium oxide nanotubes (TNTs) with an average diameter of 75 nm were formed by anodizing on the surface [...] Read more.
Titanium and its alloys have been widely used for orthopedic and dental implants. However, implant failures often occur due to the implant-related bacterial infections. Herein, titanium oxide nanotubes (TNTs) with an average diameter of 75 nm were formed by anodizing on the surface of titanium, and subsequently gold (Au) nanoparticles were deposited on TNTs by magnetron sputtering (Au@TNTs). The antibacterial study shows that TNTs surface decorated with Au nanoparticles exhibits the preferable effect in restricting the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) even under dark conditions, and the antibacterial rates reached 84% and 75%, respectively. In addition, the constructed film showed no cytotoxicity. Such a selective bactericidal effect of Au@TNTs samples might be attributed to the photocatalytic memory effect, which provides a new insight in the designing of antibacterial surfaces for biomedical application. Full article
Show Figures

Figure 1

Article
Ferroelectric B-Site Modified Bismuth Lanthanum Titanate Thin Films for High-Efficiency PV Systems
Coatings 2022, 12(9), 1315; https://doi.org/10.3390/coatings12091315 - 09 Sep 2022
Cited by 1 | Viewed by 1111
Abstract
Over the past decades, ferroelectric photovoltaic (FE-PV) systems, which use a homogenous ferroelectric material as a light-absorbing layer, have been studied using ferroelectric oxides. The PV activity of materials can be enhanced by adjusting the bandgap of materials, and it would have a [...] Read more.
Over the past decades, ferroelectric photovoltaic (FE-PV) systems, which use a homogenous ferroelectric material as a light-absorbing layer, have been studied using ferroelectric oxides. The PV activity of materials can be enhanced by adjusting the bandgap of materials, and it would have a large effect on the ferroelectric complex oxides. This phenomenon in epitaxial thin films of ferroelectric complex oxide, Bi3.25La0.75Ti3O12 (BLT), Fe- and Co-doped films were observed. Compared with undoped BLT, Co-(BLCT) doping and Fe and Co combined (BLFCT) doping resulted in the gradual reduction in the bandgap and efficient visible light absorption. The reduction in the bandgap to 11.4% and 18.1% smaller than the experimentally measured Eg of the bismuth titanate-based film using a simple Fe- and Co-doping method was performed, while maintaining ferroelectricity by analyzing the BLCT and BLFCT films based on polarization loops, and the temperature range of the out-of-plane lattice parameters and the photocurrent density of the BLFCT film was 32.2 times higher than that of the BLT film, which was caused by the decrease in the bandgap. This simple doping technique can be used to tune additional wide-bandgap complex oxides so that they can be used in photovoltaic energy conversion or optoelectronic devices. Full article
(This article belongs to the Special Issue Optical Thin Film and Photovoltaic (PV) Related Technologies)
Show Figures

Figure 1

Article
Comparison of K340 Steel Microstructure and Mechanical Properties Using Shallow and Deep Cryogenic Treatment
Coatings 2022, 12(9), 1296; https://doi.org/10.3390/coatings12091296 - 02 Sep 2022
Cited by 5 | Viewed by 1506
Abstract
In this research, Böhler K340 cold work tool steel was subjected to three different heat treatment protocols, conventional heat treatment (CHT), shallow cryogenic treatment (SCT), and deep cryogenic treatment (DCT). The study compares the effect of SCT and DCT on the microstructure and [...] Read more.
In this research, Böhler K340 cold work tool steel was subjected to three different heat treatment protocols, conventional heat treatment (CHT), shallow cryogenic treatment (SCT), and deep cryogenic treatment (DCT). The study compares the effect of SCT and DCT on the microstructure and consequently on the selected mechanical properties (micro- and macroscale hardness and impact toughness). The study shows no significant difference in macroscale hardness after the different heat treatments. However, the microhardness values indicate a slightly lower hardness in the case of SCT and DCT. Microstructure analysis with light (LM) and scanning electron microscopy (SEM) indicated a finer and more homogenous microstructure with smaller lath size and preferential orientation of the martensitic matrix in SCT and DCT samples compared to CHT. In addition, the uniform precipitation of more spherical and finer carbides is determined for both cryogenic treatments. Moreover, the precipitation of small dispersed secondary carbides is observed in SCT and DCT, whereas in the CHT counterparts, these carbide types were not detected. X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) confirms that SCT and DCT are very effective in minimizing the amount of retained austenite down to 1.8 vol.% for SCT and even below 1 vol.% for the DCT variant. Full article
Show Figures

Figure 1

Article
Spectrophotometric Characterization of Thin Semi-Transparent Aluminum Films Prepared by Electron Beam Evaporation and Magnetron Sputtering
Coatings 2022, 12(9), 1278; https://doi.org/10.3390/coatings12091278 - 01 Sep 2022
Cited by 2 | Viewed by 1594
Abstract
Aluminum thin films with thicknesses between approximately 10 and 60 nm have been deposited by evaporation and sputtering techniques. Layer characterization focused on reflectance, optical constants, and surface quality. Reflectance fits have been performed using a merger of three standard dispersion models, namely [...] Read more.
Aluminum thin films with thicknesses between approximately 10 and 60 nm have been deposited by evaporation and sputtering techniques. Layer characterization focused on reflectance, optical constants, and surface quality. Reflectance fits have been performed using a merger of three standard dispersion models, namely the Drude model, the Lorentzian oscillator model, and the beta-distributed oscillator model. A thickness dependence of the optical constants could be established in the investigated thickness range. Full article
Show Figures

