The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Monoculture Isolates
2.2. Plant Extracts Preparation and Composition
2.3. Antifungal Activity of Plant Extracts
2.4. Reinoculation
2.5. Processing of Data
3. Results
3.1. Chemical Composition of the Plant Extracts
3.2. Inhibitory Effect of Clove Plant Extract
3.3. Inhibitory Effect of Rosemary Plant Extract
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Godlewska, K.; Ronga, D.; Michalak, I. Plant extracts—Importance in sustainable agriculture. Ital. J. Agron. 2021, 16, 1851. [Google Scholar] [CrossRef]
- Han, M.; Kasim, S.; Yang, Z.; Deng, X.; Saidi, B.N.; Uddin, K.M.; Shuib, M.E. Plant Extracts as Biostimulant Agents: A Promising Strategy for Managing Environmental Stress in Sustainable Agriculture. Phyton 2024, 93, 2149–2166. [Google Scholar] [CrossRef]
- European Union. A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. 2020, pp. 1–19. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 (accessed on 24 June 2025).
- Šunjka, D.; Mechora, Š. Advances in Alternative Measures in Plant Protection. Plants 2023, 12, 805. [Google Scholar] [CrossRef] [PubMed]
- Talhinhas, P.; Baroncelli, R. Colletotrichum species and complexes: Geographic distribution, host range and conservation status. Fungal Divers. 2021, 110, 109–198. [Google Scholar] [CrossRef]
- Morkeliūnė, A.; Rasiukevičiūtė, N.; Valiuškaitė, A. Pathogenicity of Colletotrichum acutatum to different strawberry cultivars and anthracnose control with essential oils. Zemdirb.-Agric. 2021, 108, 173–180. [Google Scholar] [CrossRef]
- Miller-Butler, M.A.; Smith, B.J.; Curry, K.J.; Blythe, E.K. Evaluation of detached strawberry leaves for anthracnose disease severity using image analysis and visual ratings. HortScience 2019, 54, 2111–2117. [Google Scholar] [CrossRef]
- Peres, N.A.; Timmer, L.W.; Adaskaveg, J.E.; Correll, C.J. Lifestyles of Colletotrichum acutatum. Plant Dis. 2005, 89, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Moral, J.; Jurado-Bello, J.; Sánchez, M.I.; de Oliveira, R.; Trapero, A. Effect of temperature, wetness duration, and planting density on olive anthracnose caused by Colletotrichum spp. Phytopathology 2012, 102, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Morkeliūnė, A.; Rasiukevičiūtė, N.; Frercks, B.; Bendokas, V.; Antanynienė, R.; Mažeikienė, I.; Vaštakaitė-Kairienė, V.; Karklelienė, R.; Valiuškaitė, A. Evaluation of Strawberry Colletotrichum spp. Genetic Diversity in Lithuania. Agronomy 2025, 15, 720. [Google Scholar] [CrossRef]
- Peralta-Ruiz, Y.; Rossi, C.; Grande-Tovar, C.D.; Chaves-López, C. Green Management of Postharvest Anthracnose Caused by Colletotrichum gloeosporioides. Fungi 2023, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, M.; Singh, P.; Pandey, A.K. Botrytis fruit rot management: What have we achieved so far? Food Microbiol. 2024, 122, 104564. [Google Scholar] [CrossRef] [PubMed]
- Rasiukevičiūtė, N.; Rugienius, R.; Šikšnianienė, J.B. Genetic diversity of Botrytis cinerea from Strawberry in Lithuania. Zemdirb.-Agric. 2018, 105, 265–270. [Google Scholar] [CrossRef]
- Díaz-Urbano, M.; Velasco, P.; Rodríguez, V.M.; Poveda, J. Endophytic fungi in postharvest disease management in fresh produce. In Postharvest Management of Fresh Produce; Singh, P.B., Agnihotri, S., Singh, G., Gupta, K.V., Eds.; Academic Press: California, CA, USA, 2023; pp. 81–112. [Google Scholar] [CrossRef]
