Combining Transcriptome Analysis and Comparative Genomics to Identify Key Components of the Lignin Biosynthesis Gene Network in Sorghum bicolor
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Extraction and Sequencing
2.3. Analysis of RNA-Seq Data
2.4. Functional Enrichment Analysis
2.5. Analysis of Gene Co-Expression Network
2.6. Identification of Sorghum Othologs of Lignin Biosynthesis Genes
2.7. Sequence Variation and Selection Signature of Genes Related to Lignin Content in Sorghum
3. Results
3.1. Identification of Candidate Genes Related to Lignin Biosynthesis
3.2. Transcriptomic Data of Sorghum Accessions with Contrasting Lignin Content
3.3. Differentially Expressed Genes Between High and Low-Lignin Sorghum Accessions
3.4. Functional Enrichment of Differentially Expressed Genes
3.5. Analysis of Gene Co-Expression Network
3.6. Genetic Variation of Lignin Biosynthesis Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, T.N.; Thomas, J.B.; Dahlberg, J.; Rhee, S.Y.; Mortimer, J.C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. J. Exp. Bot. 2022, 73, 646–664. [Google Scholar] [CrossRef] [PubMed]
- Mace, E.S.; Tai, S.; Gilding, E.K.; Li, Y.; Prentis, P.J.; Bian, L.; Campbell, B.C.; Hu, W.; Innes, D.J.; Han, X.; et al. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat. Commun. 2013, 4, 2320. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Cao, H.; Qin, W.; Yang, S.; Zhang, D.; Zhu, L.; Song, H.; Zhang, Q. Genomic and modern biotechnological strategies for enhancing salt tolerance in crops. New Crops 2025, 2, 100057. [Google Scholar] [CrossRef]
- Michael, F. Lignin: Characterization of a Multifaceted Crop Component. Sci. World J. 2013, 2013, 436517. [Google Scholar] [CrossRef] [PubMed]
- Sree Rayanoothala, P.; Dweh, T.J.; Mahapatra, S.; Kayastha, S. Unveiling the protective role of chitosan in plant defense: A comprehensive review with emphasis on abiotic stress management. Crop Des. 2024, 3, 100076. [Google Scholar] [CrossRef]
- Dien, B.S.; Sarath, G.; Pedersen, J.F.; Sattler, S.E.; Chen, H.; Funnell-Harris, D.L.; Nichols, N.N.; Cotta, M.A. Improved Sugar Conversion and Ethanol Yield for Forage Sorghum (Sorghum bicolor L. Moench) Lines with Reduced Lignin Contents. Bioenergy Res. 2009, 2, 153–164. [Google Scholar] [CrossRef]
- Brenton, Z.W.; Cooper, E.A.; Myers, M.T.; Boyles, R.E.; Shakoor, N.; Zielinski, K.J.; Rauh, B.L.; Bridges, W.C.; Morris, G.P.; Kresovich, S. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy. Genetics 2016, 204, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Han, Y.; Ping, J.; Wang, Y.; Lv, X.; Chu, J. Genome wide association analysis of acid detergent fiber content of 206 forage sorghum (Sorghum bicolor (L.) Moench) accessions. Genet. Resour. Crop Evol. 2022, 69, 1941–1951. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Goeminne, G.; Simões, M.S.; Pina, A.V.d.A.; Lima, L.G.A.d.; Pezard, J.; Gutiérrez, A.; Rencoret, J.; Mortimer, J.C.; del Río, J.C.; et al. Transcriptional and metabolic changes associated with internode development and reduced cinnamyl alcohol dehydrogenase activity in sorghum. J. Exp. Bot. 2022, 73, 6307–6333. [Google Scholar] [CrossRef] [PubMed]
- Adeyanju, A.O.; Sattler, S.E.; Rich, P.J.; Rivera-Burgos, L.A.; Ejeta, G. Sorghum Brown Midrib19 (Bmr19) Gene Links Lignin Biosynthesis to Folate Metabolism. Genes 2021, 12, 660. [Google Scholar] [CrossRef] [PubMed]