Figure 1

Article
Characteristics of Thin High Entropy Alloy Films Grown by Pulsed Laser Deposition
Coatings 2022, 12(8), 1211; https://doi.org/10.3390/coatings12081211 - 18 Aug 2022
Viewed by 1282
Abstract
Starting from solid-solutions (SS) of AlCoCrFeNix high-entropy alloys (HEAs) that have been produced with high purity constituent elements by vacuum arc remelting (VAR) method varying the nickel molar ratio x from 0.2 to 2.0, we investigated the synthesis of protective thin films [...] Read more.
Starting from solid-solutions (SS) of AlCoCrFeNix high-entropy alloys (HEAs) that have been produced with high purity constituent elements by vacuum arc remelting (VAR) method varying the nickel molar ratio x from 0.2 to 2.0, we investigated the synthesis of protective thin films of HEAs and high-entropy nitrides (HENs) with the aid of the pulsed laser deposition (PLD) system. The structure of all ten available bulk targets have been examined by means of X-Ray Diffraction (XRD), as well as their elemental composition by means of energy dispersion X-ray spectroscopy (EDS). Three targets with nickel molar composition x = 0.4, 1.2 and 2.0 corresponding to BCC, mixed BCC and FCC, and finally FCC structures were used for thin film depositions using a KrF excimer laser. The depositions were performed in residual low vacuum (10−7 mbar) and under N2 (10−4 mbar) at room temperature (RT~25 °C) on Si and glass substrates. The deposited films’ structure was investigated using grazing incidence XRD, their surface morphology, thickness and elemental composition by scanning electron microscopy (SEM), EDS and X-ray photoelectron spectroscopy (XPS), respectively. A homemade four-point probe (4PP) set-up was applied to determine layers electrical resistance. Besides, a Nanoindentation (NI) was employed to test films’ mechanical properties. XRD results showed that all deposited films, regardless of the initial structure of targets, were a mixture of FCC and BCC structures. Additionally, the quantitative and qualitative EDS and XPS results showed that the elemental composition of films was rather close to that of the targets. The depositions under an N2 atmosphere resulted in the inclusion of several percentage nitrogen atoms in a metallic nitride type compound into films, which may explain their higher electrical resistivity. The Young’s modulus, nanohardness and friction coefficient values showed that the deposited films present good mechanical properties and could be used as protective coatings to prevent damage in harsh environments. Full article
(This article belongs to the Special Issue 2D Materials-Based Thin Films and Coatings)
Show Figures

Figure 1

Article
Effect of the Cooling Rate of Thermal Simulation on the Microstructure and Mechanical Properties of Low-Carbon Bainite Steel by Laser-Arc Hybrid Welding
Coatings 2022, 12(8), 1045; https://doi.org/10.3390/coatings12081045 - 24 Jul 2022
Cited by 6 | Viewed by 1255
Abstract
A new kind of low-carbon bainite steel with excellent strength and toughness was developed, serving as the bogie of the next-generation high-speed train. However, the softening of the heat-affected zone (HAZ) in laser-arc hybrid welding (LAHW) needs to be overcome. In this study, [...] Read more.
A new kind of low-carbon bainite steel with excellent strength and toughness was developed, serving as the bogie of the next-generation high-speed train. However, the softening of the heat-affected zone (HAZ) in laser-arc hybrid welding (LAHW) needs to be overcome. In this study, the effect of the cooling rate of the LAHW process on the microstructure and mechanical properties in the HAZ was explored via thermal simulation. The results showed that with increased cooling rate, the grain size increased, the content of lath martensite decreased, and the lath bainite gradually changed to a granular shape in the thermal simulation specimen. With the decrease in the cooling rate, i.e., with the increase of t8/5, the strength–toughness matching of the material showed a downward trend. The thermal simulation specimen with a t8/5 of 6~8 s had higher strength and good toughness, which can be considered a potential welding parameter reference. The content of martensitic austenite (M-A) constituents was the main factor that determined the strength and toughness of the joint. During the tensile test, the axial force caused the material to tighten, and the transverse stress as obvious in the part of the M-A constituents that are prone to microcracks and many defects, resulting in cracks, paths, and multi-component layers in the center. As a result, the thermal cycle specimens had mixed fracture characteristics. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

Article
Gravure Printing for PVDF Thin-Film Pyroelectric Device Manufacture
Coatings 2022, 12(7), 1020; https://doi.org/10.3390/coatings12071020 - 19 Jul 2022
Cited by 3 | Viewed by 2076
Abstract
Pyroelectric energy harvesting is one of the more recent and promising solid-state approaches for directly converting time-dependent temperature fluctuations into electric energy. Conventional printing technologies can offer many advantages for the production of pyroelectric thin-film-based devices, such as low cost, low temperature, the [...] Read more.
Pyroelectric energy harvesting is one of the more recent and promising solid-state approaches for directly converting time-dependent temperature fluctuations into electric energy. Conventional printing technologies can offer many advantages for the production of pyroelectric thin-film-based devices, such as low cost, low temperature, the use of flexible substrates and shaping at the same time as deposition. Nevertheless, some issues related to low printed thickness and film-forming microstructure control need to be addressed. In this exploratory study, the possibility of exploiting the highly attractive gravure printing process for the potential industrial manufacture of flexible polyvinylidene fluoride (PVDF) thin-film pyroelectric devices was investigated. By the use of corona pre-treatment of the printing substrate and low-temperature polar solvent evaporation, multilayer gravure-printed PVDF pyroelectric devices were successfully manufactured for the first time, achieving a maximum generated current of 0.1 nA at 2.5 K/s from a device with an active area of 1 cm2. Considering the very low thermal inertia and performance scaling by the area expected for pyroelectric thin-film-based devices, combined with the upscaling potential of roll-to-roll gravure printing, our results provide new opportunities for on-demand, low-cost pyroelectric device manufacture and their integration in hybrid harvesters. Full article
Show Figures

Graphical abstract

Article
Mechanical Properties and Thermal Stability of CrZrN/CrZrSiN Multilayer Coatings with Different Bilayer Periods
Coatings 2022, 12(7), 1025; https://doi.org/10.3390/coatings12071025 - 19 Jul 2022
Cited by 5 | Viewed by 1435
Abstract
The CrZrN/CrZrSiN multilayer coatings at a bilayer period range decreasing from 1.35 μm to 0.45 μm were synthesized on a Si (100) wafer and WC-6 wt.% Co substrate using a closed-field unbalanced magnetron sputter, and the thickness effects on the mechanical properties and [...] Read more.
The CrZrN/CrZrSiN multilayer coatings at a bilayer period range decreasing from 1.35 μm to 0.45 μm were synthesized on a Si (100) wafer and WC-6 wt.% Co substrate using a closed-field unbalanced magnetron sputter, and the thickness effects on the mechanical properties and thermal stability were investigated. The CrZrN/CrZrSiN multilayer coatings showed high hardness and elastic modulus in the ranges of 28 to 33 GPa and 255 to 265 GPa, respectively, and the friction coefficient showed the lowest value of 0.24 on the multilayer coating with a bilayer period of 0.54 μm. The bilayer periods affected the adhesion strength of the multilayer coatings. From the scratch test, the critical load (Lc2) steadily increased with the decreasing of the bilayer period, and the CrZrN/CrZrSiN multilayer coating with a bilayer period of 0.45 μm showed the highest critical load (Lc2) of 79 N. In the case of the annealing test, the bilayer periods affected the thermal stability of the multilayer coatings, and the CrZrN/CrZrSiN multilayer coatings with 0.54 μm showed a maximum hardness value of approximately 30 GPa up to 800 °C. Full article
(This article belongs to the Special Issue Technologies of Coatings and Surface Hardening for Tool Industry II)
Show Figures