- Chrapačienė, S.; Rasiukevičiūtė, N.; Valiuškaitė, A. Control of Seed-Borne Fungi by Selected Essential Oils. Horticulturae 2022, 8, 220. [Google Scholar] [CrossRef]
- Morkeliūnė, A.; Rasiukevičiūtė, N.; Šernaitė, L.; Valiuškaitė, A. The use of essential oils from thyme, sage and peppermint against Colletotrichum acutatum. Plants 2021, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Rana, I.S.; Rana, A.S.; Rajak, R.C. Evaluation of antifungal activity in essential oil of the Syzygium aromaticum (L.) by extraction, purification and analysis of its main component eugenol. Braz. J. Microbiol. 2011, 42, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Šernaitė, L.; Rasiukevičiūtė, N.; Valiuškaitė, A. The extracts of cinnamon and clove as potential biofungicides against strawberry grey mould. Plants 2020, 9, 613. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.J.; Gao, Y.; Du, K.Y.; Luo, X.Y. Screening of 17 Chinese Medicine Plants against Phytopathogenic Fungi and Active Component in Syzygium Aromaticum. J. Plant Dis. Prot. 2020, 127, 237–244. [Google Scholar] [CrossRef]
- Mrvová, M.; Barboráková, Z.; Mašková, Z.; Medo, J.; Štefániková, J.; Tančinová, D. In vitro antifungal effect of twelve essential oils on Penicillium expansum growth. J. Microbiol. Biotechnol. Food Sci. 2024, 13, e9922. [Google Scholar] [CrossRef]
- Kacániová, M.; Galovicová, L.; Borotová, P.; Valková, V.; Dúranová, H.; Kowalczewski, P.Ł.; Said-Al Ahl, H.A.H.; Hikal, W.M.; Vukic, M.; Savitskaya, T. Chemical Composition, In Vitro and In Situ Antimicrobial and Antibiofilm Activities of Syzygium aromaticum (Clove) Essential Oil. Plants 2021, 10, 2185. [Google Scholar] [CrossRef] [PubMed]
- Elnabawy, E.S.M.; Hassan, S.; Taha, E.K.A. Repellent and toxicant effects of eight essential oils against the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Biology 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Bellumori, M.; Innocenti, M.; Congiu, F.; Cencetti, G.; Raio, A.; Menicucci, F.; Mulinacci, N.; Michelozzi, M. Within-Plant Variation in Rosmarinus officinalis L. Terpenes and Phenols and Their Antimicrobial Activity against the Rosemary Phytopathogens Alternaria alternata and Pseudomonas viridiflava. Molecules 2021, 26, 3425. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.J.; Lax, V.; Rota, M.C.; Loran, S.; Sotomayor, J.A. Effect of the phenological stage on the chemical composition, and antimicrobial and antioxidant properties of Rosmarinus officinalis L. essential oil and its polyphenolic extract. Ind. Crops Prod. 2013, 48, 144–152. [Google Scholar] [CrossRef]
- Yosr, Z.; Hnia, C.; Rim, T.; Mohamed, B. Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity. Ind. Crops Prod. 2013, 43, 412–419. [Google Scholar] [CrossRef]
- Šernaitė, L.; Rasiukevičiūtė, N.; Dambrauskienė, E.; Viškelis, P.; Valiuškaitė, A. Biocontrol of strawberry pathogen Botrytis cinerea using plant extracts and essential oils. Zemdirb.-Agric. 2020, 107, 147–152. [Google Scholar] [CrossRef]
- Cherkupally, R.; Kota, S.R.; Amballa, H.; Reddy, B.N. In vitro antifungal potential of plant extracts against Fusarium oxysporum, Rhizoctonia solani and Macrophomina phaseolina. Ann. Plant Sci. 2017, 6, 1676–1680. [Google Scholar] [CrossRef]
- El Alama, H.; El Aissami, A.; Said, A.A.H.; El Alaoui-Faris, F.E. Evaluation of anti-Candida albicans activity of essential oils of six medicinal plants: Synergy concept. J. Chem. Pharm. Res. 2015, 7, 281–284. [Google Scholar]
