Previous Issue
Volume 15, June
 
 

Agronomy, Volume 15, Issue 7 (July 2025) – 190 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 675 KiB  
Article
Structural Equation Modeling and Genome-Wide Selection for Multiple Traits to Enhance Arabica Coffee Breeding Programs
by Matheus Massariol Suela, Camila Ferreira Azevedo, Ana Carolina Campana Nascimento, Eveline Teixeira Caixeta Moura, Antônio Carlos Baião de Oliveira, Gota Morota and Moysés Nascimento
Agronomy 2025, 15(7), 1686; https://doi.org/10.3390/agronomy15071686 (registering DOI) - 12 Jul 2025
Abstract
Recognizing the interrelationship among variables becomes critical in genetic breeding programs, where the goal is often to optimize selection for multiple traits. Conventional multi-trait models face challenges such as convergence issues, and they fail to account for cause-and-effect relationships. To address these challenges, [...] Read more.
Recognizing the interrelationship among variables becomes critical in genetic breeding programs, where the goal is often to optimize selection for multiple traits. Conventional multi-trait models face challenges such as convergence issues, and they fail to account for cause-and-effect relationships. To address these challenges, we conducted a comprehensive analysis involving confirmatory factor analysis (CFA), Bayesian networks (BN), structural equation modeling (SEM), and genome-wide selection (GWS) using data from 195 arabica coffee plants. These plants were genotyped with 21,211 single nucleotide polymorphism markers as part of the Coffea arabica breeding program at UFV/EPAMIG/EMBRAPA. Traits included vegetative vigor (VV), canopy diameter (CD), number of vegetative nodes (NVN), number of reproductive nodes (NRN), leaf length (LL), and yield (Y). CFA established the following latent variables: vigor latent (VL) explaining VV and CD; nodes latent (NL) explaining NVN and NRN; leaf length latent (LLL) explaining LL; and yield latent (YL) explaining Y. These were integrated into the BN model, revealing the following key interrelationships: LLL → VL, LLL → NL, LLL → YL, VL → NL, and NL → YL. SEM estimated structural coefficients, highlighting the biological importance of VL → NL and NL → YL connections. Genomic predictions based on observed and latent variables showed that using VL to predict NVN and NRN traits resulted in similar gains to using NL. Predicting gains in Y using NL increased selection gains by 66.35% compared to YL. The SEM-GWS approach provided insights into selection strategies for traits linked with vegetative vigor, nodes, leaf length, and coffee yield, offering valuable guidance for advancing Arabica coffee breeding programs. Full article
(This article belongs to the Section Crop Breeding and Genetics)
17 pages, 1411 KiB  
Article
Effect of Energycane Integration on Ground-Dwelling Arthropod Biodiversity in a Sugarcane-Sweet Corn Cropping System
by Amandeep Sahil Sharma, Ricardo A. Lesmes-Vesga, Simranjot Kaur, Hardeep Singh and Hardev Singh Sandhu
Agronomy 2025, 15(7), 1685; https://doi.org/10.3390/agronomy15071685 (registering DOI) - 12 Jul 2025
Abstract
Integrating bioenergy crops into existing agricultural systems may influence soil biodiversity, yet evidence remains limited for second-generation bioenergy crops such as energycane. This study examined the impact of energycane integration on soil arthropod communities in the Everglades Agricultural Area, Florida, compared to traditional [...] Read more.
Integrating bioenergy crops into existing agricultural systems may influence soil biodiversity, yet evidence remains limited for second-generation bioenergy crops such as energycane. This study examined the impact of energycane integration on soil arthropod communities in the Everglades Agricultural Area, Florida, compared to traditional sugarcane and sweetcorn cropping systems. Over two crop cycles (plant cane and first ratoon), soil arthropod abundance and diversity were assessed using pitfall traps. Energycane and sugarcane, both perennial crops, showed no significant differences in order richness or Shannon diversity. Similarly, when energycane was compared with sugarcane and sweetcorn (during the first sampling), it had similar arthropod abundance. However, sweetcorn remained fallow in the second and third samplings, attracting arthropods like fire ants and earwigs, particularly due to pigweed. Diversity metrics based on Hill numbers revealed a decline in the effective abundance of ground-dwelling arthropods with increasing diversity order, influenced by differences in sampling duration. Importantly, no previous studies have been found that have reported on the effects of energycane integration into the existing cropping system on soil arthropod biodiversity. These findings highlight that energycane supports biodiversity levels comparable to sugarcane cropping systems with no negative impacts on soil arthropod abundance. This study underscores the need to consider soil biodiversity impacts when evaluating sustainable bioenergy crop transitions and the potential ecological trade-offs of perennial cropping systems. Full article
(This article belongs to the Section Innovative Cropping Systems)
25 pages, 749 KiB  
Article
Effect of Gold Nanoparticles Against Tetranychus urticae and Phytoseiulus persimilis in Tomato
by José Guadalupe Ontiveros-Guerra, Sonia Noemí Ramírez-Barrón, Luis Alberto Aguirre-Uribe, Julio Cesar Chacón-Hernández, Miriam Sánchez-Vega, Ernesto Cerna-Chávez, Josué Israel García-López, Alberto Antonio Neira-Vielma, Héctor Iván Meléndez-Ortiz and Agustín Hernández-Juárez
Agronomy 2025, 15(7), 1684; https://doi.org/10.3390/agronomy15071684 (registering DOI) - 12 Jul 2025
Abstract
The two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) is a major pest of horticultural, ornamental, fruit, and strawberry crops worldwide. Currently, various management tools have been explored for this pest, with nanoparticles being one of them, which stand out for their characteristics [...] Read more.
The two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) is a major pest of horticultural, ornamental, fruit, and strawberry crops worldwide. Currently, various management tools have been explored for this pest, with nanoparticles being one of them, which stand out for their characteristics and multiple effects. This study evaluated the effects of green-synthesized gold nanoparticles (AuNPs) on the mortality and repellency of T. urticae and its natural predator Phytoseiulus persimilis under laboratory conditions, as well as their efficacy in greenhouse tomatoes against T. urticae. In the laboratory, a biological window for AuNPs (50–100 mg L−1) on the pest and predator was established using a residual film method and a free-choice assay. In the greenhouse, four concentrations (300, 500, 750, and 1000 mg L−1) were evaluated via foliar application at 10-day intervals. The results showed susceptibility to AuNPs in all stages of T. urticae and the adult P. persimilis. The death times from AuNPs were similar in both species. Furthermore, the AuNPs were selective for the pest rather than the natural enemy. In greenhouses, AuNPs affected T. urticae populations in tomato plants, and significant differences were observed on some continuous and final agronomic variables (associated with fruits). This study showed that T. urticae and P. persimilis were susceptible to green-synthesized AuNPs. AuNPs can be a management tool, although studies on other non-target species and estimating agronomic effects on other crops are recommended. Full article
Show Figures

