Effects of Conservation Tillage and Nitrogen Management on Yield, Grain Quality, and Weed Infestation in Winter Wheat
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Soil and Weather Conditions
2.3. Production Traits
2.4. Statistical Analysis
3. Results
3.1. Weed Infestation Indices
3.2. Grain Yield and Its Components
3.3. Grain Quality Parameters
3.4. C/N Ratio in the Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, J.; Zhang, S. Assessing the Impact of Climate Change on Winter Wheat Production in the North China Plain from 1980 to 2020. Agriculture 2025, 15, 449. [Google Scholar] [CrossRef]
- Statistical Yearbook 2024; Statistical Office of the Republic of Serbia: Belgrade, Serbia, 2024. Available online: https://publikacije.stat.gov.rs/G2024/Pdf/G20242057.pdf (accessed on 23 May 2025).
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Pinke, Z.; Lovei, G.L. Increasing temperature cuts back crop yields in Hungary over the last 90 years. Glob. Change Biol. 2017, 23, 5426–5435. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Wang, X.; Smith, P.; Fan, J.; Lu, Y.; Emmett, B.; Li, R.; Dorling, S.; Chen, H.; Liu, S.; et al. Soil quality both increases crop production and improves resilience to climate change. Nat. Clim. Change 2022, 12, 574–580. [Google Scholar] [CrossRef]
- Abubajar, S.A.; Hamani, A.K.M.; Wang, G.; Liu, H.; Mehmood, F.; Abdullahi, A.S.; Gao, Y.; Duan, A. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain. J. Integr. Agric. 2023, 22, 908–922. [Google Scholar] [CrossRef]
- RZS. Survey on the Structure of Agricultural Holdings—Soil. 2018. Available online: https://www.stat.gov.rs/sr-latn/oblasti/poljoprivreda-sumarstvo-i-ribarstvo/anketaostrukturipopgazdinstava/ (accessed on 26 April 2025).
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Isberg, P.E. How does tillage intensity affect soil organic carbon? A systematic review protocol. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- Fangueiro, D.; Becerra, D.; Albarrán, Á.; Peña, D.; Sanchez-Llerena, J.; Rato-Nunes, J.M.; López-Piñeiro, A. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems. Atmos. Environ. 2017, 150, 303–312. [Google Scholar] [CrossRef]
- Hossain, M.S.; Al-Mamun, M.; Ferdous, J.; Kamrujjaman, M.; Miah, A.; Hasan, A.K.; Parvez Anwar, M.; Begum, M.; Romij Uddin, M. Effective Weed Control and Fiber Yield Improvement in Jute Through Seeding and Row Spacing Strategies. J. Soil Plant Environ. 2025, 4, 72–93. [Google Scholar] [CrossRef]
- Shukla, A.; Kumar, M.; Shukla, A. Effect of conservation tillage and precision nitrogen management on wheat: A review. Int. J. Plant Soil Sci. 2022, 34, 87–97. [Google Scholar] [CrossRef]
- Zikeli, S.; Gruber, S. Reduced tillage and no-till in organic farming systems, Germany-Status quo, potentials and challenges. Agriculture 2017, 7, 35. [Google Scholar] [CrossRef]
- Junge, S.M.; Storch, J.; Finckh, M.R.; Schmidt, J.H. Developing organic minimum tillage farming systems for Central and Northern European conditions. In No-Till Farming Systems for Sustainable Agriculture: Challenges and Opportunities; Springer: Cham, Switzerland, 2020; pp. 173–192. [Google Scholar]
- Jaćimović, G.; Aćin, V.; Crnobarac, J.; Latković, D.; Manojlović, M. Effects of crop residue incorporation on the wheat yield in a long-term experiment. Ann. Agron. 2017, 41, 1–8. [Google Scholar]
- Molnar, I.; Ðević, M.; Marković, D.; Martinov, M.; Momirović, N.; Lazić, V.; Škrbić, N.; Turan, J.; Kurjački, J. Terminology and classification of soil conservation tillage. Contemp. Agric. Eng. 1999, 25, 139–153. [Google Scholar]
- Šeremešić, S.; Ćirić, V.; Jaćimović, G.; Milošev, D.; Belić, M.; Vojnov, B.; Živanov, M. The influence of conventional and conservation tillage on content of total and labile soil organic matter. Soil Plant 2016, 65, 7–18. [Google Scholar]
- Šeremešić, S.; Ćirić, V.; Djalović, I.; Vasin, J.; Zeremski, T.; Siddique, K.H.; Farooq, M. Long-term winter wheat cropping influenced soil organic carbon pools in different aggregate fractions of Chernozem soil. Arch. Agron. Soil Sci. 2020, 66, 2055–2066. [Google Scholar] [CrossRef]