Figure 1

Article
Implementing Supervised and Unsupervised Deep-Learning Methods to Predict Sputtering Plasma Features, a Step toward Digitizing Sputter Deposition of Thin Films
Coatings 2022, 12(7), 953; https://doi.org/10.3390/coatings12070953 - 05 Jul 2022
Viewed by 1505
Abstract
The spectral emission data from the plasma glow of various sputtering targets containing indium oxide, zinc oxide, and tin oxide were obtained. The plasma was generated at various power and chamber pressures. These spectral data were then converted into two-dimensional arrays by implementing [...] Read more.
The spectral emission data from the plasma glow of various sputtering targets containing indium oxide, zinc oxide, and tin oxide were obtained. The plasma was generated at various power and chamber pressures. These spectral data were then converted into two-dimensional arrays by implementing a basic array-reshaping technique and a more complex procedure utilizing an unsupervised deep-learning technique, known as the self-organizing-maps method. The two-dimensional images obtained from each single-emission spectrum of the plasma mimic an image that can then be used to train a convolutional neural network model capable of predicting certain plasma features, such as impurity levels in the sputtering target, working gas composition, plasma power, and chamber pressure during the machine operation. We show that our single-array-to-2D-array conversion technique, coupled with deep-learning techniques and computer vision, can achieve high predictive accuracy and can, therefore, be fundamental to the construction of a sputtering system’s digital twin. Full article
(This article belongs to the Special Issue New Advances in Plasma Deposition and Its Applications)
Show Figures

Figure 1

Article
The Role of Anodising Parameters in the Performance of Bare and Coated Aerospace Anodic Oxide Films
Coatings 2022, 12(7), 908; https://doi.org/10.3390/coatings12070908 - 27 Jun 2022
Cited by 3 | Viewed by 1869
Abstract
The anodising process parameters (voltage, temperature, and electrolyte) control the morphology and the chemical composition of the resulting anodic oxide film by altering the balance between oxide growth and oxide dissolution reactions. The porosity of the oxide film is reduced by the addition [...] Read more.
The anodising process parameters (voltage, temperature, and electrolyte) control the morphology and the chemical composition of the resulting anodic oxide film by altering the balance between oxide growth and oxide dissolution reactions. The porosity of the oxide film is reduced by the addition of tartaric acid to a sulfuric acid electrolyte, while anodising at elevated temperatures enhances oxide dissolution, leading to wider pores and rougher surfaces. No significant changes in the oxide chemical composition as a function of anodising parameters was found; in particular, no tartrate incorporation took place. The resistance of uncoated anodic oxide films against aggressive media and galvanic stress as a function of anodising parameters has been studied by electrochemical methods. Anodising in a mixed tartaric and sulfuric acid electrolyte improves the resistance of the anodic oxide against galvanic stress and aggressive media in comparison to sulfuric acid anodising processes. However, the corrosion protection performance of the anodic oxide films in combination with a corrosion-inhibitor loaded organic coating is not governed by the blank oxide properties but by the adhesion-enhancing morphological features formed during anodising at elevated temperatures at the oxide/coating interface. Full article
(This article belongs to the Special Issue Surface Modification/Engineering for Electrochemical Applications)
Show Figures

Figure 1

Article
Effects of Substrate Temperature on Nanomechanical Properties of Pulsed Laser Deposited Bi2Te3 Films
Coatings 2022, 12(6), 871; https://doi.org/10.3390/coatings12060871 - 20 Jun 2022
Cited by 1 | Viewed by 1474
Abstract
The correlations among microstructure, surface morphology, hardness, and elastic modulus of Bi2Te3 thin films deposited on c-plane sapphire substrates by pulsed laser deposition are investigated. X-ray diffraction (XRD) and transmission electron microscopy are used to characterize the microstructures of [...] Read more.
The correlations among microstructure, surface morphology, hardness, and elastic modulus of Bi2Te3 thin films deposited on c-plane sapphire substrates by pulsed laser deposition are investigated. X-ray diffraction (XRD) and transmission electron microscopy are used to characterize the microstructures of the Bi2Te3 thin films. The XRD analyses revealed that the Bi2Te3 thin films were highly (00l)-oriented and exhibited progressively improved crystallinity when the substrate temperature (TS) increased. The hardness and elastic modulus of the Bi2Te3 thin films determined by nanoindentation operated with the continuous contact stiffness measurement (CSM) mode are both substantially larger than those reported for bulk samples, albeit both decrease monotonically with increasing crystallite size and follow the Hall—Petch relation closely. Moreover, the Berkovich nanoindentation-induced crack exhibited trans-granular cracking behaviors for all films investigated. The fracture toughness was significantly higher for films deposited at the lower TS; meanwhile, the fracture energy was almost the same when the crystallite size was suppressed, which indicated a prominent role of grain boundary in governing the deformation characteristics of the present Bi2Te3 films. Full article
(This article belongs to the Special Issue Recent Advances in the Growth and Characterizations of Thin Films)
Show Figures

Figure 1

Article
Diffusion Barrier Characteristics of WSiN Films
Coatings 2022, 12(6), 811; https://doi.org/10.3390/coatings12060811 - 10 Jun 2022
Cited by 2 | Viewed by 1417
Abstract
WSiN films were produced through hybrid pulse direct current/radio frequency magnetron co-sputtering and evaluated as diffusion barriers for Cu metallization. The Cu/WSiN/Si assemblies were annealed for 1 h in a vacuum at 500–900 °C. The structural stability and diffusion barrier performance of the [...] Read more.
WSiN films were produced through hybrid pulse direct current/radio frequency magnetron co-sputtering and evaluated as diffusion barriers for Cu metallization. The Cu/WSiN/Si assemblies were annealed for 1 h in a vacuum at 500–900 °C. The structural stability and diffusion barrier performance of the WSiN films were explored through X-ray diffraction, Auger electron spectroscopy, and sheet resistance measurement. The results indicated that the Si content of WSiN films increased from 0 to 9 at.% as the power applied to the Si target was increased from 0 to 150 W. The as-deposited W76N24, W68Si0N32, and W63Si4N33 films formed a face-centered cubic W2N phase, whereas the as-deposited W59Si9N32 film was near-amorphous. The lattice constants of crystalline WSiN films decreased after annealing. The sheet resistance of crystalline WSiN films exhibited a sharp increase as they were annealed at 800 °C, accompanied by the formation of a Cu3Si compound. The failure of the near-amorphous W59Si9N32 barrier against Cu diffusion was observed when annealed at 900 °C. Full article
(This article belongs to the Collection Feature Paper Collection in Thin Films)
Show Figures