- Bout, S.; Vermerris, W. A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol. Genet. Genom. 2003, 269, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Saballos, A.; Sattler, S.E.; Sanchez, E.; Foster, T.P.; Vermerris, W. Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). Plant J. 2012, 70, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Sattler, S.E.; Saathoff, A.J.; Haas, E.J.; Palmer, N.A.; Funnell-Harris, D.L.; Sarath, G.; Pedersen, J.F. A Nonsense Mutation in a Cinnamyl Alcohol Dehydrogenase Gene Is Responsible for the Sorghum brown midrib6 Phenotype. Plant Physiol. 2009, 150, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, N.D.; Chapple, C. The genetics of lignin biosynthesis: Connecting genotype to phenotype. Annu. Rev. Genet. 2010, 44, 337–363. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhang, J.; Tschaplinski, T.J.; Tuskan, G.A.; Chen, J.G.; Muchero, W. Regulation of Lignin Biosynthesis and Its Role in Growth-Defense Tradeoffs. Front. Plant Sci. 2018, 9, 1427. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Dixon, R.A. Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends Plant Sci. 2011, 16, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, D.; Hu, J.; Zhou, X.; Ye, X.; Reichel, K.L.; Stewart, N.R.; Syrenne, R.D.; Yang, X.; Gao, P.; et al. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinform. 2009, 10, S3. [Google Scholar] [CrossRef] [PubMed]
- McCormick, R.F.; Truong, S.K.; Sreedasyam, A.; Jenkins, J.; Shu, S.; Sims, D.; Kennedy, M.; Amirebrahimi, M.; Weers, B.D.; McKinley, B.; et al. The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018, 93, 338–354. [Google Scholar] [CrossRef] [PubMed]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Gao, L.; Xiao, R.; Wang, Y.; Chen, B.; Zou, W.; Li, J.; Mace, E.; Jordan, D.; Tao, Y. Complete telomere-to-telomere assemblies of two sorghum genomes to guide biological discovery. iMeta 2024, 3, e193. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Luo, H.; Xu, J.; Cruickshank, A.; Zhao, X.; Teng, F.; Hathorn, A.; Wu, X.; Liu, Y.; Shatte, T.; et al. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat. Plants 2021, 7, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, Y.; Luo, H.; Shang, L.; Leng, C.; Liu, Z.; Li, Z.; Lu, X.; Cai, H.; Hao, H.; et al. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Mol. Plant 2022, 15, 537–551. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Marc, L.; Bjoern, U. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef] [PubMed]
- Aramaki, T.; Blanc-Mathieu, R.; Endo, H.; Ohkubo, K.; Ogata, H. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2019, 36, 2251–2252. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiao, C.; Sun, H.; Rosli, H.G.; Pombo, M.A.; Zhang, P.; Banf, M.; Dai, X.; Martin, G.B.; Giovannoni, J.J.; et al. iTAK: A Program for Genome-wide Prediction and Classification of Plant Transcription Factors, Transcriptional Regulators, and Protein Kinases. Mol. Plant 2016, 9, 1667–1670. [Google Scholar] [CrossRef] [PubMed]
- Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: Empowering workflow-based network analysis. Genome Biol. 2019, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Mckenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Hudson, R.R.; Slatkin, M.; Maddison, W.P. Estimation of levels of gene flow from DNA sequence data. Genetics 1992, 132, 583. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Mace, E.S.; Tai, S.; Cruickshank, A.; Campbell, B.C.; Zhao, X.; Van Oosterom, E.J.; Godwin, I.D.; Botella, J.R.; Jordan, D.R. Whole-Genome Analysis of Candidate genes Associated with Seed Size and Weight in Sorghum bicolor Reveals Signatures of Artificial Selection and Insights into Parallel Domestication in Cereal Crops. Front. Plant Sci. 2017, 8, 1237. [Google Scholar] [CrossRef] [PubMed]
- Baucher, M.; Halpin, C.; Petit-Conil, M.; Boerjan, W. Lignin: Genetic Engineering and Impact on Pulping. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 305–350. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.Q.; Lin, H.X. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactionsFA. J. Integr. Plant Biol. 2021, 63, 30. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Dixon, R.A. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses. Front. Plant Sci. 2018, 9, 399. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Ye, Z.-H. Secondary Cell Walls: Biosynthesis, Patterned Deposition and Transcriptional Regulation. Plant Cell Physiol. 2014, 56, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Carpita, N.C.; McCann, M.C. Maize and sorghum: Genetic resources for bioenergy grasses. Trends Plant Sci. 2008, 13, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, H.; Zhao, B.; Wang, R.; Ji, C.; Zhu, B. Transcriptome analysis identifies differentially expressed genes involved in lignin biosynthesis in barley. Int. J. Biol. Macromol. 2023, 236, 123940. [Google Scholar] [CrossRef] [PubMed]
- Amancio, S.; Vicentini, R.; Bottcher, A.; Brito, M.d.S.; dos Santos, A.B.; Creste, S.; Landell, M.G.d.A.; Cesarino, I.; Mazzafera, P. Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content. PLoS ONE 2015, 10, e0137698. [Google Scholar]
- Caicedo, A.L.; Purugganan, M.D. Comparative Plant Genomics. Frontiers and Prospects. Plant Physiol. 2005, 138, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhao, X.; Wang, X.; Hathorn, A.; Hunt, C.; Cruickshank, A.W.; van Oosterom, E.J.; Godwin, I.D.; Mace, E.S.; Jordan, D.R. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnol. J. 2020, 18, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Shad, M.A.; Li, X.; Rao, M.J.; Luo, Z.; Li, X.; Ali, A.; Wang, L. Exploring Lignin Biosynthesis Genes in Rice: Evolution, Function, and Expression. Int. J. Mol. Sci. 2024, 25, 10001. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Yue, L.; Li, H.; Zhu, L.; Dong, Z.; Long, Y. Genome-Wide Identification and Characterization of Lignin Synthesis Genes in Maize. Int. J. Mol. Sci. 2024, 25, 6710. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.W.; Donoghue, P.C.J. Whole-Genome Duplication and Plant Macroevolution. Trends Plant Sci. 2018, 23, 933–945. [Google Scholar] [CrossRef] [PubMed]
- Fuller, D.Q.; Stevens, C.J. Sorghum Domestication and Diversification: A Current Archaeobotanical Perspective. In Plants and People in the African Past: Progress in African Archaeobotany; Mercuri, A.M., D’Andrea, A.C., Fornaciari, R., Höhn, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 427–452. [Google Scholar]