- Jug, D.; Jug, I.; Brozović, B.; Šeremešić, S.; Dolijanović, Ž.; Zsembeli, J.; Ujj, A.; Marjanovic, J.; Smutny, V.; Dušková, S.; et al. Conservation Soil Tillage: Bridging Science and Farmer Expectations—An Overview from Southern to Northern Europe. Agriculture 2025, 15, 260. [Google Scholar] [CrossRef]
- Dolijanović, Ž.; Šeremešić, S.; Simić, M.; Kovačević, D. Conservation tillage in Serbia: Status and perspectives. In Proceedings of the Scientific Conference on the Occasion of 25 Years of Existence and Work of the Department of Biotechnical Sciences of the Academy of Engineering Sciences of Serbia “The Importance and Place of Biotechnology in the Economic Development of Serbia”, Zemun Polje, Zemun, Belgrade, Serbia, 7 November 2024; Thematic proceedings. pp. 77–93. [Google Scholar]
- Mikos-Szymańska, M.; Borowik, M.; Wyzińska, M.; Rusek, P. Effects of different fertilizer treatments on grain yield and yield components of spring wheat. Res. Rural. Dev. 2018, 2, 100–106. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Strategic Work of FAO for Sustainable Food and Agriculture; FAO: Rome, Italy, 2017; p. 28. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. [Google Scholar]
- Nikolic, S.R.; Dolijanovic, Z.; Kovacevic, D.; Oljaca, S.; Seremesic, S. Morphological and productive characteristics of hulless barley in organic farming. Field Veg. Crops Res./Ratar. I. Povrt. 2020, 57, 27–34. [Google Scholar]
- Andruszczak, S.; Kraska, P.; Kwiecińska-Poppe, E.; Skowrońska, M. Cultivar and foliar feeding of plants as factors determining the chemical composition of spelt (Triticum aestivum ssp. spelta L.) grain. Appl. Ecol. Environ. Res. 2020, 18, 2949–2958. [Google Scholar] [CrossRef]
- ICC Standard No. 137/1; Mechanical Determination of the Wet Gluten Content of Wheat Flour (Glutomatic). International Association for Cereal Science and Technology: Wien, Austria, 1994.
- ISO 5983-1:2005; Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content. Part 1. Kjeldahlmethod. ISO: Geneva, Switzerland, 2019.
- Angelova, V.R.; Akova, V.I.; Ivanov, K.I. Comparative study of the methods for the determination of organic carbon and organic matter in soils, compost and sludge. Bulg. Chem. Commun. 2019, 51, 342–347. [Google Scholar] [CrossRef]
- Nikolić, L.; Šeremešić, S.; Milošev, D.; DJalović, I.; Latković, D. Weed infestation and biodiversity of winter wheat under the effect of long-term crop rotation. Appl. Ecol. Environ. Res. 2018, 16, 1413–1426. [Google Scholar] [CrossRef]
- Sieling, K.; Stahl, C.; Winkelmann, C.; Christen, O. Growth and yield of winter wheat in the first 3 years of a monoculture under varying N fertilization in NW Germany. Eur. J. Agron. 2005, 22, 71–84. [Google Scholar] [CrossRef]
- Shahzad, M.; Farooq, M.; Jabran, K.; Hussain, M. Impact of different crop rotations and tillage systems on weed infestation and productivity of bread wheat. Crop Prot. 2016, 89, 161–169. [Google Scholar] [CrossRef]
- Di Tomaso, J.M. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Sci. 1995, 43, 491–497. [Google Scholar] [CrossRef]
- Barker, D.C.; Knezevic, S.Z.; Martin, A.R.; Walters, D.T.; Lindquist, J.L. Effect of nitrogen addition on the comparative productivity of corn and velvetleaf (Abutilon theophrasti). Weed Sci. 2006, 54, 354–363. [Google Scholar] [CrossRef]
- Davis, A.S.; Renner, K.A.; Gross, K.L. Weed seedbank community shifts in a long-term cropping experiment. Weed Sci. 2005, 53, 296–306. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Gill, G.S.; Preston, C. Tillage system effects on weed ecology, herbicide activity and persistence: A review. Aust. J. Exp. Agríc. 2006, 46, 1557–1570. [Google Scholar] [CrossRef]
- Simić, M.; Dragičević, V.; Chachalis, D.; Dolijanović, Ž.; Brankov, M. Integrated weed management in long-term maize cultivation. Zemdirbyste-Agriculture 2020, 107, 33–40. [Google Scholar] [CrossRef]
- Simić, M.; Brankov, M.; Dragičević, V.; Videnović, Ž.; Kresović, B. Maize weed infestation under different soil tillage systems and fertilization levels. Herbologia 2012, 13, 59–72. Available online: http://www.anubih.ba/images/publikacije/herbologia/herbologia_13_1.pdf (accessed on 25 June 2025).