- Yuan, T.; Hua, Y.; Zhang, D.; Yang, C.; Lai, Y.; Li, M.; Ding, S.; Li, S.; Chen, Y. Efficacy and Antifungal Mechanism of Rosemary Essential Oil against Colletotrichum gloeosporioides. Forests 2024, 15, 377. [Google Scholar] [CrossRef]
- Chrapačienė, S.; Rasiukevičiūtė, N.; Valiuškaitė, A. Plant extracts as biofungicides against soil-borne pathogen Alternaria spp. In Proceedings of the 10th International Scientific Conference Rural Development, Kaunas, Lithuania, 21–23 September 2021; pp. 15–18. [Google Scholar] [CrossRef]
- El-Wahab, G.M.M.A.; Shoala, T.; Amin, B.H.; Masoud, S.A. The potency of Syzygium aromaticum and Rosmarinus officinalis oils in the emulsion and nano-emulsion form to limit gray mould of strawberry fruits. Indian Phytopathol. 2023, 76, 853–865. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, W.; Lu, Y.; Wu, Y.; Ouyang, Z.; Tu, Y.; He, B. Epigenetic Regulation of Fungal Secondary Metabolism. J. Fungi 2024, 10, 648. [Google Scholar] [CrossRef] [PubMed]
Plant Extract | Rosmarinus officinalis L. | Syzygium aromaticum L. [18] | ||
---|---|---|---|---|
Component | PA 1 (%) | RT 2 | PA 1 (%) | RT 2 |
α-pinene | 8.92 | 6.730 | 0.26 | 6695 |
Camphene | 2.98 | 7.083 | ||
β-pinene | 3.11 | 7.813 | ||
1-octen-3-ol | 0.20 | 7.959 | ||
3-octanone | 0.15 | 8.043 | ||
Myrcene | 1.52 | 8.159 | ||
p-cymene | 2.70 | 9.213 | ||
α-terpinene | 0.38 | 8.894 | ||
Eucalyptol | 41.28 | 9.426 | 0.36 | 9285 |
Linalool | 1.33 | 11.284 | ||
Camphor | 16.62 | 12.640 | ||
Borneol | 3.94 | 13.239 | ||
Terpinen-4-ol | 1.06 | 13.509 | ||
α-terpineol | 4.16 | 13.944 | ||
Bornyl acetate | 0.28 | 16.428 | ||
Ε-caryophyllene | 3.39 | 20.038 | ||
α-Humulene | 0.42 | 20.858 | ||
β-Bisbaolene | 0.21 | 22.121 | ||
Caryophyllene oxide | 0.60 | 24.071 | 0.52 | 24.134 |
Caryophylla-4(12),8(13)-dien-5α-ol | 0.17 | 25.595 | ||
Ʒ-Methyl jasmonate | 0.18 | 25.759 | ||
Caryophyllene-14-hydroxy-Ʒ | 0.40 | 26.130 | ||
Caryophyllene-14-hydroxy-9-epi-E | 0.25 | 26.472 | ||
Oleic acid | 0.45 | 32.984 | ||
trans-Ferruginol | 0.46 | 35.012 | ||
Squalene | 0.53 | 33.304 | ||
trans-caryophyllene | 17.80 | 20.168 | ||
Germacrene D | 0.27 | 21.568 | ||
α-cubebene | 0.82 | 18.163 | ||
Eugenol | 52.88 | 18.787 | ||
Eugenol acetate | 21.95 | 22.822 | ||
α-copaene | 0.93 | 18.935 | ||
α-humulene | 2.00 | 20.922 | ||
Other 3 | 4.84 | 1.49 | ||
Total Identified | 100.00 | 99.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunevičius, V.; Morkeliūnė, A.; Griauzdaitė, J.; Valiuškaitė, A.; Rasiukevičiūtė, N. The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea. Agronomy 2025, 15, 1728. https://doi.org/10.3390/agronomy15071728
Bunevičius V, Morkeliūnė A, Griauzdaitė J, Valiuškaitė A, Rasiukevičiūtė N. The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea. Agronomy. 2025; 15(7):1728. https://doi.org/10.3390/agronomy15071728
Chicago/Turabian StyleBunevičius, Vytautas, Armina Morkeliūnė, Justina Griauzdaitė, Alma Valiuškaitė, and Neringa Rasiukevičiūtė. 2025. "The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea" Agronomy 15, no. 7: 1728. https://doi.org/10.3390/agronomy15071728
APA StyleBunevičius, V., Morkeliūnė, A., Griauzdaitė, J., Valiuškaitė, A., & Rasiukevičiūtė, N. (2025). The Use of Clove and Rosemary Plant Extracts Against Colletotrichum acutatum and Botrytis cinerea. Agronomy, 15(7), 1728. https://doi.org/10.3390/agronomy15071728