Figure 1

Review
Nano- and Micro-Scale Impact Testing of Hard Coatings: A Review
Coatings 2022, 12(6), 793; https://doi.org/10.3390/coatings12060793 - 08 Jun 2022
Cited by 9 | Viewed by 2032
Abstract
In this review, the operating principles of the nano-impact test technique are described, compared and contrasted to micro- and macro-scale impact tests. Impact fatigue mechanisms are discussed, and the impact behaviour of three different industrially relevant coating systems has been investigated in detail. [...] Read more.
In this review, the operating principles of the nano-impact test technique are described, compared and contrasted to micro- and macro-scale impact tests. Impact fatigue mechanisms are discussed, and the impact behaviour of three different industrially relevant coating systems has been investigated in detail. The coating systems are (i) ultra-thin hard carbon films on silicon, (ii) DLC on hardened tool steel and (iii) nitrides on WC-Co. The influence of the mechanical properties of the substrate and the load-carrying capacity (H3/E2) of the coating, the use of the test to simulate erosion, studies modelling the nano- and micro-impact test and performing nano- and micro-impact tests at elevated temperature are also discussed. Full article
Show Figures

Figure 1

Article
Reduced On-Resistance and Improved 4H-SiC Junction Barrier Schottky Diodes Performance by Laser Annealing on C-Face Ohmic Regions in Thin Structures
Coatings 2022, 12(6), 777; https://doi.org/10.3390/coatings12060777 - 04 Jun 2022
Cited by 4 | Viewed by 1811
Abstract
In this study, we investigated the characteristics of the n-type Ni/SiC ohmic contact using the laser annealing process on thin wafers. The electrical behavior of the ohmic contacts was tested in 4H-SiC JBS diode devices. As a result, a wafer thickness of 100 [...] Read more.
In this study, we investigated the characteristics of the n-type Ni/SiC ohmic contact using the laser annealing process on thin wafers. The electrical behavior of the ohmic contacts was tested in 4H-SiC JBS diode devices. As a result, a wafer thickness of 100 μm in the 4H-SiC JBS diode achieved a forward voltage of 1.33 V at 20 A with a laser annealing process using Ni silicide. Using a laser annealing process on a wafer thickness of 100 μm, an on-resistance decrease of almost 22% was demonstrated. Based on our experimental results, we suggest an alternative laser annealing fabrication scheme to obtain low on-resistance SiC power devices with thin structures after SiC grinding. Full article
(This article belongs to the Special Issue Optical Thin Film and Photovoltaic (PV) Related Technologies)
Show Figures

Figure 1

Article
Synthesis and Characterization of Boron Thin Films Using Chemical and Physical Vapor Depositions
Coatings 2022, 12(5), 685; https://doi.org/10.3390/coatings12050685 - 16 May 2022
Cited by 3 | Viewed by 2046
Abstract
Boron as thin film material is of relevance for use in modern micro- and nano-fabrication technology. In this research boron thin films are realized by a number of physical and chemical deposition methods, including magnetron sputtering, electron-beam evaporation, plasma enhanced chemical vapor deposition [...] Read more.
Boron as thin film material is of relevance for use in modern micro- and nano-fabrication technology. In this research boron thin films are realized by a number of physical and chemical deposition methods, including magnetron sputtering, electron-beam evaporation, plasma enhanced chemical vapor deposition (CVD), thermal/non-plasma CVD, remote plasma CVD and atmospheric pressure CVD. Various physical, mechanical and chemical characteristics of these boron thin films are investigated, i.e., deposition rate, uniformity, roughness, stress, composition, defectivity and chemical resistance. Boron films realized by plasma enhanced chemical vapor deposition (PECVD) are found to be inert for conventional wet chemical etchants and have the lowest amount of defects, which makes this the best candidate to be integrated into the micro-fabrication processes. By varying the deposition parameters in the PECVD process, the influences of plasma power, pressure and precursor inflow on the deposition rate and intrinsic stress are further explored. Utilization of PECVD boron films as hard mask for wet etching is demonstrated by means of patterning followed by selective structuring of the silicon substrate, which shows that PECVD boron thin films can be successfully applied for micro-fabrication. Full article
(This article belongs to the Special Issue Thin-Film Synthesis, Characterization and Properties)
Show Figures

Figure 1

Article
Influence of Manufacturging Parameters on Microstructure, Chemical Composition, Microhardness, Corrosion and Wear Resistance of ZrC Coatings Produced on Monel®400 Using Laser Processing Technology
Coatings 2022, 12(5), 651; https://doi.org/10.3390/coatings12050651 - 10 May 2022
Cited by 3 | Viewed by 2915
Abstract
This paper presents the influence of production parameters and analysis of ZrC coatings production on Monel®400 substrate. The effects of laser beam power on the microstructure, chemical composition, corrosion resistance and on selected mechanical properties such as microhardness and wear resistance [...] Read more.
This paper presents the influence of production parameters and analysis of ZrC coatings production on Monel®400 substrate. The effects of laser beam power on the microstructure, chemical composition, corrosion resistance and on selected mechanical properties such as microhardness and wear resistance were investigated. The investigation consisted of the production of composite coatings using laser processing of pre-coatings made in paste form on a nickel based alloy (Monel®400). In the studies, a diode laser with a rated power of 3 kW was used. The laser processing was carried out using a constant laser beam scanning speed of 3 m/min and three different laser beam powers: 350, 450, 550 W. It was found that it is possible to form composite coatings on a nickel-copper alloy substrate, where the matrix is made of nickel-copper based alloy from substrate and the reinforcing phase is ZrC. Investigation was carried out for single and multiple laser tracks. Based on the studies it was found that reinforcing phase content decreased as laser beam power increased. A similar relationship was found for all the other investigated properties such as microhardness, corrosion resistance, and wear resistance. As laser beam power increases, the microhardness of the Ni-Cu-based matrix decreases. However, is still greater than for the Monel®400 substrate. It was found that the amount of hard carbide phases in the Ni-Cu-based matrix affects the corrosion and wear resistance of the coatings. Full article
(This article belongs to the Special Issue Application of Coatings in Industry and Means of Transport)
Show Figures