Figure 1

25 pages, 680 KiB  
Review
Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts
by Yanga Mgxaji, Charles S. Mutengwa, Patrick Mukumba and Admire R. Dzvene
Agronomy 2025, 15(7), 1683; https://doi.org/10.3390/agronomy15071683 - 11 Jul 2025
Abstract
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient [...] Read more.
Biogas slurry (BGS), a nutrient-rich by-product of anaerobic digestion, presents a promising opportunity for sustainable agriculture on sandy soils. This review explores the agronomic potential of using BGS for improving sorghum’s (Sorghum bicolor) productivity by enhancing soil fertility and the nutrient availability. It focuses on the sources and properties of BGS, its application methods, and their effects on the soil nutrient dynamics and crop productivity. The findings indicate that BGS improves the soil health and crop yields, offering an eco-friendly alternative to synthetic fertilizers, especially in resource-limited settings. Despite these benefits, research gaps persist, including the need for long-term field trials, the optimization of application strategies for sandy soils, and comprehensive economic evaluations. Additionally, concerns such as nutrient imbalances, phosphorus accumulation, and slurry composition variability must be addressed. This review recommends standardizing BGS nutrient profiling and adopting site-specific management practices to maximize its agronomic benefits and environmental safety. Integrating BGS into sustainable soil fertility programs could contribute significantly to achieving agricultural resilience and circular economy goals. Full article
15 pages, 2425 KiB  
Article
Dynamic Changes in Fatty Acids in Macadamia Fruit During Growth and Development
by Mingqun Cao, Birong Zhang, Minxian Duan, Hanyao Zhang, Suyun Yan, Fan Yang, Wenbin Shi, Xiaomeng Fu, Hongxia Yang, Jinxue Li and Xianyan Zhou
Agronomy 2025, 15(7), 1682; https://doi.org/10.3390/agronomy15071682 - 11 Jul 2025
Abstract
Fatty acids tend to undergo dynamic changes during the growth and development of fruits. In this study, we analyzed the variations in fruit morphology and kernel fatty acid fractions and contents at seven post-flowering stages in the fruit of ‘A4’ and ‘OC’, two [...] Read more.
Fatty acids tend to undergo dynamic changes during the growth and development of fruits. In this study, we analyzed the variations in fruit morphology and kernel fatty acid fractions and contents at seven post-flowering stages in the fruit of ‘A4’ and ‘OC’, two main macadamia cultivars in Yunnan, China. The single fruit weight and longitudinal and transverse diameters showed a ‘fast–slow–stable’ growth trend, and the fruit shape index gradually decreased with fruit development. A total of 13 saturated fatty acids, 18 monounsaturated fatty acids, and 10 polyunsaturated fatty acids were detected in macadamia kernels at seven developmental stages. The total fatty acid content in ‘OC’ and ‘A4’ tended to first increase and then decrease. The fatty acid content accounted for 8.81% and 6.33% of the total fatty acids at 50 days after flowering (DAF), and peaked at 95 DAF and 125 DAF (the fatty acid content accounted for 25.61% and 20.69% of the total fatty acids), indicating that these two periods are critical for fatty acid accumulation in the two cultivars. In addition, oleic acid, palmitoleic acid, cis-Vaccenic acid, and hexadecenoic acid were determined as the main fatty acids. This study reveals the dynamic changes in fatty acid composition and content in ‘OC’ and ‘A4’ during fruit development, providing a scientific basis for determining the appropriate harvesting time for macadamia nuts. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
20 pages, 1247 KiB  
Article
Bioactive Profiling of Cowpea Pods via Optimized Extraction and Experimental–Computational Approaches
by María Victoria Traffano-Schiffo, Margarita M. Vallejos, Andrea G. Gómez, Beatriz I. Avalos, Belén A. Acevedo and María Victoria Avanza
Agronomy 2025, 15(7), 1681; https://doi.org/10.3390/agronomy15071681 - 11 Jul 2025
Abstract
Cowpea (Vigna unguiculata L.) pods are an underexploited by-product of legume production with significant antioxidant potential. Their recovery and characterization support sustainable waste valorization in agri-food systems. This study aimed to optimize the extraction of phenolic compounds (PCs) with antioxidant capacity (AOC) [...] Read more.
Cowpea (Vigna unguiculata L.) pods are an underexploited by-product of legume production with significant antioxidant potential. Their recovery and characterization support sustainable waste valorization in agri-food systems. This study aimed to optimize the extraction of phenolic compounds (PCs) with antioxidant capacity (AOC) from cowpea pods and identify key bioactives through experimental and theoretical approaches. First, high-intensity ultrasound extraction was optimized using response surface methodology with ethanol–water mixtures. Under optimal conditions (20% amplitude, 15 min, 50% ethanol), the ethanolic extract (Eo) showed higher total phenolic content (TPC) and AOC than the aqueous extract (Wo). Subsequently, fractionation by Sephadex LH-20 chromatography yielded fractions E2 and W2 with enhanced TPC and AOC. Phytochemical profiling showed that E2 was enriched in caftaric acid, p-coumaric acid, and morin, while W2 had higher levels of caftaric, p-coumaric, and caffeic acids. Finally, density functional theory was used to assess thermodynamic parameters linked to antioxidant mechanisms (HAT, SET-PT, SPLET), revealing morin as the most effective radical scavenger, followed by caffeic and caftaric acids. These findings show that AOC depends not only on phenolic concentration but also on molecular structure and solvent interactions. Thus, cowpea pod extracts and fractions hold promise for antioxidant-rich formulations in food, nutraceutical, or cosmetic applications. Full article
Show Figures

Figure 1

18 pages, 1291 KiB  
Article
Effect of Calcium Addition on Extracellular Enzymes and Soil Organic Carbon in Maize Rhizosphere Soils
by Zhaoquan He, Xue Shang and Xiaoze Jin
Agronomy 2025, 15(7), 1680; https://doi.org/10.3390/agronomy15071680 - 11 Jul 2025
Abstract
This study examined the regulatory mechanism of calcium (Ca) amendment on the dynamics of soil organic carbon (SOC) fractions and extracellular enzyme activities, elucidating the role of Ca in soil carbon cycling processes. A field experiment with maize was conducted, comparing treatments of [...] Read more.
This study examined the regulatory mechanism of calcium (Ca) amendment on the dynamics of soil organic carbon (SOC) fractions and extracellular enzyme activities, elucidating the role of Ca in soil carbon cycling processes. A field experiment with maize was conducted, comparing treatments of low calcium (T1), high calcium (T2), and a calcium-free control (CK). Measurements included inter-root SOC fractions—soluble organic carbon (DOC), microbial biomass carbon (MBC), and readily oxidizable organic carbon (ROC)—and the activities of the following extracellular enzymes: β-xylanase, β-glucosidase (β-glu), phenol oxidase (Phox), peroxidase (Pero), phosphatase (Phos), acetylaminoglucosidase (NAG), and urease. The main findings indicated the following: (1) Calcium addition significantly increased SOC content (115.04% and 99.22% higher in T1 and T2, respectively, than CK during the entire reproductive period) and enhanced microbial activity (elevated DOC and MBC). However, SOC decreased by 8.44% (T1) and 16.38% (T2) relative to CK in the late reproductive stage (irrigation–ripening), potentially reflecting microbial utilization (supported by the inverse correlation between SOC and MBC/DOC), and maize carbon reallocation during grain filling. (2) Calcium activated β-glu, Phox, Phos, NAG, and urease (p < 0.05), with pronounced increases in Phox (241.13 IU·L−1) and Phos (1126.65 U·L−1), indicating enhanced organic matter mineralization and phosphorus availability. (3) Calcium-driven MBC and ROC accumulation was associated with the positive regulation of Phox (path coefficient > 0.8) and the negative regulation of Phos. SOC was co-regulated by β-glu and Phos (R2 = 0.753). (4) Calcium dynamically optimized the short-term carbon distribution through enzyme activity while promoting long-term sequestration. Our study provides new evidence supporting multi-pathway interactions through which calcium mediates enzyme networks to influence the soil carbon cycle. The findings provide a theoretical foundation for calcium fertilizer management and soil carbon sequestration strategies in agriculture, advancing academic and practical goals for sustainable development and carbon neutrality. Full article
Show Figures

Figure 1

19 pages, 2401 KiB  
Article
Variety-Dependent Yield and Physiological Responses to Combined Inorganic and Organic Sources of Nitrogen in Wheat
by Eva Herlinawati, Xiaoxiao Lei, Maoling Yang, Changlu Hu, Xueyun Yang and Shulan Zhang
Agronomy 2025, 15(7), 1679; https://doi.org/10.3390/agronomy15071679 - 10 Jul 2025
Abstract
Integrated application of chemical fertilizers with organic manure might improve crop yields and N-use efficiency (NUE, grain yield per unit N uptake), but the underlying physiological mechanisms are unclear. In this study, we aimed to examine the effects of combined inorganic and organic [...] Read more.
Integrated application of chemical fertilizers with organic manure might improve crop yields and N-use efficiency (NUE, grain yield per unit N uptake), but the underlying physiological mechanisms are unclear. In this study, we aimed to examine the effects of combined inorganic and organic fertilizers on wheat biomass allocation, root growth, water-soluble carbohydrates (WSCs) translocation, leaf senescence, N uptake, and their relationship with yield and NUE. We established a 2-year factorial field experiment with five nutrient treatments with ratios of inorganic: organic fertilizers from 0 to 1, and three varieties—two new: Weilong169 and Zhongmai578; and one reference: Xiaoyan22. The yield ranged from 3469 to 8095 kg ha−1, and it generally declined in response to a higher proportion of organic fertilizer. The NUE increased when there was a higher proportion of organic fertilizer. Weilong169 exhibited higher NUE than Zhongmai578, and both new cultivars outperformed the reference variety in the N harvest index. The yield correlated with leaf senescence traits and harvest index, and NUE was associated with WSC translocation and N uptake. The combination of fertilizers with a low portion of organic maintained yield and improved NUE; Weilong169 had the highest yield, NUE, and N harvest index. A low portion of organic manure substitution for chemical fertilizer suited all varieties. A new variety with a higher yield, N harvest index, and NUE highlights the importance of N traits in breeding programs. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