- Ge, F.; Xie, P.; Wu, Y.; Xie, Q. Genetic architecture and molecular regulation of sorghum domestication. aBIOTECH 2023, 4, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Li, X.; Shannon, L.M.; Yeh, C.T.; Wang, M.L.; Bai, G.; Peng, Z.; Li, J.; Trick, H.N.; Clemente, T.E. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 2012, 44, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Cuevas, H.E.; Das, S.; Sezen, U.U.; Zhou, C.; Guo, H.; Goff, V.H.; Ge, Z.; Clemente, T.E.; Paterson, A.H. Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proc. Natl. Acad. Sci. USA 2013, 110, 15824–15829. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Trusov, Y.; Zhao, X.; Wang, X.; Cruickshank, A.W.; Hunt, C.; van Oosterom, E.J.; Hathorn, A.; Liu, G.; Godwin, I.D.; et al. Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum. Plant J. 2021, 108, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Eudes, A.; Liang, Y.; Mitra, P.; Loqué, D. Lignin bioengineering. Curr. Opin. Biotechnol. 2014, 26, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Mielenz, J.R.; Xiao, X.; Ge, Y.; Hamilton, C.Y.; Rodriguez, M.; Chen, F.; Foston, M.; Ragauskas, A.; Bouton, J. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc. Natl. Acad. Sci. USA 2011, 108, 3803–3808. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, C.G.; Mansfield, S.D.; Lu, F.; Withers, S.; Park, J.-Y.; Karlen, S.D.; Gonzales-Vigil, E.; Padmakshan, D.; Unda, F.; Rencoret, J.; et al. Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone. Science 2014, 344, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Aznar, A.; Chalvin, C.; Birdseye, D.S.; Baidoo, E.E.K.; Eudes, A.; Shih, P.M.; Loqué, D.; Zhang, A.; Scheller, H.V. Increased drought tolerance in plants engineered for low lignin and low xylan content. Biotechnol. Biofuels 2018, 11, 195. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Chr | Start | End | Gene Name | Lignin Biosynthesis Process | Expression Change | Selection Signal |
---|---|---|---|---|---|---|---|
Sobic.001G110900 | Chr01 | 8,614,915 | 8,616,973 | MYB52/MYB54 | transcriptional regulation | up | No |
Sobic.001G137100 | Chr01 | 10,870,887 | 10,877,123 | BLH6 | transcriptional regulation | ns | No |
Sobic.001G160500 | Chr01 | 13,186,392 | 13,188,966 | PAL1/PAL2/PAL3/PAL4 | monolignol biosynthesis | NA | No |
Sobic.001G196300 | Chr01 | 17,685,326 | 17,690,280 | F5H1 | monolignol biosynthesis | up | Yes |
Sobic.001G261700 | Chr01 | 45,967,550 | 45,969,583 | LBD18/LBD30 | transcriptional regulation | NA | No |
Sobic.001G316800 | Chr01 | 60,505,053 | 60,512,997 | VND1/VND2/VND3 | transcriptional regulation | NA | Yes |
Sobic.001G346800 | Chr01 | 63,612,865 | 63,614,287 | COMT | monolignol biosynthesis | up | NA |
Sobic.001G358900 | Chr01 | 64,882,026 | 64,883,966 | MYB46 | transcriptional regulation | down | No |
Sobic.001G422300 | Chr01 | 70,308,577 | 70,311,856 | LAC2 | monolignol polymerization | up | Yes |
Sobic.001G437300 | Chr01 | 71,566,224 | 71,569,045 | LBD18/LBD30 | transcriptional regulation | ns | NA |
Sobic.001G516600 | Chr01 | 78,328,401 | 78,335,084 | 4CL8 | monolignol biosynthesis | ns | No |
Sobic.001G522700 | Chr01 | 78,781,467 | 78,788,810 | VND1/VND2/VND3 | transcriptional regulation | ns | Yes |
Sobic.001G526200 | Chr01 | 79,021,004 | 79,026,139 | KNAT7 | transcriptional regulation | up | No |
Sobic.002G003200 | Chr02 | 425,796 | 427,548 | AtPRX2 | monolignol polymerization | down | No |
Sobic.002G003400 | Chr02 | 445,651 | 447,224 | AtPRX2 | monolignol polymerization | NA | NA |
Sobic.002G003500 | Chr02 | 450,973 | 452,852 | AtPRX2 | monolignol polymerization | NA | NA |
Sobic.002G003700 | Chr02 | 460,085 | 461,869 | AtPRX2 | monolignol polymerization | ns | No |