Figure 1

Article
Strain Engineering of Domain Coexistence in Epitaxial Lead-Titanite Thin Films
Coatings 2022, 12(4), 542; https://doi.org/10.3390/coatings12040542 - 18 Apr 2022
Cited by 1 | Viewed by 1579
Abstract
Phase and domain structures in ferroelectric materials play a vital role in determining their dielectric and piezoelectric properties. Ferroelectric thin films with coexisting multiple domains or phases often have fascinating high sensitivity and ultrahigh physical properties. However, the control of the coexisting multiple [...] Read more.
Phase and domain structures in ferroelectric materials play a vital role in determining their dielectric and piezoelectric properties. Ferroelectric thin films with coexisting multiple domains or phases often have fascinating high sensitivity and ultrahigh physical properties. However, the control of the coexisting multiple domains is still challenging, thus necessitating the theoretical prediction. Here, we studied the phase coexistence and the domain morphology of PbTiO3 epitaxial films by using a Landau–Devonshire phenomenological model and canonic statistical method. Results show that PbTiO3 films can exist in multiple domain structures that can be diversified by the substrates with different misfit strains. Experimental results for PbTiO3 epitaxial films on different substrates are in good accordance with the theoretical prediction, which shows an alternative way for further manipulation of the ferroelectric domain structures. Full article
(This article belongs to the Special Issue Ferroelectric Thin Films and Composites)
Show Figures

Figure 1

Review
Application of Metal Nanoparticles for Production of Self-Sterilizing Coatings
Coatings 2022, 12(4), 480; https://doi.org/10.3390/coatings12040480 - 01 Apr 2022
Cited by 10 | Viewed by 2259
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are [...] Read more.
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof. Full article
Show Figures

Figure 1

Article
Acoustic Emission Monitoring of High-Entropy Oxyfluoride Rock-Salt Cathodes during Battery Operation
Coatings 2022, 12(3), 402; https://doi.org/10.3390/coatings12030402 - 18 Mar 2022
Cited by 8 | Viewed by 2518
Abstract
High-entropy materials with tailorable properties are receiving increasing interest for energy applications. Among them, (disordered) rock-salt oxyfluorides hold promise as next-generation cathodes for use in secondary batteries. Here, we study the degradation behavior of a high-entropy oxyfluoride cathode material in lithium cells in [...] Read more.
High-entropy materials with tailorable properties are receiving increasing interest for energy applications. Among them, (disordered) rock-salt oxyfluorides hold promise as next-generation cathodes for use in secondary batteries. Here, we study the degradation behavior of a high-entropy oxyfluoride cathode material in lithium cells in situ via acoustic emission (AE) monitoring. The AE signals allow acoustic events to be correlated with different processes occurring during battery operation. The initial cycle proved to be the most acoustically active due to significant chemo-mechanical degradation and gas evolution, depending on the voltage window. Irrespective of the cutoff voltage on charge, the formation and propagation of cracks in the electrode was found to be the primary source of acoustic activity. Taken together, the findings help advance our understanding of the conditions that affect the cycling performance and provide a foundation for future investigations on the topic. Full article
(This article belongs to the Special Issue 10th Anniversary of Coatings: Invited Papers for Thin Films Section)
Show Figures

Figure 1

Article
Electrical and Hysteresis Characteristics of Top-Gate InGaZnO Thin-Film Transistors with Oxygen Plasma Treatment Prior to TEOS Oxide Gate Dielectrics
Coatings 2022, 12(3), 383; https://doi.org/10.3390/coatings12030383 - 14 Mar 2022
Viewed by 1928
Abstract
We report the impact of oxygen (O2) plasma time on an amorphous indium–gallium–zinc oxide (a-IGZO) thin-film surface that was carried out before TEOS deposition in order to optimize the performance of thin-film transistors (TFTs). TheO2 plasma time of 60 s [...] Read more.
We report the impact of oxygen (O2) plasma time on an amorphous indium–gallium–zinc oxide (a-IGZO) thin-film surface that was carried out before TEOS deposition in order to optimize the performance of thin-film transistors (TFTs). TheO2 plasma time of 60 s possessed the largest on/off current ratio of >108, with a field-effect mobility (µFE) of 8.14 cm2 V−1 s−1, and the lowest subthreshold swing (S.S.) of 0.395 V/decade, with a threshold voltage (Vth) of −0.14 V. However, increases in Ioff and S.S. and decreases in the µFE were observed for the longer O2 plasma time of 120 s. As the O2 plasma time increased, the reduction in the carrier concentration in the IGZO channel layer may have resulted in an increase in Vth for the IGZO TFT devices. With an increase in the O2 plasma time, the surface roughness of the IGZO channel layer was increased, the carbon content in the TEOS oxide film was reduced, and the film stoichiometry was improved. The SIMS depth profile results showed that the O/Si ratio of TEOS oxide for the sample with the O2 plasma time of 60 s was 2.64, and its IGZO TFT device had the best electrical characteristics. In addition, in comparison to the IGZO TFT device without O2 annealing, larger clockwise hysteresis in the transfer characteristics revealed that a greater number of electrons were trapped at the interface between TEOS oxide and the a-IGZO channel layer. However, hysteresis curves of the O2-annealed IGZO TFTs with various O2 plasma times were greatly reduced, meaning that the electron traps were reduced by O2 annealing. Full article
(This article belongs to the Special Issue New Advances in Thin-Film Transistor)
Show Figures

Figure 1

Review
High Entropy Alloys Coatings Deposited by Laser Cladding: A Review of Grain Boundary Wetting Phenomena
Coatings 2022, 12(3), 343; https://doi.org/10.3390/coatings12030343 - 06 Mar 2022
Cited by 13 | Viewed by 2573
Abstract
High-entropy alloys (HEAs) are called also alloys without a main component or multiprincipal alloys. They consist of five, six or more components in more or less equal proportions and possess unique properties. Several dozens of thousands of publications have already been devoted to [...] Read more.
High-entropy alloys (HEAs) are called also alloys without a main component or multiprincipal alloys. They consist of five, six or more components in more or less equal proportions and possess unique properties. Several dozens of thousands of publications have already been devoted to bulk HEAs, while HEA coatings are just beginning to develop. More than half of the works on the deposition of HEA coatings are devoted to laser cladding. In the laser cladding process, a mixture of powders on a substrate is melted in a focused laser beam, which sequentially scans the substrate. In the heated zone, the powder mixture melts. At the end of the crystallization process, a solidified polycrystal and a small amount of residual melt are found in the heated zone. It is possible that the grain boundaries (GBs) in the solidified polycrystal are incompletely or fully wetted by this liquid phase. In this way, the GB wetting with a melt determines the morphology and microstructure of HEAs coatings. This review analyzes GB wetting in single-phase HEAs, as well as in HEAs containing two or more phases. We analyze how the HEAs’ composition, laser scanning speed, laser beam power, external magnetic field or ultrasonic impact affect the microstructure and GB wetting. It is also shown how the microstructure and GB wetting change over the thickness of the rather thick as well as multilayer coatings deposited using a laser cladding. Full article
(This article belongs to the Special Issue Laser Processing Effects on Special Steels and High Entropy Alloys)
Show Figures