34 pages, 1417 KiB  
Review
Inversion Studies on the Heavy Metal Content of Farmland Soils Based on Spectroscopic Techniques: A Review
by Wenlong Qiu, Ting Tang, Song He, Zeyong Zheng, Jinhong Lv, Jiacheng Guo, Yunfang Zeng, Yifeng Lao and Weibin Wu
Agronomy 2025, 15(7), 1678; https://doi.org/10.3390/agronomy15071678 - 10 Jul 2025
Abstract
In recent years, heavy metal pollution in farmland soil has become a crisis due to human activities or natural impacts, with particular emphasis on cases from China, where this issue is prominent, greatly affecting crop production and food safety. In the context of [...] Read more.
In recent years, heavy metal pollution in farmland soil has become a crisis due to human activities or natural impacts, with particular emphasis on cases from China, where this issue is prominent, greatly affecting crop production and food safety. In the context of a low heavy metal (HM) content in farmland soil, which is difficult to monitor in real time, effective and rapid monitoring of soil plays a decisive role in subsequent targeted protection measures. To this end, this paper provides a narrative review of the application of spectral sensing technology on the basis of the quantitative inversion of heavy metal content in farmland soil using different platforms (ground, airborne, and spaceborne). The sensing process evaluates the mechanism by which soil produces different weak spectral features from the perspective of the heterogeneity of farmland soil. Different methods used for the quantitative inversion of heavy metals (by studying the correlation between soil heavy metals and organic matter, clay minerals, metal oxides, crop vegetation index, etc.) and their feasibility were clarified. At the same time, relevant research on key technologies used in various processes—such as follow-up pretreatment, spectral feature extraction, and the establishment of inversion models for spectral data of different farmland soil types—was summarized, with a primary focus on cases in China. Finally, the challenges, applications, and research directions related to heavy metal spectral inversion in farmland soil were discussed. Full article
Show Figures

Figure 1

13 pages, 14749 KiB  
Article
Beyond Conventional Auxins: Evaluating DCPE and DCP Pulse Applications for Enhanced Rooting in Lavandula angustifolia Mill.
by Hajer Darouez and Stefaan P. O. Werbrouck
Agronomy 2025, 15(7), 1677; https://doi.org/10.3390/agronomy15071677 - 10 Jul 2025
Abstract
Efficient adventitious root formation is crucial for Lavandula angustifolia Mill. propagation. This study evaluated the effects of continuous and short-duration pulse applications (1 min, 1 h, and 1 day) of the auxin dichlorprop (DCP) and its prodrug dichlorprop-2-ethylhexyl ester (DCPE) at varying concentrations [...] Read more.
Efficient adventitious root formation is crucial for Lavandula angustifolia Mill. propagation. This study evaluated the effects of continuous and short-duration pulse applications (1 min, 1 h, and 1 day) of the auxin dichlorprop (DCP) and its prodrug dichlorprop-2-ethylhexyl ester (DCPE) at varying concentrations on adventitious rooting and callus formation. DCPE generally proved more effective than DCP in promoting rooting, especially at lower concentrations, with continuous application of 0.1 µM DCPE yielding the highest number of adventitious roots. Notably, a brief 1 min pulse of 2.5 µM DCPE induced superior rooting, including high root number and weight, while minimizing callus formation compared to longer exposures. In contrast, 1 h pulse treatments showed a positive correlation between auxin concentration and root number but led to substantial callus development. These findings highlight DCPE’s potential as an efficient auxin source for lavender propagation, likely due to its rapid hydrolysis to active DCP within plant tissues, facilitating systemic distribution. The enhanced rooting achieved with short pulse treatments offers significant implications for optimizing commercial propagation for this economically important aromatic plant. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
19 pages, 2198 KiB  
Article
Jujube–Cotton Intercropping Enhances Yield and Economic Benefits via Photosynthetic Regulation in Oasis Agroecosystems of Southern Xinjiang
by Shuting Zhang, Jinbin Wang, Zhengjun Cui, Tiantian Li, Zhenlin Dong, Hang Qiao, Ling Li, Sumei Wan, Xiaofei Li, Wei Zhang, Qiang Hu and Guodong Chen
Agronomy 2025, 15(7), 1676; https://doi.org/10.3390/agronomy15071676 - 10 Jul 2025
Abstract
This study aimed to clarify the effects of jujube–cotton intercropping on cotton yield and photosynthetic characteristics, providing a theoretical basis for its application in the oasis irrigation areas of southern Xinjiang and offering practical recommendations to local farmers for increasing economic benefits. The [...] Read more.
This study aimed to clarify the effects of jujube–cotton intercropping on cotton yield and photosynthetic characteristics, providing a theoretical basis for its application in the oasis irrigation areas of southern Xinjiang and offering practical recommendations to local farmers for increasing economic benefits. The effects were investigated from 2020 to 2023 using Zhongmian 619 cotton and juvenile jujube trees. Changes in leaf area index (LAI), transpiration rate (Tr), stomatal conductance (Gs), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), yield, and economic benefits were evaluated over the years. The results showed that (1) a positive correlation was observed between LAI and the photosynthetic characteristics of cotton. Compared to monoculture cotton, intercropped cotton exhibited lower Pn, Gs, and Tr, and at the peak boll stage, monoculture cotton had significantly higher photosynthetic characteristics, indicating that intercropping affected cotton photosynthesis. (2) From 2020 to 2023, the land equivalent ratio (LER) of jujube–cotton intercropping remained above 1, with overall yield and economic benefit surpassing those of monoculture cotton and jujube, particularly in 2023 when the yield increased by 55.35%. (3) A significant positive correlation was found between cotton yield and LAI. In conclusion, jujube–cotton intercropping enhances photosynthesis, improving yield, economic benefits, and land use efficiency. Full article
(This article belongs to the Special Issue Innovations in Green and Efficient Cotton Cultivation)
Show Figures

Figure 1

20 pages, 8839 KiB  
Article
Potential Expansion of Root Chicory Cultivation Areas in Chile
by Donna Cortez, Manuel Paneque and Celián Román-Figueroa
Agronomy 2025, 15(7), 1675; https://doi.org/10.3390/agronomy15071675 - 10 Jul 2025
Abstract
Root chicory (Cichorium intybus var. sativum) is a major source of inulin, a fiber with many dietary and medicinal uses. Chile is the only country outside Europe that produces inulin and is the third largest exporter worldwide. Root chicory cultivation has [...] Read more.
Root chicory (Cichorium intybus var. sativum) is a major source of inulin, a fiber with many dietary and medicinal uses. Chile is the only country outside Europe that produces inulin and is the third largest exporter worldwide. Root chicory cultivation has increased by 242% in Chile since 2006, highlighting its potential for expansion into new territories. In this study, land suitability (without restriction, mild restriction, moderate restriction, and unsuitable) for root chicory cultivation and its potential productivity were determined using Geographic Information System (GIS) and analytical hierarchy process (AHP). The regions where root chicory is currently produced (between the Maule and La Araucanía regions) showed the best suitability, as did the Valparaíso and O’Higgins regions. The potential maximum productivity ranged from 20 to 27 t DW ha−1, mainly concentrated in the Los Lagos region, despite the absence of land without restriction. This could be attributed to the high water availability in this region, which is consistent with the expected displacement of crop areas due to climate change. Field studies in the Los Lagos region are recommended to evaluate the feasibility of expanding root chicory cultivation in these areas. Full article
(This article belongs to the Special Issue Industrial Crops Production in Mediterranean Climate)
Show Figures