- Simić, M.; Spasojević, I.; Kovacević, D.; Brankov, M.; Dragicević, V. Crop rotation influence on annual and perennial weed control and maize productivity. Rom. Agric. Res. 2016, 33, 125–133. Available online: https://www.incda-fundulea.ro/rar/nr33/rar33.14.pdf (accessed on 25 June 2025).
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Woźniak, A.; Rachoń, L. Effect of Tillage Systems on the Yield and Quality of Winter Wheat Grain and Soil Properties. Agriculture 2020, 10, 405. [Google Scholar] [CrossRef]
- Piao, L.; Li, M.; Xiao, J.; Gu, W.; Zhan, M.; Cao, C.; Zhao, M.; Li, C. Effects of Soil Tillage and Canopy Optimization on Grain Yield, Root Growth, and Water Use Efficiency of Rainfed Maize in Northeast China. Agronomy 2019, 9, 336. [Google Scholar] [CrossRef]
- Seepamore, M.K.; du Preez, C.C.; Ceronio, G.M. Impact of long-term production management practices on wheat grain yield and quality components under a semi-arid climate. S. Afr. J. Plant Soil 2020, 37, 194–201. [Google Scholar] [CrossRef]
- Liliane, T.N.; Charles, M.S. Factors Affecting Yield of Crops. In Agronomy—Climate Change & Food Security; Khan, A., Ed.; IntechOpen: London, UK, 2020; pp. 9–24. [Google Scholar] [CrossRef]
- Kovačević, D.; Denčić, S.; Kobiljski, B.; Momirović, N.; Oljača, S.; Dolijanović, Ž. Effect of farming systems on soil compaction, weed synuzia and yield of winter wheat. Acta Herbol. 2004, 13, 385–392. [Google Scholar]
- Šíp, V.; Vavera, R.; Chrpová, J.; Kusá, H.; Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 2013, 132, 77–85. [Google Scholar] [CrossRef]
- Ruisi, P.; Saia, S.; Badagliacca, G.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Long-term effects of no tillage treatment on soil N availability, N uptake, and 15N-fertilizer recovery of durum wheat differ in relation to crop sequence. Field Crops Res. 2016, 189, 51–58. [Google Scholar] [CrossRef]
- López-Bellido, L.; Fuentes, M.; Castillo, J.E.; López-Garrido, F.J. Effect of tillage, crop rotation and nitrogen fertilization on wheat grain quality grown under rainfed Mediterranean conditions. Field Crops Res. 1998, 57, 265–276. [Google Scholar] [CrossRef]
- Fishman, R. More uneven distributions overturn benefits of higher precipitation for crop yields. Environ. Res. Lett. 2016, 11, 024004. [Google Scholar] [CrossRef]
- Amato, G.; Ruisi, P.; Frenda, A.S.; Di Miceli, G.; Saia, S.; Plaia, A.; Giambalvo, D. Long-term tillage and crop sequence e_ects on wheat grain yield and quality. Agron. J. 2013, 105, 1317–1327. [Google Scholar] [CrossRef]
- Ahmadi, H.; Mirseyed Hosseini, H.; Moshiri, F.; Alikhani, H.A.; Etesami, H. Impact of varied tillage practices and phosphorus fertilization regimes on wheat yield and grain quality parameters in a five-year corn-wheat rotation system. Sci. Rep. 2024, 14, 14717. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.A.; Tedone, L.; Verdini, L.; Cazzato, E.; De Mastro, G. Wheat response to no-tillage and nitrogen fertilization in a long-term faba bean-based rotation. Agronomy 2019, 9, 50. [Google Scholar] [CrossRef]