Sobic.002G029500 | Chr02 | 2,740,754 | 2,742,865 | F5H1 | monolignol biosynthesis | NA | No |
Sobic.002G126600 | Chr02 | 17,292,184 | 17,296,557 | C4H | monolignol biosynthesis | up | No |
Sobic.002G146000 | Chr02 | 29,037,648 | 29,043,667 | CCR1 | monolignol biosynthesis | down | No |
Sobic.002G195400 | Chr02 | 58,394,424 | 58,396,434 | CAD6 | monolignol biosynthesis | NA | No |
Sobic.002G195500 | Chr02 | 58,401,424 | 58,401,985 | CAD6 | monolignol biosynthesis | NA | NA |
Sobic.002G195600 | Chr02 | 58,404,433 | 58,406,373 | CAD6 | monolignol biosynthesis | down | No |
Sobic.002G195700 | Chr02 | 58,408,619 | 58,410,895 | CAD6 | monolignol biosynthesis | down | No |
Sobic.002G196000 | Chr02 | 58,453,175 | 58,454,976 | MYB20 | transcriptional regulation | ns | No |
Sobic.002G196100 | Chr02 | 58,500,458 | 58,502,066 | MYB20 | transcriptional regulation | ns | No |
Sobic.002G242300 | Chr02 | 63,154,947 | 63,156,519 | CCoAOMT7 | monolignol biosynthesis | ns | No |
Sobic.002G275500 | Chr02 | 65,814,952 | 65,825,791 | MYB42/MYB85 | transcriptional regulation | up | No |
Sobic.002G279100 | Chr02 | 66,107,623 | 66,109,361 | MYB4 | transcriptional regulation | ns | No |
Sobic.002G325000 | Chr02 | 69,554,960 | 69,556,417 | COMT | monolignol biosynthesis | up | Yes |
Sobic.002G388700 | Chr02 | 74,246,294 | 74,248,187 | MYB46 | transcriptional regulation | ns | No |
Sobic.003G050300 | Chr03 | 4,577,400 | 4,579,054 | AtPRX25 | monolignol polymerization | up | No |
Sobic.003G121000 | Chr03 | 11,015,233 | 11,017,556 | AtPRX72 | monolignol polymerization | down | Yes |
Sobic.003G183300 | Chr03 | 48,690,866 | 48,695,241 | AtPRX72 | monolignol polymerization | ns | Yes |
Sobic.003G231400 | Chr03 | 57,067,037 | 57,068,905 | LAC17 | monolignol polymerization | NA | No |
Sobic.003G244400 | Chr03 | 58,382,282 | 58,387,226 | OsFBK1 | transcriptional regulation | ns | No |
Sobic.003G251800 | Chr03 | 58,989,848 | 58,995,158 | SND2 | transcriptional regulation | up | No |
Sobic.003G281500 | Chr03 | 61,655,478 | 61,664,524 | PDR1/AtABCG29 | monolignol polymerization | ns | No |
Sobic.003G320800 | Chr03 | 64,842,034 | 64,843,978 | AtPRX2 | monolignol polymerization | up | No |
Sobic.003G327800 | Chr03 | 65,336,670 | 65,340,440 | C3H | monolignol biosynthesis | ns | No |
Sobic.003G337400 | Chr03 | 66,049,426 | 66,052,170 | C4H | monolignol biosynthesis | up | Yes |
Sobic.003G353200 | Chr03 | 67,210,787 | 67,213,484 | LAC2 | monolignol polymerization | up | No |
Sobic.004G062500 | Chr04 | 5,041,260 | 5,046,446 | 4CL1/4CL2 | monolignol biosynthesis | up | No |
Sobic.004G065600 | Chr04 | 5,305,396 | 5,308,691 | CCR1 | monolignol biosynthesis | up | No |
Sobic.004G071000 | Chr04 | 5,728,604 | 5,734,362 | CAD3 | monolignol biosynthesis | up | No |
Sobic.004G123200 | Chr04 | 13,843,961 | 13,858,621 | MYB69 | transcriptional regulation | down | Yes |
Sobic.004G123400 | Chr04 | 13,903,173 | 13,921,822 | MYB69 | transcriptional regulation | ns | No |
Sobic.004G176600 | Chr04 | 52,879,275 | 52,880,557 | XND1 | transcriptional regulation | down | No |
Sobic.004G212300 | Chr04 | 56,194,958 | 56,201,627 | HCT | monolignol biosynthesis | up | No |
Sobic.004G220300 | Chr04 | 57,051,383 | 57,055,340 | PAL1/PAL2/PAL3/PAL4 | monolignol biosynthesis | up | No |
Sobic.004G220400 | Chr04 | 57,064,914 | 57,069,724 | PAL1/PAL2/PAL3/PAL4 | monolignol biosynthesis | ns | No |