Figure 1

26 pages, 2642 KiB  
Article
Evaluating of Four Irrigation Depths on Soil Moisture and Temperature, and Seed Cotton Yield Under Film-Mulched Drip Irrigation in Northwest China
by Xianghao Hou, Wenhui Hu, Quanqi Li, Junliang Fan and Fucang Zhang
Agronomy 2025, 15(7), 1674; https://doi.org/10.3390/agronomy15071674 - 10 Jul 2025
Abstract
Soil mulching and irrigation are critical practices for alleviating water scarcity and enhancing crop yields in arid and semi-arid regions by regulating soil moisture and soil temperature. Clarifying the effects of various irrigation depths on soil moisture and temperature under mulched condition is [...] Read more.
Soil mulching and irrigation are critical practices for alleviating water scarcity and enhancing crop yields in arid and semi-arid regions by regulating soil moisture and soil temperature. Clarifying the effects of various irrigation depths on soil moisture and temperature under mulched condition is essential for optimizing irrigation strategies. This study investigated the effects of four irrigation depths based on crop evapotranspiration (ETc): 60, 80, 100, and 120% (W0.6, W0.8, W1.0, and W1.2, respectively) on the soil moisture content (SMC), soil temperature and seed cotton yield in mulched cotton fields. Results revealed that when the irrigation depth increased from 60%ETc to 120%ETc, seed cotton yield increased by 12.04% in 2018 and 17.00% in 2019 at the cost of irrigation water use efficiency (IWUE), which decreased from 2.53 kg m−3 to 1.54 kg m−3 in 2018 and 2.60 kg m−3 to 1.58 kg m−3 in 2019. Soil temperature exhibited a temporal trend of initial increase followed by decline, and it was positively affected by soil mulching. Notably, W0.6 treatment maintained significantly higher soil temperature than other treatments. Soil moisture content was positively affected by irrigation depth, while soil water storage first decreased and then increased over time, reaching the minimum at the flowering and boll setting stages during the two growing seasons. Higher irrigation amount reduced the total spatial variability (C0 + C) of soil but did not significantly alter the distribution characteristics of soil moisture, as indicated by stable coefficients of variation (CVs) and stratification ratios (SRs). The variability of soil moisture diminished with soil depth with the lowest CV obtained at a 60 cm soil layer across the growth stages. Correlation analysis results showed that the seed cotton yield was mainly affected by irrigation depth and soil water storage. Soil temperature at the flowering and boll setting stage negatively affected seed cotton yield and was inversely correlated with soil water storage. The structural equation model (SEM) further indicated that both soil water storage and soil temperature primarily influenced seed cotton yield boll weight rather than boll number. Furthermore, 100%ETc (W1.0) can be considered as the recommended irrigation depth based on the soil moisture and temperature, seed cotton yield and water use efficiency in this region. Full article
Show Figures

Figure 1

21 pages, 5984 KiB  
Article
Potassium Fulvate Alleviates Salinity and Boosts Oat Productivity by Modifying Soil Properties and Rhizosphere Microbial Communities in the Saline–Alkali Soils of the Qaidam Basin
by Jie Wang, Xin Jin, Xinyue Liu, Yunjie Fu, Kui Bao, Zhixiu Quan, Chengti Xu, Wei Wang, Guangxin Lu and Haijuan Zhang
Agronomy 2025, 15(7), 1673; https://doi.org/10.3390/agronomy15071673 - 10 Jul 2025
Abstract
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF [...] Read more.
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF markedly boosted shoot and root biomass, with the greatest response observed at 150 kg hm−2. At the same time, it enhanced soil fertility by increasing organic matter, nitrate-N, ammonium-N, and available potassium, and improved ionic balance by lowering Na+ concentrations and the sodium adsorption ratio (SAR), while increasing Ca2+ levels and soil moisture content. Under the high-dose treatment (F2), endogenous fungal contributions declined sharply, exogenous replacements increased, and fungal α-diversity fell; multivariate ordinations confirmed that PF reshaped both bacterial and fungal communities, with fungi exhibiting the stronger response. We integrated three machine learning algorithms—least absolute shrinkage and selection operator (LASSO), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)—to minimize the bias inherent in any single method. We identified microbial β-diversity, organic matter, and Na+ and Ca2+ concentrations as the most robust predictors of the Soil Salinization and Alkalization Index (SSAI). Structural equation modeling further showed that PF mitigates salinity chiefly by improving soil physicochemical properties (path coefficient = −0.77; p < 0.001), with microbial assemblages acting as key intermediaries. These findings provide compelling theoretical and empirical support for deploying PF to rehabilitate saline–alkaline soils in alpine environments and offer practical guidance for sustainable land management in the Qaidam Basin. Full article
Show Figures

Figure 1

31 pages, 6826 KiB  
Article
Machine Learning-Assisted NIR Spectroscopy for Dynamic Monitoring of Leaf Potassium in Korla Fragrant Pear
by Mingyang Yu, Weifan Fan, Junkai Zeng, Yang Li, Lanfei Wang, Hao Wang, Feng Han and Jianping Bao
Agronomy 2025, 15(7), 1672; https://doi.org/10.3390/agronomy15071672 - 10 Jul 2025
Abstract
Potassium (K), a critical macronutrient for the growth and development of Korla fragrant pear (Pyrus sinkiangensis Yu), plays a pivotal regulatory role in sugar-acid metabolism. Furthermore, K exhibits a highly specific response in near-infrared (NIR) spectroscopy compared to elements such as nitrogen (N) [...] Read more.
Potassium (K), a critical macronutrient for the growth and development of Korla fragrant pear (Pyrus sinkiangensis Yu), plays a pivotal regulatory role in sugar-acid metabolism. Furthermore, K exhibits a highly specific response in near-infrared (NIR) spectroscopy compared to elements such as nitrogen (N) and phosphorus (P). Given its fundamental impact on fruit quality parameters, the development of rapid and non-destructive techniques for K determination is of significant importance for precision fertilization management. By measuring leaf potassium content at the fruit setting, expansion, and maturity stages (decreasing from 1.60% at fruit setting to 1.14% at maturity), this study reveals its dynamic change pattern and establishes a high-precision prediction model by combining near-infrared spectroscopy (NIRS) with machine learning algorithms. “Near-infrared spectroscopy coupled with machine learning can enable accurate, non-destructive monitoring of potassium dynamics in Korla pear leaves, with prediction accuracy (R2) exceeding 0.86 under field conditions.” We systematically collected a total of 9000 leaf samples from Korla fragrant pear orchards and acquired spectral data using a benchtop near-infrared spectrometer. After preprocessing and feature extraction, we determined the optimal modeling method for prediction accuracy through comparative analysis of multiple models. Multiplicative scatter correction (MSC) and first derivative (FD) are synergistically employed for preprocessing to eliminate scattering interference and enhance the resolution of characteristic peaks. Competitive adaptive reweighted sampling (CARS) is then utilized to screen five potassium-sensitive bands, specifically in the regions of 4003.5–4034.35 nm, 4458.62–4562.75 nm, and 5145.15–5249.29 nm, among others, which are associated with O-H stretching vibration and changes in water status. A comparison between random forest (RF) and BP neural network indicates that the MSC + FD–CARS–BP model exhibits the optimal performance, achieving coefficients of determination (R2) of 0.96% and 0.86% for the training and validation sets, respectively, root mean square errors (RMSE) of 0.098% and 0.103%, a residual predictive deviation (RPD) greater than 3, and a ratio of performance to interquartile range (RPIQ) of 4.22. Parameter optimization revealed that the BPNN model achieved optimal stability with 10 neurons in the hidden layer. The model facilitates rapid and non-destructive detection of leaf potassium content throughout the entire growth period of Korla fragrant pears, supporting precision fertilization in orchards. Moreover, it elucidates the physiological mechanism by which potassium influences spectral response through the regulation of water metabolism. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