- Gawęda, D.; Haliniarz, M. Grain Yield and Quality of Winter Wheat Depending on Previous Crop and Tillage System. Agriculture 2021, 11, 133. [Google Scholar] [CrossRef]
- Loke, P.F.; Heine, H.G.; Rhode, O.H.J.; Kotzé, E.; Du Preez, C.C. Tillage and its temporal effects on soil organic matter and microbial characteristics in the semi-arid central South Africa. Soil Res. 2021, 60, 294–309. [Google Scholar] [CrossRef]
- Sarker, J.R.; Singh, B.P.; Dougherty, W.J.; Fang, Y.; Badgery, W.; Hoyle, F.C.; Dalal, R.C.; Cowie, A.L. Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems. Soil Tillage Res. 2018, 175, 71–81. [Google Scholar] [CrossRef]
- Xia, Y.; Congsheng, F.; Liao, A.; Wu, H.; Wu, H.; Zhang, H.; Xu, X.; Chen, J. Influences of extreme weather events on the carbon to nitrogen ratios of major staple crops. Sci. Total Eng. 2025, 969, 178943. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. Chapter three—the effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar] [CrossRef]
Traits | Value |
---|---|
Clay (<0.002 mm) | 27% |
Silt (0.002–0.05 mm) | 22% |
Sand (0.05–2.0 mm) | 51% |
Total N (%) | 0.13 |
P (mg 100 g−1 dw) | 22.18 |
Organic matter (%) | 3.26 |
K (mg 100 g−1 dw) | 19.10 |
pHH2O | 8.04 |
Specification | Tillage System (A) | p | |||||||
---|---|---|---|---|---|---|---|---|---|
CT | MT | NT | |||||||
Top Dressing in Spring (B) | A | B | AB | ||||||
B1 | B2 | B1 | B2 | B1 | B2 | ||||
Number of weeds per m2 | 16.4 ±19.4 c | 15.9 ± 18.5 d | 28.8 ± 28.6 b | 28.2 ± 27.1 b | 36.8 ± 32.2 a | 36.4 ± 31.7 a | ** | ns | ** |
Fresh weight of weeds g m−2 | 21.7 ± 22.4 d | 20.3 ± 21.2 e | 42.5 ± 27.9 c | 34.7 ± 27.5 c | 48.2 ± 33.9 a | 44.4 ± 32.0 b | ** | ** | ** |
Air-dry weight of weeds g m−2 | 16.4 ± 30.1 e | 16.1 ± 31.9 d | 25.5 ± 32.6 c | 21.7 ± 32.1 cd | 26.6 ± 37.4 a | 32.3 ± 36.5 b | ** | ** | * |
Species Composition | Tillage System (A) | |||||
---|---|---|---|---|---|---|
CT | MT | NT | ||||
Top Dressing in Spring (B) | ||||||
B1 | B2 | B1 | B2 | B1 | B2 | |
Annual weeds | ||||||
Avena fatua L. | 2.4 | 7.6 | 5.4 | 6.9 | 5.1 | |
Sinapis arvensis L. | 3.6 | 4.7 | 3.5 | 3.4 | ||
Papaver rhoeas | 2.2 | 2.8 | ||||
Perennial weeds | ||||||
Bellis perennis L. | 1.8 | 3.3 | 3.1 | 1.9 | ||
Cirsium arvense (L.) Scop. | 4.3 | 5.4 | 4.2 | 5.8 | 4.1 | |
Convolvulus arvensis L. | 6.3 | 5.5 | 5.9 | 5.5 | 5.2 | 6.4 |
Lolium perenne L. | 6.1 | |||||
Sonchus arvensis L. | 8.9 | 2.6 | 6.1 | 5.0 | 3.9 | |
Sorghum halepense L. | 5.5 | 4.1 | ||||
Number of weeds per m2 | 19.4 | 18.5 | 28.6 | 27.1 | 32.2 | 31.7 |
Number of species | 4 | 4 | 5 | 6 | 7 | 8 |
Specification | Tillage System (A) | p | |||||||
---|---|---|---|---|---|---|---|---|---|
CT | MT | NT | |||||||
Top Dressing in Spring (B) | A | B | AB | ||||||
B1 | B2 | B1 | B2 | B1 | B2 | ||||