Sobic.004G220500 | Chr04 | 57,075,106 | 57,077,250 | PAL1/PAL2/PAL3/PAL4 | monolignol biosynthesis | up | NA |
Sobic.004G220600 | Chr04 | 57,083,771 | 57,086,639 | PAL1/PAL2/PAL3/PAL4 | monolignol biosynthesis | up | NA |
Sobic.004G220700 | Chr04 | 57,099,422 | 57,101,566 | PAL1/PAL2/PAL3/PAL4 | monolignol biosynthesis | up | NA |
Sobic.004G248700 | Chr04 | 59,576,464 | 59,578,405 | MYB20 | transcriptional regulation | ns | Yes |
Sobic.004G272700 | Chr04 | 61,636,902 | 61,641,337 | 4CL3 | monolignol biosynthesis | up | Yes |
Sobic.004G273800 | Chr04 | 61,765,784 | 61,767,930 | MYB58/MYB63 | transcriptional regulation | ns | No |
Sobic.004G298400 | Chr04 | 63,778,460 | 63,782,424 | WRKY12 | transcriptional regulation | down | Yes |
Sobic.004G302400 | Chr04 | 64,103,336 | 64,112,306 | VND4/VND5/VND6 | transcriptional regulation | down | Yes |
Sobic.005G088400 | Chr05 | 12,613,417 | 12,615,757 | F5H1 | monolignol biosynthesis | NA | No |
Sobic.006G008800 | Chr06 | 1,302,649 | 1,307,415 | E2Fc | transcriptional regulation | down | No |
Sobic.006G079300 | Chr06 | 44,550,695 | 44,552,325 | AtPRX72 | monolignol polymerization | NA | No |
Sobic.006G086000 | Chr06 | 45,545,065 | 45,546,863 | XND1 | transcriptional regulation | ns | No |
Sobic.006G136800 | Chr06 | 49,923,688 | 49,929,393 | HCT | monolignol biosynthesis | up | No |
Sobic.006G148800 | Chr06 | 51,039,816 | 51,042,905 | PAL1/PAL2/PAL3/PAL4 | monolignol biosynthesis | up | No |
Sobic.006G148900 | Chr06 | 51,053,477 | 51,056,309 | PAL1/PAL2/PAL3/PAL4 | monolignol biosynthesis | ns | No |
Sobic.006G160900 | Chr06 | 51,876,066 | 51,882,814 | VND4/VND5/VND6 | transcriptional regulation | NA | No |
Sobic.006G166300 | Chr06 | 52,377,828 | 52,383,758 | WRKY12 | transcriptional regulation | ns | No |
Sobic.006G199800 | Chr06 | 55,156,816 | 55,158,923 | MYB58/MYB63 | transcriptional regulation | up | Yes |
Sobic.006G211900 | Chr06 | 56,109,086 | 56,113,719 | CAD6 | monolignol biosynthesis | down | No |
Sobic.006G224500 | Chr06 | 57,040,310 | 57,042,534 | AtPRX2 | monolignol polymerization | NA | Yes |
Sobic.006G279400 | Chr06 | 60,968,193 | 60,970,485 | AtVND7 | transcriptional regulation | ns | NA |
Sobic.007G003000 | Chr07 | 277,399 | 280,393 | AtVND7 | transcriptional regulation | down | Yes |
Sobic.007G018100 | Chr07 | 1,663,032 | 1,668,132 | NST1/NST2/NST3 | transcriptional regulation | up | Yes |
Sobic.007G039100 | Chr07 | 3,776,104 | 3,779,183 | MYB103 | transcriptional regulation | up | No |
Sobic.007G047300 | Chr07 | 4,721,073 | 4,724,503 | COMT | monolignol biosynthesis | up | No |
Sobic.007G076000 | Chr07 | 8,729,710 | 8,733,771 | CAD6 | monolignol biosynthesis | ns | No |
Sobic.007G089900 | Chr07 | 12,684,979 | 12,699,403 | 4CL1/4CL2 | monolignol biosynthesis | ns | No |
Sobic.007G132600 | Chr07 | 55,272,194 | 55,274,367 | MYB20 | transcriptional regulation | up | Yes |
Sobic.007G141200 | Chr07 | 57,060,873 | 57,068,026 | CCR1 | monolignol biosynthesis | up | No |
Sobic.007G145600 | Chr07 | 57,553,940 | 57,556,333 | 4CL1/4CL2 | monolignol biosynthesis | up | Yes |
Sobic.007G177100 | Chr07 | 61,085,887 | 61,087,423 | MYB4 | transcriptional regulation | ns | No |
Sobic.007G178300 | Chr07 | 61,150,831 | 61,158,248 | MYB42/MYB85 | transcriptional regulation | up | Yes |
Sobic.007G217200 | Chr07 | 64,554,561 | 64,555,105 | CCoAOMT7 | monolignol biosynthesis | NA | NA |