30 pages, 1496 KiB  
Article
Effect of Deficit Irrigation on Agronomic and Physiological Performance of Young Persimmon (Diospyros kaki Thunb.) Trees
by Rossana Porras-Jorge, José Mariano Aguilar, Carlos Baixauli, Bernardo Pascual and Nuria Pascual-Seva
Agronomy 2025, 15(7), 1671; https://doi.org/10.3390/agronomy15071671 - 10 Jul 2025
Abstract
This article addresses the impact of deficit irrigation on the agronomic and physiological performance of “Rojo Brillante” persimmon trees in a Mediterranean climate. It compares the effect of a sustained deficit irrigation (SDI; imposing water deficit uniformly throughout the entire crop cycle) strategy [...] Read more.
This article addresses the impact of deficit irrigation on the agronomic and physiological performance of “Rojo Brillante” persimmon trees in a Mediterranean climate. It compares the effect of a sustained deficit irrigation (SDI; imposing water deficit uniformly throughout the entire crop cycle) strategy and two regulated deficit irrigation (RDI; enforcing a water deficit during the phenological phases that are less sensitive to water stress) strategies. Field trials were conducted from 2022 to 2024 at the Cajamar Experimental Center in Paiporta, Valencia, Spain. The trees respond to mild water stress reducing transpiration through stomatal closure. RDI resulted in modest irrigation water savings (11–16%), minimizing fruit drop, leading to an increased number of fruits per tree and a higher marketable yield, although this came at the cost of a reduced unit fruit weight. SDI achieved a 30% reduction in irrigation water usage without impacting on the marketable yield, but it also caused a decrease in unit fruit weight. RDI increased water productivity (yield obtained per amount of water applied) primarily through higher yields, while SDI improved productivity mainly by lowering the amount of irrigation water applied. Both irrigation strategies are recommended for cultivating “Rojo Brillante” persimmons. RDI is especially advisable in years with lower fruit loads as more intensive thinning may be necessary in years with higher fruit loads. Conversely, SDI is recommended in situations where water availability is limited. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

28 pages, 16451 KiB  
Article
Effects of Fish Pond Sediment on Quality of Saline–Alkali Soil and Some Vegetables: Water Spinach, Lettuce, and Chili
by Zhaohui Luo, Zhuoyue Zhang, Ying Guo, Luhao Lv, Dan Chen and Jiaming Duan
Agronomy 2025, 15(7), 1670; https://doi.org/10.3390/agronomy15071670 - 10 Jul 2025
Abstract
With the rapid expansion of the aquaculture scale, the environmental pollution caused by the accumulation of fish pond sediment (FPS) has become increasingly prominent, making it urgent to establish sustainable resource utilization solutions. This study investigates the potential of using FPS as a [...] Read more.
With the rapid expansion of the aquaculture scale, the environmental pollution caused by the accumulation of fish pond sediment (FPS) has become increasingly prominent, making it urgent to establish sustainable resource utilization solutions. This study investigates the potential of using FPS as a soil amendment to improve saline–alkali soil (SAS) quality and enhance vegetable growth, while also quantifying ecological benefits through Gross Ecosystem Product (GEP) accounting. A pot experiment was conducted to evaluate the effects of different FPS mass percentages (0%, 20%, 40%, 80%, and 100%) on the growth of three vegetables (water spinach, lettuce, and chili) and soil quality. The results demonstrated that FPS addition at ≥40% significantly improves SAS quality, reducing the pH and salinity (p < 0.05), while enhancing organic matter, nutrient availability, and microbial activity. Among the treatments, 80% FPS maximized vegetable yields, with water spinach achieving the highest edible biomass (37.32 g). Compared to the control, nutritional quality under ≥80% FPS treatment showed substantial increases: vitamin C (133.33–307.03%), soluble sugars (49.97–73.53%), and protein (26.14–48.08%). An economic analysis revealed that 80% FPS with water spinach cultivation generated peak ecological benefits (274,951 CNY·ha−1; 185% above control). These findings provide a scientific basis and effective model for the resource utilization of FPS and the improvement of saline–alkali soil, offering significant implications for the sustainable development of agriculture and environmental protection. Full article
Show Figures

Figure 1

20 pages, 6911 KiB  
Article
Comparative Analysis of Ratoon-Competent and Ratoon-Deficient Sugarcane by Hormonal and Transcriptome Profiling
by Liping Zhao, Maoyong Ran, Jing Zhang, Peifang Zhao, Fenggang Zan, Jun Zhao, Wei Qin, Qibin Wu, Jiayong Liu and Xinlong Liu
Agronomy 2025, 15(7), 1669; https://doi.org/10.3390/agronomy15071669 - 10 Jul 2025
Abstract
The ratooning capacity of sugarcane cultivars represents a crucial agronomic trait that significantly influences the sustainability of crop yields. This study elucidates the physiological and molecular mechanisms underlying the sugarcane ratooning ability observed in ratoon-competent GuiTang 29 (GT29) and ratoon-deficient Badila cultivars following [...] Read more.
The ratooning capacity of sugarcane cultivars represents a crucial agronomic trait that significantly influences the sustainability of crop yields. This study elucidates the physiological and molecular mechanisms underlying the sugarcane ratooning ability observed in ratoon-competent GuiTang 29 (GT29) and ratoon-deficient Badila cultivars following stem excision. Through integrated hormonal profiling and transcriptome analysis, we identified significant differences in hormone levels and gene expression patterns. The quantification of 15 endogenous hormones via HPLC revealed marked reductions in zeatin (ZA) and zeatin riboside (ZR) in both cultivars. Additionally, GT29 exhibited notable reductions in gibberellins (GA3 and GA5) and strigolactone (5-DS) post-stem-excision, while Badila displayed stable or distinct hormonal changes. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that hormone signal transduction, MAPK signaling pathways, phenylpropanoid biosynthesis, flavonoid biosynthesis, and other metabolic pathways were significantly enriched in both GT29 and Badila, with a particularly higher enrichment of plant hormone signal transduction in GT29. Furthermore, several differentially expressed genes (DEGs) had different expression patterns between GT29 and Badila, including the cytokinin receptor B-ARR and transcription factor A-ARR, gibberellin pathway components GID1 and DELLA, and AUX/IAA and SAUR in the auxin pathway. The real-time quantitative PCR (qRT-PCR) validation of 12 DEGs corroborated the RNA-seq data, further supporting the reliability of the transcriptomic analysis. This study delineates a clear molecular framework distinguishing ratoon competence, offers novel insights into the molecular basis of perennial regeneration and provides reliable candidate genes for functional marker development in sugarcane breeding. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

28 pages, 6252 KiB  
Article
An Evaluation of Inoculant Additives on Cell Viability and Their Effects on the Growth and Physiology of Glycine max L.
by Francisco Rafael Santos da Conceição, Layara Alexandre Bessa, Marconi Batista Teixeira, Bárbara Gonçalves Cruvinel and Luciana Cristina Vitorino
Agronomy 2025, 15(7), 1668; https://doi.org/10.3390/agronomy15071668 - 10 Jul 2025
Abstract
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. [...] Read more.
The development of efficient bioinoculant formulations requires compounds with stabilizing, thickening, and carrier functions to preserve microbial viability and promote biological activity in soil. However, the majority of studies evaluate inoculant formulations predominantly in terms of bacterial viability, overlooking other important performance parameters. This study employed an integrative approach combining in vitro and plant-based assays to assess the effects of starch, carboxymethyl cellulose (CMC), and trehalose in formulations containing Azospirillum brasilense, Bradyrhizobium diazoefficiens, Methylobacterium symbioticum, and Paenibacillus alvei, applied to Glycine max seeds. Our hypothesis was that the presence of these additives, each with distinct functional roles (starch as a slow-release carbon source, CMC as a structural agent and protector against physical stress, and trehalose as an osmoprotectant and membrane stabilizer), would influence not only bacterial viability but also the seed germination, growth, and physiological responses of inoculated G. max plants. Starch improved viability in A. brasilense formulations, while both starch and trehalose had positive effects on M. symbioticum. These additives also enhanced plant traits, including dry biomass, chlorophyll content, carboxylation efficiency (A/Ci), and photochemical efficiency (Fv/Fm and Pi_Abs). Trehalose was particularly effective in formulations with B. diazoefficiens and M. symbioticum, supporting its use as a versatile stabilizer. In contrast, CMC (0.25%) negatively impacted bacterial viability, especially for B. diazoefficiens and P. alvei, and impaired physiological parameters in G. max when combined with M. symbioticum. These results highlight the need to evaluate formulation components not only for their physical roles but also for their specific interactions with microbial strains and effects on host plants. Such an integrative approach is essential for designing stable, efficient bioinoculants that align with sustainable agricultural practices. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