Figure 1

Article
Verification of the Influence of Particle Shape on the Chemical Resistance of Epoxy Coating and Use of Waste Glass as the Filler
Coatings 2022, 12(3), 309; https://doi.org/10.3390/coatings12030309 - 24 Feb 2022
Cited by 3 | Viewed by 1914
Abstract
The use of suitable secondary raw materials as fillers in progressive, protective agents primarily intended for horizontal concrete construction is very effective not only from the ecological but also from the economic point of view. The impact of using various types of waste [...] Read more.
The use of suitable secondary raw materials as fillers in progressive, protective agents primarily intended for horizontal concrete construction is very effective not only from the ecological but also from the economic point of view. The impact of using various types of waste glass as fillers on the mechanical parameters of epoxy coatings was experimentally verified. Assessing the dependency of the coating’s chemical resistance on the shape of the used filler’s particles was the main aim of the performed research. A solvent-free epoxy suitable for a chemically aggressive environment was selected for the experiment. These were epoxy coatings filled with a micro filler based on raw materials such as glass flakes and silica flour. Three tested formulations containing fillers with different particle shapes and characteristics were exposed to H2SO4, HCl, CH2O2 and NaOH at concentrations of 5% and 30% and evaluated after 60, 90 and 120 days. The chemical resistance assessment was carried out not only visually but also using a scanning electron microscope (SEM). Thanks to the use of the waste glass as a coating filler, tensile properties and hardness improved, and its use did not negatively affect the chemical resistance and adhesion of the epoxy coatings. It was found that the shape of the filler particles influences the resistance of the coating against a chemically aggressive environment. The epoxy coating containing pre-treated waste windshield glass (shards) showed even better properties than the reference coating. Full article
Show Figures

Figure 1

Review
A Review on In Situ Mechanical Testing of Coatings
Coatings 2022, 12(3), 299; https://doi.org/10.3390/coatings12030299 - 23 Feb 2022
Cited by 5 | Viewed by 4021
Abstract
Real-time evaluation of materials’ mechanical response is crucial to further improve the performance of surfaces and coatings because the widely used post-processing evaluation techniques (e.g., fractography analysis) cannot provide deep insight into the deformation and damage mechanisms that occur and changes in coatings’ [...] Read more.
Real-time evaluation of materials’ mechanical response is crucial to further improve the performance of surfaces and coatings because the widely used post-processing evaluation techniques (e.g., fractography analysis) cannot provide deep insight into the deformation and damage mechanisms that occur and changes in coatings’ material corresponding to the dynamic thermomechanical loading conditions. The advanced in situ examination methods offer deep insight into mechanical behavior and material failure with remarkable range and resolution of length scales, microstructure, and loading conditions. This article presents a review on the in situ mechanical testing of coatings under tensile and bending examinations, highlighting the commonly used in situ monitoring techniques in coating testing and challenges related to such techniques. Full article
(This article belongs to the Special Issue Micro- and Nano- Mechanical Testing of Coatings and Surfaces)
Show Figures

Figure 1

Article
Thin Film Fabrication by Pulsed Laser Deposition from TiO2 Targets in O2, N2, He, or Ar for Dye-Sensitized Solar Cells
Coatings 2022, 12(3), 293; https://doi.org/10.3390/coatings12030293 - 22 Feb 2022
Cited by 6 | Viewed by 1959
Abstract
Active semiconductor layers of TiO2 were synthesized via pulsed laser deposition in He, N2, O2, or Ar to manufacture DSSC structures. As-prepared nanostructured TiO2 coatings grown on FTO were photosensitized by the natural absorption of the N719 [...] Read more.
Active semiconductor layers of TiO2 were synthesized via pulsed laser deposition in He, N2, O2, or Ar to manufacture DSSC structures. As-prepared nanostructured TiO2 coatings grown on FTO were photosensitized by the natural absorption of the N719 (Ruthenium 535-bis TBA) dye to fabricate photovoltaic structures. TiO2 photoanode nanostructures with increased adsorption areas of the photosensitizer (a combination with voluminous media) were grown under different deposition conditions. Systematic SEM, AFM, and XRD investigations were carried out to study the morphological and structural characteristics of the TiO2 nanostructures. It was shown that the gas nature acts as a key parameter of the architecture and the overall performance of the deposited films. The best electro-optical performance was reached for photovoltaic structures based on TiO2 coatings grown in He, as was demonstrated by the short-circuit current (Isc) of 5.40 mA, which corresponds to the higher recorded roughness (of 44 ± 2.9 nm RMS). The higher roughness is thus reflected in a more efficient and deeper penetration of the dye inside the nanostructured TiO2 coatings. The photovoltaic conversion efficiency (η) was 1.18 and 2.32% for the DSSCs when the TiO2 coatings were deposited in O2 and He, respectively. The results point to a direct correlation between the electro-optical performance of the prepared PV cells, the morphology of the TiO2 deposited layers, and the crystallinity features, respectively. Full article
Show Figures

Figure 1

Article
Impact of Remelting in the Microstructure and Corrosion Properties of the Ti6Al4V Fabricated by Selective Laser Melting
Coatings 2022, 12(2), 284; https://doi.org/10.3390/coatings12020284 - 21 Feb 2022
Cited by 4 | Viewed by 2229
Abstract
The presence of defects like porosity and lack of fusion can negatively affect the properties of the materials manufactured by Selective Laser Melting (SLM). The optimization of the manufacturing conditions allows reducing the number of defects, but there is a limit for each [...] Read more.
The presence of defects like porosity and lack of fusion can negatively affect the properties of the materials manufactured by Selective Laser Melting (SLM). The optimization of the manufacturing conditions allows reducing the number of defects, but there is a limit for each manufacturing material and process. To expand the manufacturing envelope, a remelting after every layer of the SLM process has been used to manufacture Ti6Al4V alloy samples using an SLM with a CO2 laser. The effect of this processing method on the microstructure, defects, hardness, and, especially, the corrosion properties was studied. It was concluded that the laser remelting strategy causes an increment of the α and β phases from the dissolution of metastable α’. This technique also provokes a decrease in the number of defects and a reduction of the hardness, which are also reduced with lower scanning speeds. On the other hand, all the corrosion tests show that a low scanning speed and the laser remelting strategy improve the corrosion resistance of the Ti6Al4V alloy since parameters like the Open Circuit Potential (OCP) and the Polarization Resistance (Rp) are nobler and the mass gain is lower. Full article
(This article belongs to the Special Issue The Applications of Laser Processing and Additive Manufacturing)
Show Figures