Sobic.007G218500 | Chr07 | 64,677,322 | 64,678,679 | CCoAOMT7 | monolignol biosynthesis | NA | No |
Sobic.007G218700 | Chr07 | 64,689,206 | 64,692,655 | CCoAOMT7 | monolignol biosynthesis | up | No |
Sobic.007G218800 | Chr07 | 64,709,897 | 64,711,491 | CCoAOMT7 | monolignol biosynthesis | up | No |
Sobic.008G112200 | Chr08 | 51,883,854 | 51,887,072 | MYB83 | transcriptional regulation | ns | Yes |
Sobic.008G188900 | Chr08 | 62,311,403 | 62,316,497 | BLH6 | transcriptional regulation | up | Yes |
Sobic.009G162300 | Chr09 | 51,911,388 | 51,914,098 | LAC2 | monolignol polymerization | up | Yes |
Sobic.009G181800 | Chr09 | 53,566,765 | 53,571,063 | C3H | monolignol biosynthesis | up | Yes |
Sobic.009G186500 | Chr09 | 53,933,816 | 53,935,359 | AtPRX2 | monolignol polymerization | NA | No |
Sobic.009G186600 | Chr09 | 53,940,276 | 53,942,152 | AtPRX2 | monolignol polymerization | up | Yes |
Sobic.009G231600 | Chr09 | 57,151,987 | 57,154,230 | SND2 | transcriptional regulation | up | Yes |
Sobic.010G002900 | Chr10 | 263,346 | 268,317 | VND4/VND5/VND6 | transcriptional regulation | down | No |
Sobic.010G022400 | Chr10 | 1,840,690 | 1,844,258 | NST1/NST2/NST3 | transcriptional regulation | up | No |
Sobic.010G052200 | Chr10 | 4,071,578 | 4,073,478 | CCoAOMT1 | monolignol biosynthesis | up | Yes |
Sobic.010G066000 | Chr10 | 5,255,690 | 5,259,051 | CCR1 | monolignol biosynthesis | up | No |
Sobic.010G106601 | Chr10 | 10,257,926 | 10,259,640 | MYB20 | transcriptional regulation | NA | Yes |
Sobic.010G128300 | Chr10 | 16,621,902 | 16,623,207 | AtPRX2 | monolignol polymerization | NA | No |
Sobic.010G128400 | Chr10 | 16,881,605 | 16,882,960 | AtPRX2 | monolignol polymerization | NA | No |
Sobic.010G128700 | Chr10 | 16,968,976 | 16,970,381 | AtPRX2 | monolignol polymerization | NA | No |
Sobic.010G165500 | Chr10 | 48,920,369 | 48,930,191 | PDR1/AtABCG29 | monolignol polymerization | up | Yes |
Sobic.010G214900 | Chr10 | 55,777,184 | 55,784,716 | 4CL1/4CL2 | monolignol biosynthesis | ns | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, H.; Wang, Y.; Liu, R.; Cheng, X.; Wang, Y.; Wang, Y.; Lv, X.; Fan, F.; Ju, L.; Chu, J.; et al. Combining Transcriptome Analysis and Comparative Genomics to Identify Key Components of the Lignin Biosynthesis Gene Network in Sorghum bicolor. Agronomy 2025, 15, 1751. https://doi.org/10.3390/agronomy15071751
Niu H, Wang Y, Liu R, Cheng X, Wang Y, Wang Y, Lv X, Fan F, Ju L, Chu J, et al. Combining Transcriptome Analysis and Comparative Genomics to Identify Key Components of the Lignin Biosynthesis Gene Network in Sorghum bicolor. Agronomy. 2025; 15(7):1751. https://doi.org/10.3390/agronomy15071751
Chicago/Turabian StyleNiu, Hao, Yanbo Wang, Ruizhen Liu, Xiaoqiang Cheng, Yao Wang, Yubin Wang, Xin Lv, Fangfang Fan, Lan Ju, Jianqiang Chu, and et al. 2025. "Combining Transcriptome Analysis and Comparative Genomics to Identify Key Components of the Lignin Biosynthesis Gene Network in Sorghum bicolor" Agronomy 15, no. 7: 1751. https://doi.org/10.3390/agronomy15071751
APA StyleNiu, H., Wang, Y., Liu, R., Cheng, X., Wang, Y., Wang, Y., Lv, X., Fan, F., Ju, L., Chu, J., Yan, H., Wang, H., Chang, H., Zhang, Y., Tao, Y., & Ping, J. (2025). Combining Transcriptome Analysis and Comparative Genomics to Identify Key Components of the Lignin Biosynthesis Gene Network in Sorghum bicolor. Agronomy, 15(7), 1751. https://doi.org/10.3390/agronomy15071751