25 pages, 14195 KiB  
Article
Maize Classification in Arid Regions via Spatiotemporal Feature Optimization and Multi-Source Remote Sensing Integration
by Guang Yang, Jun Wang and Zhengyuan Qi
Agronomy 2025, 15(7), 1667; https://doi.org/10.3390/agronomy15071667 - 10 Jul 2025
Abstract
This study addresses the challenges of redundant crop identification features and low computational efficiency in complex agricultural environments, particularly in arid regions. Focusing on the Hexi region of Gansu Province, we utilized the Google Earth Engine (GEE) to integrate Sentinel-2 optical imagery (10 [...] Read more.
This study addresses the challenges of redundant crop identification features and low computational efficiency in complex agricultural environments, particularly in arid regions. Focusing on the Hexi region of Gansu Province, we utilized the Google Earth Engine (GEE) to integrate Sentinel-2 optical imagery (10 bands) and Sentinel-1 radar data (VV/VH polarization), constructing a 96-feature set that comprises spectral, vegetation index, red-edge, and texture variables. The recursive feature elimination random forest (RF-RFE) algorithm was employed for feature selection and model optimization. Key findings include: (1) Variables driven by spatiotemporal differentiation were effectively selected, with red-edge bands (B5–B7) during the grain-filling stage in August accounting for 56.7% of the top 30 features, which were closely correlated with canopy chlorophyll content (p < 0.01). (2) A breakthrough in lightweight modeling was achieved, reducing the number of features by 69%, enhancing computational efficiency by 62.5% (from 8 h to 3 h), and decreasing memory usage by 66.7% (from 12 GB to 4 GB), while maintaining classification accuracy (PA: 97.69%, UA: 97.20%, Kappa: 0.89). (3) Multi-source data fusion improved accuracy by 11.54% compared to optical-only schemes, demonstrating the compensatory role of radar in arid, cloudy regions. This study offers an interpretable and transferable lightweight framework for precision crop monitoring in arid zones. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 2260 KiB  
Article
Study of Detection of Typical Pesticides in Paddy Water Based on Dielectric Properties
by Shuanggen Huang, Mei Yang, Junshi Huang, Longwei Shang, Qi Chen, Fang Peng, Muhua Liu, Yan Wu and Jinhui Zhao
Agronomy 2025, 15(7), 1666; https://doi.org/10.3390/agronomy15071666 - 9 Jul 2025
Viewed by 51
Abstract
Due to the dramatic increase in pesticide usage and improper application, large amounts of unused pesticides enter the environment through paddy water, causing severe pesticide pollution. To find a rapid method for identifying pesticide types and predicting their concentrations, the dielectric properties frequency [...] Read more.
Due to the dramatic increase in pesticide usage and improper application, large amounts of unused pesticides enter the environment through paddy water, causing severe pesticide pollution. To find a rapid method for identifying pesticide types and predicting their concentrations, the dielectric properties frequency response of pesticides was analyzed in paddy water. A rapid detection method for typical pesticides such as chlorpyrifos, isoprothiolane, imidacloprid and carbendazim was studied based on their dielectric properties. In this paper, amplitude and phase frequency response data for blank paddy water samples and 15 types of paddy water samples containing pesticides were collected at 10 different temperatures. Principal component analysis (PCA) and competitive adaptive reweighted sampling (CARS) were used to extract characteristic frequencies. A species identification model based on support vector machine (SVM) for rapid detection of pesticides in paddy water was established using amplitude and phase frequency response data separately. Frequency response data of 431 sets from nine types of paddy water samples were divided into training and prediction sets in a 3:1 ratio, and a content prediction model based on artificial neural networks (ANN) with multiple inputs and single output was established using amplitude and phase frequency response data after CARS feature extraction. The experimental results show that both PCA-SVM and CARS-SVM species identification models established using amplitude and phase frequency response data have excellent identification effects, reaching over 90%. The PCA-SVM model based on phase frequency response data has the best identification effect for typical pesticides in paddy water with a prediction recognition accuracy range of 97.5–100%. The ANN content prediction model established using phase frequency response data performs well, and the highest R2 prediction values of chlorpyrifos, isoprothiolane, imidacloprid and carbendazim in paddy water were 0.8249, 0.8639, 0.9113 and 0.8368 respectively. The research established a dielectric property detection method for the identification and content prediction of typical pesticides in paddy water, providing a theoretical basis for the hardware design of capacitive sensors based on dielectric property and the detection of pesticide residues in paddy water. This provides a new method and approach for pesticide residue detection, which is of great significance for scientific pesticide application and sustainable agricultural development. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

30 pages, 1486 KiB  
Article
Comprehensive Assessment of PeriodiCT Model for Canopy Temperature Forecasting
by Quanxi Shao, Rose Roche, Hizbullah Jamali, Chris Nunn, Bangyou Zheng, Huidong Jin, Scott C. Chapman and Michael Bange
Agronomy 2025, 15(7), 1665; https://doi.org/10.3390/agronomy15071665 - 9 Jul 2025
Viewed by 59
Abstract
Canopy temperature is an important indicator of plants’ water status. The so-called PeriodiCT model was developed to forecast canopy temperature using ambient weather variables, providing a powerful tool for planning crop irrigation scheduling. As this model requires observed data in its parameter training [...] Read more.
Canopy temperature is an important indicator of plants’ water status. The so-called PeriodiCT model was developed to forecast canopy temperature using ambient weather variables, providing a powerful tool for planning crop irrigation scheduling. As this model requires observed data in its parameter training before implementing the forecast, it is important to understand the data requirements in the model training such that accurate forecasts are attained. In this work, we conduct a comprehensive assessment of the PeriodiCT model in terms of sample size requirement and predictabilities across sensors in a field and across seasons for the full model and sub-models. The results show that (1) 5 days’ observations are sufficient for the full model and sub-models to achieve very high predictability, with a minimum coefficient of efficiency of 0.844 for the full model and 0.840 for the sub-model using only air temperature. The predictability decreases in the following order: full model, sub-model without radiation S, with air temperature Ta and vapor pressure VP, and with only Ta. The predictions perform reasonably well even when only one day’s observations are used. (2) The predictability into the future is very stable as the prediction steps increase. (3) The predictabilities of the full and sub-models when using a trained model from one sensor for another sensor perform comparatively well, with a minimum coefficient of efficiency of 0.719 for the full model and 0.635 for the sub-model using only air temperature. (4) The predictabilities of the sub-models without solar radiation when using trained models from one season for another season perform comparatively well, with a minimum coefficient of efficiency of 0.866 for the full model and 0.764 for the sub-model using only air temperature, although the cross-season performances are not as good as the cross-sensor performances. The importance of the predictors is in the order of air temperature, vapor pressure, wind speed, and solar radiation, while vapor pressure and wind speed have similar contributions, and solar radiation has only a marginal contribution. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

18 pages, 673 KiB  
Article
Effects of Tillage Methods on Carbon and Nitrogen Sequestration and Soil Microbial Stoichiometric Equilibrium in a Black Soil Farmland with Full Return of Straw to the Field
by Meiren Rong, Zhigang Wang, Xiangqian Zhang, Zhanyuan Lu, Lanfang Bai, Zhipeng Cheng, Tianhao Wang, Yajing Zhang, Hongwei Liang, Tiantian Meng, Lingyue Liu and Fang Luo
Agronomy 2025, 15(7), 1664; https://doi.org/10.3390/agronomy15071664 - 9 Jul 2025
Viewed by 61
Abstract
Long-term irrational farming practices and low return of organic materials to the fields in the black soil area have led to reduced soil carbon and nitrogen stability and nutrient imbalance, which in turn affect soil fertility and crop yields. Straw return is an [...] Read more.
Long-term irrational farming practices and low return of organic materials to the fields in the black soil area have led to reduced soil carbon and nitrogen stability and nutrient imbalance, which in turn affect soil fertility and crop yields. Straw return is an effective way to enhance soil organic matter and crop productivity, but the effects of long-term straw return under tilling practices on carbon and nitrogen sequestration and soil microbial stoichiometric equilibrium in black soil need to be further investigated. This study investigated the physical, chemical and biological properties of the 0–60 cm soil layer under deep tillage with straw return to the field (DTS), deep harrow with straw return to the field (DHS), rotary tillage with straw return to the field (RTS), no tillage with straw return to the field (NTS), and conventional tillage with straw removal (CT) on the basis of seven consecutive years of tillage pattern location trials in the black soil area of eastern Inner Mongolia. The results showed that DTS and NTS significantly increased the soil organic carbon (SOC), soil total nitrogen (TN), soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN) contents, and the SOC/TN ratio in the 0–40 cm soil layer, enhancing soil carbon and nitrogen sequestration capacity, while the concomitant increase in the average MBC/MBN ratio in the plow layer from 6.8 to 8.2. The soil microbial quotient increased by 29.0% and 26.2%, respectively, and the stoichiometric imbalance ratio decreased by 7.9% and 5.7%, respectively. Meanwhile, in terms of maize yield from 2018 to 2024, DTS showed the most stable and significant yield increase with 41.53%. Whereas NTS showed a higher yield increase potential with a 27.36% increase in yield as the number of years of straw return increased. Therefore, DTS and NTS are superior tillage methods to improve the quality of the black soil tillage layer, to promote soil microbial carbon and nitrogen balance, and to increase crop yields. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