Graphical abstract

Article
Novel Hydrophobic Nanostructured Antibacterial Coatings for Metallic Surface Protection
Coatings 2022, 12(2), 253; https://doi.org/10.3390/coatings12020253 - 15 Feb 2022
Cited by 9 | Viewed by 2952
Abstract
A simple and cost-efficient method to modify different surfaces in order to improve their bioactivity, corrosion and wear resistance proved to be sol-gel coatings. The silane layers have been shown to be effective in the protection of steel, aluminum or magnesium alloys and [...] Read more.
A simple and cost-efficient method to modify different surfaces in order to improve their bioactivity, corrosion and wear resistance proved to be sol-gel coatings. The silane layers have been shown to be effective in the protection of steel, aluminum or magnesium alloys and copper and copper alloys. Moreover, it has been found that the adding of different inorganic nanoparticles into silica films leads to increasing their performance regarding corrosion protection. In this study, we fabricated, a simple sol-gel method, transparent mono- and bi-layered hydrophobic coatings with simultaneous antibacterial, hydrophobic and anti-corrosive properties for the protection of metallic surfaces against the action of air pollutants or from biological attacks of pathogens. The first layer (the base) of the coating contains silver (Ag) or zinc oxide (ZnO) nanoparticles with an antibacterial effect. The second layer includes zinc oxide nanoparticles with flower-like morphology to increase the hydrophobicity of the coating and to improve corrosion-resistant properties. The second layer of the coating contains a fluorinated silica derivative, 1H,1H,2H,2H-perfluorooctyl triethoxysilane (PFOTES), which contributes to the hydrophobic properties of the final coating by means of its hydrophobic groups. The mono- and bi-layered coatings with micro/nano rough structures have been applied by brushing on various substrates, including metallic surfaces (copper, brass and mild steel) and glass (microscope slides). The as-prepared coatings showed improved hydrophobic properties (water CA > 90°) when compared with the untreated substrates while maintaining the transparent aspect. The corrosion resistance tests revealed significantly lower values of the corrosion rates recorded for all the protected metallic surfaces, with the lowest values being measured for the bi-layered coatings containing ZnO particles, both in the first and in the second layers of the coating. Considering the antibacterial activity, the most effective were the AOAg-II and AOZnO-II coatings, which exhibited the highest reduction of microbial growth. Full article
(This article belongs to the Special Issue Coatings against Corrosion, Microbial Adhesion, and Biofouling)
Show Figures

Graphical abstract

Article
The Laser Alloying Process of Ductile Cast Iron Surface with Titanium Powder in Nitrogen Atmosphere
Coatings 2022, 12(2), 227; https://doi.org/10.3390/coatings12020227 - 10 Feb 2022
Cited by 5 | Viewed by 1301
Abstract
The article presents the results of the laser alloying process of a ductile cast iron EN-GJS 350-22 surface with titanium powder in nitrogen atmosphere. The aim of this research was to test the influence of nitrogen atmosphere on the structure and properties of [...] Read more.
The article presents the results of the laser alloying process of a ductile cast iron EN-GJS 350-22 surface with titanium powder in nitrogen atmosphere. The aim of this research was to test the influence of nitrogen atmosphere on the structure and properties of the ductile cast iron surface layer produced by a laser alloying process with titanium. The laser alloying process was conducted using a Rofin Sinar DL020 2 kW high-power diode laser (HPDDL) with rectangular focus and uniform power density distribution in the focus axis. The tests of the produced surface layers included macrostructure and microstructure observations, X-ray diffraction (XRD) analysis, energy-dispersive spectroscopy (EDS) on scanning electron microscope (SEM) and transmission electron microscope (TEM), Vickers hardness and solid particle erosion according to ASTM G76-04 standard. As a result of the laser alloying process in nitrogen atmosphere with titanium powder, the in situ metal matrix composite structure reinforced by TiCN particles was formed. The laser alloying process of ductile cast iron caused the increased hardness and erosion resistance of the surface. Full article
Show Figures

Figure 1

Article
Effect of the Nature of the Particles Released from Bone Level Dental Implants: Physicochemical and Biological Characterization
Coatings 2022, 12(2), 219; https://doi.org/10.3390/coatings12020219 - 08 Feb 2022
Cited by 6 | Viewed by 1450
Abstract
The placement of bone–level dental implants can lead to the detachment of particles in the surrounding tissues due to friction with the cortical bone. In this study, 60 bone–level dental implants were placed with the same design: 30 made of commercially pure grade [...] Read more.
The placement of bone–level dental implants can lead to the detachment of particles in the surrounding tissues due to friction with the cortical bone. In this study, 60 bone–level dental implants were placed with the same design: 30 made of commercially pure grade 4 titanium and 30 made of Ti6Al4V alloy. These implants were placed in cow ribs following the company’s placement protocols. Particles detached from the dental implants were isolated and their size and specific surface area were characterized. The irregular morphology was observed by scanning electron microscopy. Ion release to the medium was determined at different immersion times in physiological medium. Cytocompatibility studies were performed with fibroblastic and osteoblastic cells. Gene expression and cytokine release were analysed to determine the action of inflammatory cells. Particle sizes of around 15 μM were obtained in both cases. The Ti6Al4V alloy particles showed significant levels of vanadium ion release and the cytocompatibility of these particles is lower than that of commercially pure titanium. Ti6Al4V alloy presents higher levels of inflammation markers (TNFα and Il–1β) compared to that of only titanium. Therefore, there is a trend that with the alloy there is a greater toxicity and a greater pro-inflammatory response. Full article
(This article belongs to the Special Issue Recent Advanced in Titanium-Based Coatings)
Show Figures