Grain yield in t ha−1 | 5.91 ± 6.2 e | 5.36 ± 6.6 e | 5.32 ± 11.1 d | 5.16 ± 11.7 c | 5.08 ± 13.7 b | 4.65 ± 14.5 a | ** | ** | ns |
Plant number after emergence per m2 | 551.1 ± 9.5 b | 537.7 ± 14.7 a | 529.3 ± 14.8 a | * | n.a | n.a | |||
Spike number per m2 | 15.34 ± 8.1 d | 14.98 ± 8.8 c | 14.98 ± 15.4 a | 14.36 ± 15.3 a | 14.92 ± 14.8 b | 14.4 ± 14.9 b | ** | ** | ns |
Grain weight per spike in g | 2.03 ± 9.5 e | 1.81 ± 10.2 d | 1.82 ± 17.8 b | 1.64 ± 18.4 a | 1.49 ± 16.3 c | 1.4 ± 16.8 c | ** | ** | ns |
1000-grain weight in g | 41.83 ± 10.1 e | 42.75 ± 10.9 d | 40.34 ± 12.6 c | 41.49 ± 12.1 c | 40.26 ± 14.2 b | 41.08 ± 15.6 a | * | ns | ns |
Specification | Tillage System (A) | p | |||||||
---|---|---|---|---|---|---|---|---|---|
CT | MT | NT | |||||||
Top Dressing in Spring (B) | A | B | AB | ||||||
B1 | B2 | B1 | B2 | B1 | B2 | ||||
Total protein content % | 13.3 ± 9.4 a | 13.1 ± 9.7 a | 12.8 ± 13.9 b | 12.2 ± 14.4 b | 12.4 ± 15.7 c | 12.0 ± 15.9 c | * | ns | ns |
Wet gluten content % | 33.1 ± 7.9 a | 32.9 ± 8.3 a | 31.4 ± 13.3 b | 31.9 ± 13.9 b | 29.2 ± 15.7 c | 30.7 ± 16.3 c | ** | * | * |
Starch content % | 58.7 ± 7.5 a | 57.4 ± 7.2 a | 54.9 ± 15.5 b | 54.1 ± 15.9 b | 53.2 ± 16.3 c | 54.0 ± 16.7 c | ** | * | * |
Grain density kg hL−1 | 71.2 ± 9.8 a | 70.4 ± 9.9 a | 69.6 ± 20.2 b | 68.1 ± 20.4 b | 68.2 ± 18.6 c | 67.8 ± 19.1 c | * | ** | * |
Grain uniformity % | 88.8 ± 8.0 a | 88.1 ± 8.2 a | 80.4 ± 17.7 b | 79.6 ± 17.9 b | 77.5 ± 19.5 c | 76.8 ± 19.8 c | ** | * | ns |
Specification | Tillage System (A) | Value p | ||
---|---|---|---|---|
CT | MT | NT | ||
C/N ratio | 18.2 a | 17.4 b | 15.6 c | * |
CV% | 18.3 a | 8.7 c | 9.5 b | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolijanović, Ž.; Roljević Nikolić, S.; Šeremešić, S.; Jug, D.; Biljić, M.; Pešić, S.; Kovačević, D. Effects of Conservation Tillage and Nitrogen Management on Yield, Grain Quality, and Weed Infestation in Winter Wheat. Agronomy 2025, 15, 1742. https://doi.org/10.3390/agronomy15071742
Dolijanović Ž, Roljević Nikolić S, Šeremešić S, Jug D, Biljić M, Pešić S, Kovačević D. Effects of Conservation Tillage and Nitrogen Management on Yield, Grain Quality, and Weed Infestation in Winter Wheat. Agronomy. 2025; 15(7):1742. https://doi.org/10.3390/agronomy15071742
Chicago/Turabian StyleDolijanović, Željko, Svetlana Roljević Nikolić, Srdjan Šeremešić, Danijel Jug, Milena Biljić, Stanka Pešić, and Dušan Kovačević. 2025. "Effects of Conservation Tillage and Nitrogen Management on Yield, Grain Quality, and Weed Infestation in Winter Wheat" Agronomy 15, no. 7: 1742. https://doi.org/10.3390/agronomy15071742
APA StyleDolijanović, Ž., Roljević Nikolić, S., Šeremešić, S., Jug, D., Biljić, M., Pešić, S., & Kovačević, D. (2025). Effects of Conservation Tillage and Nitrogen Management on Yield, Grain Quality, and Weed Infestation in Winter Wheat. Agronomy, 15(7), 1742. https://doi.org/10.3390/agronomy15071742