16 pages, 8011 KiB  
Article
From First Frost to Last Snow: Tracking the Microclimate Evolution of Greenhouses Across North China’s Winter Spectrum
by Hongrun Liu, He Zhao, Yanan Tian, Song Liu, Wei Li, Yanfang Wang, Dan Sun, Tianqun Wang, Ning Zhu, Yuan Tao and Xihong Lei
Agronomy 2025, 15(7), 1663; https://doi.org/10.3390/agronomy15071663 - 9 Jul 2025
Viewed by 61
Abstract
Global climate change has intensified the challenges of low-temperature, low-light, and high-humidity microclimates in North China’s greenhouses during winter, exposing the limitations of traditional controlled-environment agriculture (CEA) facilities. This study monitored air temperature, relative humidity, and light intensity in three greenhouse types—an externally [...] Read more.
Global climate change has intensified the challenges of low-temperature, low-light, and high-humidity microclimates in North China’s greenhouses during winter, exposing the limitations of traditional controlled-environment agriculture (CEA) facilities. This study monitored air temperature, relative humidity, and light intensity in three greenhouse types—an externally insulated plastic greenhouse, soft-shell solar greenhouse, and brick-walled solar greenhouse—across three overwintering periods (pre-, mid-, post-) using high-precision sensors (monitoring period is from 1 October 2024 to 31 March 2025). A Comprehensive Evaluation Index (CEI) based on the entropy method was developed, integrating seven indicators (daily average temperature, temperature range, hours below 5 °C, average humidity, hours above 80% humidity, average light intensity, and light utilization efficiency) to systematically evaluate greenhouse microclimate regulation performance. Results showed that the brick-walled solar greenhouse exhibited superior thermal insulation, with nearly zero hours below 5 °C during mid-overwintering, while the soft-shell solar greenhouse achieved the highest light utilization efficiency (75.1–79.6%). The externally insulated plastic greenhouse exhibited the highest relative humidity (>80% for 13–19 h/day) but a poor thermal insulation performance. The CEI ranked the brick-walled solar greenhouse (0.86) and the soft-shell solar greenhouse (0.84) significantly higher than the externally insulated plastic greenhouse (0.39), with the relative humidity significantly negatively correlated with light indicators (P < 0.05), and the temperature and light indicators strongly correlated with the CEI (P < 0.01). Structural design and material innovation are critical for climate adaptation. Brick-walled and soft-shell solar greenhouses balance thermal and light performance, while the externally insulated plastic greenhouse faces structural limitations. The findings provide a scientific basis for greenhouse optimization and regional layout planning. Full article
Show Figures

Figure 1

17 pages, 1915 KiB  
Article
Optimizing Nutrition Protocols for Improved Rice Yield, Quality, and Nitrogen Use Efficiency in Coastal Saline Soils
by Xiang Zhang, Xiaoyu Geng, Yang Liu, Lulu Wang, Jizou Zhu, Weiyi Ma, Xiaozhou Sheng, Lei Shi, Yinglong Chen, Pinglei Gao, Huanhe Wei and Qigen Dai
Agronomy 2025, 15(7), 1662; https://doi.org/10.3390/agronomy15071662 - 9 Jul 2025
Viewed by 56
Abstract
This study evaluated the effects of one-time application of controlled-release fertilizer (CRF) on rice (Oryza sativa L.) grain yield, grain quality, and agronomic nitrogen use efficiency (ANUE, ANUE (kg/kg) = (Grain yield with N application − grain yield without N application)/N application [...] Read more.
This study evaluated the effects of one-time application of controlled-release fertilizer (CRF) on rice (Oryza sativa L.) grain yield, grain quality, and agronomic nitrogen use efficiency (ANUE, ANUE (kg/kg) = (Grain yield with N application − grain yield without N application)/N application amount) in coastal saline soils. A two-year field experiment (2023–2024) was conducted using two rice varieties (Nanjing 5718 and Yongyou 4953) under four nitrogen treatments: N0 (no nitrogen fertilization), N1 (270 kg·hm−2, with a ratio of 5:1:2:2 at 1-day before transplanting, 7-day after transplanting, panicle initiation, and penultimate-leaf appearance stage, respectively), N2 (270 kg·hm−2, one-time application at 1-day before transplanting as 50% CRF with 80-day release period + 50% urea), and N3 (270 kg·hm−2, 50% one-time application of CRF with 120-day release period at the seedling stage + 50% urea at 1-day before transplanting). Compared with N1, the N3 treatment significantly increased grain yield by 10.2% to 12.9% and improved ANUE by 18.5% to 51.6%. It also improved processing quality (higher brown rice, milled rice, and head rice rates), appearance quality (reduced chalkiness degree and chalky rice percentage), and taste value (by 19.3% to 31.2%). These improvements were associated with lower amylose, protein, and soluble sugar contents and favorable changes in starch composition and pasting properties. While N2 slightly improved some quality traits, it significantly reduced yield and ANUE. Correlation analysis revealed that starch and protein composition, as well as pasting properties, were significantly associated with taste value and related attributes such as appearance, stickiness, balance degree, and hardness. Overall, one-time application of CRF with a 120-day release period at the seedling stage, combined with basal urea, offers an effective strategy to boost yield, quality, and ANUE in coastal saline rice systems. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 1575 KiB  
Article
Looking for New P Fertilizers: Comparative Study of Mineral-, Organomineral- and Organic-Based Fertilizers for Lettuce (Lactuca sativa L.)
by Lucía Valverde-Vozmediano, Silvia Sánchez-Méndez, Luciano Orden, Miguel A. Mira-Urios, Francisco Javier Andreu, Jose A. Sáez, Encarnación Martínez-Sabater, María Ángeles Bustamante, Javier Martín-Pozuelo and Raúl Moral
Agronomy 2025, 15(7), 1661; https://doi.org/10.3390/agronomy15071661 - 9 Jul 2025
Viewed by 65
Abstract
In this study several phosphorus fertilizers were evaluated under controlled production conditions using Lactuca sativa var. baby leaf and a clay-loam soil of pH 6.5 as a plant–soil model system. Various inorganic (phosphate rock, monoammonium phosphate, struvite), organic (bone meal and bone meal [...] Read more.
In this study several phosphorus fertilizers were evaluated under controlled production conditions using Lactuca sativa var. baby leaf and a clay-loam soil of pH 6.5 as a plant–soil model system. Various inorganic (phosphate rock, monoammonium phosphate, struvite), organic (bone meal and bone meal pelletized with compost) and organomineral fertilizers (phosphate rock, monoammonium phosphate, struvite pelletized with compost) were compared. The soil properties, crop yield, morphological aspects and metabolomics of the plants were analyzed. After 45 days of the growing cycle, the organomineral fertilizers (OMFs) composed of compost and monoammonium phosphate (OMF2(MAP+C)) or struvite (OMF3(STR+C)) exhibited the best yield results: 101.37 g and 83.21 g, respectively. These treatments also exhibited the best phosphorus use efficiency (PUE) results: 7.40% and 8.33%, respectively. The yield of plants treated with MAP was 56.01 g, and its PUE was 5.33%. The yield of plants treated with STR was 62.10 g and the PUE was 4.67%. Accordingly, the development of OMFs with compost had a positive effect regarding MAP and STR fertilization. Lettuce fertilized with organic bone meal fertilizers had the lowest yield and nutrient use efficiency. The non-targeted metabolic study of green tissue revealed an overactivation of the TriCarboxylic Acids-TCA cycle and amino acid biosynthesis in plants fertilized with bone meal and phosphate rock treatments, likely as a plant stress response. The overall conclusion of this work is that the development of OMFs with compost is a good strategy to increase soil P availability and, accordingly, plant P uptake and %PUE. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 2676 KiB  
Article
Forage and Seed Production of Field Bean Respond Differently to Nitrogen Fertilization and Sowing Rate
by Silvia Pampana, Francesco G. S. Angeletti, Marco Mariotti, Dayana N. Esnarriaga and Iduna Arduini
Agronomy 2025, 15(7), 1660; https://doi.org/10.3390/agronomy15071660 - 9 Jul 2025
Viewed by 51
Abstract
The rising demand for plant proteins and climate change highligth the need for adaptable legume crops. A three-year field experiment examined forage and seed production, as well as nitrogen (N) and phosphorus (P) accumulation in an indeterminate field bean (Vicia faba L. [...] Read more.
The rising demand for plant proteins and climate change highligth the need for adaptable legume crops. A three-year field experiment examined forage and seed production, as well as nitrogen (N) and phosphorus (P) accumulation in an indeterminate field bean (Vicia faba L. var. minor Beck) variety, as affected by two fertilization rates (0 and 120 kg N ha−1, i.e., N0 and N120) and two sowing rates (60 and 100 seeds m−2, i.e., S60 and S100), along with their interaction with climatic variability. Forage yield ranged from 11.1 Mg ha−1 in Year I (S100) to 6.8 Mg ha−1 in Year III (S60 and S100), and seed yield dropped from 4.1 Mg ha−1 in Year II to 1.9 Mg ha−1 in Year III, due to fewer seeds per pod and lower seed weight unaffected by fertilization and sowing rate. Nitrogen fertilization increased forage by 20% but had no effect on seed production. Field bean showed good adaptability to variable climatic conditions, compensating for lower stem number with more pods per stem. The possibility to obtain either forage or seed yield makes field bean a valuable source of plant proteins in a changing environment, contributing to the sustainability of cropping systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