Figure 1

Article
Evolution in Wear and High-Temperature Oxidation Resistance of Laser-Clad AlxMoNbTa Refractory High-Entropy Alloys Coatings with Al Addition Content
Coatings 2022, 12(2), 121; https://doi.org/10.3390/coatings12020121 - 21 Jan 2022
Cited by 10 | Viewed by 2402
Abstract
AlxMoNbTa (x = 0.5, 1.0 and 1.5) refractory high-entropy alloy (RHEAs) coatings were produced on Ti6Al4V by laser cladding. Ti2AlNb as the second phase and the solid solutions with the body center cubic structure (BCC) as the matrix were synthesized in [...] Read more.
AlxMoNbTa (x = 0.5, 1.0 and 1.5) refractory high-entropy alloy (RHEAs) coatings were produced on Ti6Al4V by laser cladding. Ti2AlNb as the second phase and the solid solutions with the body center cubic structure (BCC) as the matrix were synthesized in the coatings. The average microhardness of the coatings was increased with the increase in x, along with which the fracture toughness was decreased. Wear resistance of the coatings was investigated by the dry-sliding reciprocating wear tests at room temperature in air (Si3N4 as the counterparts, the 10 N load for 30 min, and the 3 mm/s sliding speed). The wear rate of the coatings was decreased with x enhanced from 0.5 (6.34 × 10−5 mm3/N·m) to 1.0 (5.90 × 10−5 mm3/N·m), then slightly increased with x enhanced to 1.5 (6.18 × 10−5 mm3/N·m). Oxidation resistance was evaluated by the high-temperature oxidation tests at 1000 °C in air for 120 h. The whole mass gain of the coatings showed a slight downward tendency (61.8 mg/cm2 for x = 0.5, 57.8 mg/cm2 for x = 1.0 and 56.3 mg/cm2 for x = 1.5). The change in wear and oxidation mechanism with x was revealed in detail. Full article
(This article belongs to the Special Issue Friction, Wear Properties and Applications of Coatings)
Show Figures

Figure 1

Article
Preparation of Very Thin Zinc Oxide Films by Liquid Deposition Process: Review of Key Processing Parameters
Coatings 2022, 12(1), 65; https://doi.org/10.3390/coatings12010065 - 06 Jan 2022
Cited by 6 | Viewed by 2318
Abstract
We used sol-gel and spin-coating in the original configuration of a liquid deposition process to synthesize particularly thin ZnO films (<100 nm) with nano-granular morphology, high grain orientation and variable optical properties. The concentration of the zinc salt, the concentration of the chelating [...] Read more.
We used sol-gel and spin-coating in the original configuration of a liquid deposition process to synthesize particularly thin ZnO films (<100 nm) with nano-granular morphology, high grain orientation and variable optical properties. The concentration of the zinc salt, the concentration of the chelating agent, the nature of the solvent and the substrate material have been identified as key parameters that determine the microstructure of the deposited layer and thus its final properties. The thorough and practical examination of the effects of the synthesis parameters evidenced a three-step growth mechanism for these ZnO thin films: (i) a reaction of precursors, (ii) a formation of nuclei, and (iii) a coalescence of nanoparticles under thermal annealing. The growth of these very thin films is thus conditioned by the interaction between the liquid phase and the substrate especially during the initial steps of the spin coating process. Such thin ZnO films with such nano-granular morphology may be of great interest in various applications, especially those requiring a large active surface area. Full article
(This article belongs to the Collection Feature Paper Collection in Thin Films)
Show Figures

Figure 1

Article
Sol–Gel Encapsulation of ZnAl Alloy Powder with Alumina Shell
Coatings 2021, 11(11), 1389; https://doi.org/10.3390/coatings11111389 - 14 Nov 2021
Cited by 2 | Viewed by 2873
Abstract
Additive manufacturing (AM), for example, directed energy deposition (DED), may allow the processing of self-healing metal–matrix composites (SHMMCs). The sealing of cracks in these SHMMCs would be achieved via the melting of micro-encapsulated low melting point particulates (LMPPs), incorporated into the material during [...] Read more.
Additive manufacturing (AM), for example, directed energy deposition (DED), may allow the processing of self-healing metal–matrix composites (SHMMCs). The sealing of cracks in these SHMMCs would be achieved via the melting of micro-encapsulated low melting point particulates (LMPPs), incorporated into the material during AM, by heat treatment of the part during service. Zn-Al alloys are good candidates to serve as LMPPs, for example, when the matrix of the MMC is made of an aluminum alloy. However, such powders should first be encapsulated by a thermal and diffusion barrier. Here, we propose a sol–gel process for encapsulation of a custom-made ZA-8 (Zn92Al8, wt.%) core powder in a ceramic alumina (Al2O3) shell. We first modify the surface of the ZA-8 powder with (12-phosphonododecyl)phosphonic acid (Di-PA) hydrophobic self-assembled monolayer (SAM) in order to prevent extensive hydrogen evolution and formation of non-uniform and porous oxide/hydroxide surface layers during the sol–gel process. Calcination for 1 h at 500 °C is found to be insufficient for complete boehmite-to-γ(Al2O3) phase transformation. Thermal stability tests in an air-atmosphere furnace at 600 °C for 1 h result in melting, distortion, and sintering into a brittle sponge (aggregate) of the as-atomized powder. In contrast, the core/shell powder is not sintered and preserves its spherical morphology, with no apparent “leaks” of the ZA-8 core alloy out of the ceramic encapsulation. Full article
(This article belongs to the Special Issue Recent Developments of Electrodeposition Coatings II)
Show Figures

Figure 1

Article
Surface Topography of PVD Hard Coatings
Coatings 2021, 11(11), 1387; https://doi.org/10.3390/coatings11111387 - 13 Nov 2021
Cited by 16 | Viewed by 4981
Abstract
The primary objective of this study was to investigate and compare the surface topography of hard coatings deposited by three different physical vapor deposition methods (PVD): low-voltage electron beam evaporation, unbalanced magnetron sputtering and cathodic arc evaporation. In these deposition systems, various ion [...] Read more.
The primary objective of this study was to investigate and compare the surface topography of hard coatings deposited by three different physical vapor deposition methods (PVD): low-voltage electron beam evaporation, unbalanced magnetron sputtering and cathodic arc evaporation. In these deposition systems, various ion etching techniques were applied for substrate cleaning. The paper summarizes our experience and the expertise gained during many years of development of PVD hard coatings for the protection of tools and machine components. Surface topography was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), scanning transmission electron microscopy (STEM) and 3D stylus profilometry. Observed similarities and differences among samples deposited by various deposition methods are discussed and correlated with substrate material selection, substrate pretreatment and deposition conditions. Large variations in the surface topography were observed between selected deposition techniques, both after ion etching and deposition processes. The main features and implications of surface cleaning by ion etching are discussed and the physical phenomena involved in this process are reviewed. During a given deposition run as well as from one run to another, a large spatial variation of etching rates was observed due to the difference in substrate geometry and batching configurations. Variations related to the specific substrate rotation (i.e., temporal variations in the etching and deposition) were also observed. The etching efficiency can be explained by the influence of different process parameters, such as substrate-to-source orientation and distance, shadowing and electric field effects. The surface roughness of PVD coatings mainly originates from growth defects (droplets, nodular defects, pinholes, craters, etc.). We briefly describe the causes of their formation. Full article
(This article belongs to the Special Issue Surface Topography Effects on Functional Properties of PVD Coatings)
Show Figures

Figure 1