14 pages, 2265 KiB  
Article
Octahedral Paclobutrazol–Zinc Complex for Enhanced Chemical Topping Efficacy in Mechanized Cotton Production: A Two-Year Field Evaluation in Xinjiang
by Jincheng Shen, Sumei Wan, Guodong Chen, Jianwei Zhang, Chen Liu, Junke Wu, Yong Li, Jie Liu, Shuren Liu, Baojiu Zhang, Meng Lu and Hongqiang Dong
Agronomy 2025, 15(7), 1659; https://doi.org/10.3390/agronomy15071659 - 8 Jul 2025
Viewed by 150
Abstract
Topping is an essential step in cotton cultivation in Xinjiang, China, which can effectively increase the number of bolls per plant and optimize the yield and quality. Paclobutrazol, as a common chemical topping agent for cotton, faces challenges such as unstable topping effect [...] Read more.
Topping is an essential step in cotton cultivation in Xinjiang, China, which can effectively increase the number of bolls per plant and optimize the yield and quality. Paclobutrazol, as a common chemical topping agent for cotton, faces challenges such as unstable topping effect and limited leaf surface absorption during application. In this study, paclobutrazol was used as the ligand and a zinc complex was synthesized by the thermosolvent method to replace paclobutrazol and improve the topping effect on cotton. The structure of the complex was characterized using FTIR, UV-vis, TG, and XRD analyses. The results confirmed that each zinc ion coordinated with four nitrogen atoms from the triazole rings of paclobutrazol and two oxygen atoms from nitrate ions, forming an octahedral geometry. Surface tension measurement and analysis revealed that the complex had a surface tension reduction of 12.75 mN/m compared to paclobutrazol, thereby enhancing the surface activity of the complex in water systems and improving its absorption efficiency on plant leaves. Two-year field trials indicated that the foliar application of the complex at a dosage of 120 g·hm−2 in inhibiting cotton plant height was more stable to that of paclobutrazol or mepiquat chloride. It also shortened the length of fruiting branches, making the shape of cotton plants compact, thereby indirectly improving the ventilation and light penetration of the cotton field and the convenience of mechanical harvesting. Yield data showed that, compared with artificial topping, the complex at a dosage of 120 g·hm−2 treatment increased cotton yield by approximately 4.6%. Therefore, the paclobutrazol–zinc complex is a promising alternative to manual topping and have great application potential in future mechanized cotton production. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

13 pages, 2237 KiB  
Article
Intercropping of Cereals with Lentil: A New Strategy for Producing High-Quality Animal and Human Food
by Theodoros Gkalitsas, Fokion Papathanasiou and Theano Lazaridou
Agronomy 2025, 15(7), 1658; https://doi.org/10.3390/agronomy15071658 - 8 Jul 2025
Viewed by 300
Abstract
Intercropping is an eco-friendly agricultural practice that can lead to increased productivity and improved resource efficiency. This two-year field study (2022–2023 and 2023–2024) aimed to evaluate the yield and quality (protein content) of lentil when intercropping with bread wheat (Yekora) and oat (Kassandra) [...] Read more.
Intercropping is an eco-friendly agricultural practice that can lead to increased productivity and improved resource efficiency. This two-year field study (2022–2023 and 2023–2024) aimed to evaluate the yield and quality (protein content) of lentil when intercropping with bread wheat (Yekora) and oat (Kassandra) under two spatial arrangements (1:1 alternate rows and mixed rows at a 50:50 seeding ratio) in northwestern Greece. A completely randomized design was applied with three replications. Differences were found between treatments regarding yield as well as protein content. Results showed that the highest total grain yield (2478.6 kg/ha) and land equivalent ratio (LER = 2.50) were recorded in the Yekora + Thessalia combination (alternate rows). Legume protein content remained consistently high (27–31%), while cereal protein content varied with genotype. Intercropping in alternate rows generally outperformed mixed sowing, indicating the importance of spatial arrangement in optimizing resource use. These findings suggest that properly designed cereal–lentil intercropping systems can enhance yield and quality while supporting sustainable agricultural practices. Intercropping of Yekora with lentil was superior compared to lentil and bread wheat monocultures and can be recommended as an alternative method for the production of human and animal food. Full article
Show Figures

Figure 1

19 pages, 9996 KiB  
Article
Plant Traits in Spring and Winter Canola Genotypes Under Salinity
by Rajan Shrestha, Qingwu Xue, Andrea Leiva Soto, Girisha Ganjegunte, Santosh Subhash Palmate, Vijayasatya N. Chaganti, Saurav Kumar, April L. Ulery and Samuel Zapata
Agronomy 2025, 15(7), 1657; https://doi.org/10.3390/agronomy15071657 - 8 Jul 2025
Viewed by 158
Abstract
Concerning rising salinity and declining freshwater supply in the U.S. Southern Great Plains, alternative crop production choices using marginal saline irrigation water are irresistible. The study investigated plant traits related to salt tolerance in greenhouse canola (Brassica napus L.) in 2022 and [...] Read more.
Concerning rising salinity and declining freshwater supply in the U.S. Southern Great Plains, alternative crop production choices using marginal saline irrigation water are irresistible. The study investigated plant traits related to salt tolerance in greenhouse canola (Brassica napus L.) in 2022 and 2023. Spring and winter canola, including ten genotypes each, were evaluated at six salinity levels (0; control, 2, 4, 6, 8, and 8 dS m−1 EC). Plant height, stem mass, leaf area, and specific leaf area (SLA) showed a negative linear response, while quadratic relationships were observed in biomass and leaf mass with increased salinity levels. Substantial negative salinity impacts on plant traits occurred at ≥6 dS m−1 EC (p ≤ 0.01) except for SLA. Overall, winter canola genotypes: Athena, Ericka, CP320WRR, CP115W, and CP225WRR, and spring genotypes: Empire, Monarch, Profit, and Westar, were relatively more salt-tolerant than others. Spring canola showed greater salinity tolerance than winter canola. Salinity stress resulted in differential responses of greater leaf mass in winter canola but more efficient leaf area production in spring canola. SLA and stem mass were highly correlated with most parameters. Findings indicate SLA and stem mass are potential salt tolerance traits in canola and warrant further investigations and validation. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

Previous Issue
Back to TopTop