Next Issue
Volume 15, August
Previous Issue
Volume 15, June
 
 

Crystals, Volume 15, Issue 7 (July 2025) – 84 articles

Cover Story (view full-size image): Collective excitations of a quantum many-body state lie at the heart of studies into strongly correlated systems. Doping a Mott insulator is a prime example, leading to a rich temperature-doping phase diagram with collective excitations, including spin liquids, charge density waves, and unconventional superconductivity. Here, we show that lead apatites contain an easy passage to traverse through a landscape containing a trivial band insulator, a Mott insulator, and a doped Mott insulator with strong spin fluctuations, an elusive and highly sought after quantum mechanical paradigm. Electrons in the band insulator are effectively represented by Fermi liquid theory as a collection of independent quasi-particles, while in the doped Mott insulator, this picture breaks down, which is yet to be understood. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 2030 KB  
Article
Calibration of a Melt Flow Model for Silicon Crystal Growth with the Floating Zone Method
by Kirils Surovovs, Stanislavs Luka Strozevs, Maksims Surovovs, Robert Menzel, Gundars Ratnieks and Janis Virbulis
Crystals 2025, 15(7), 667; https://doi.org/10.3390/cryst15070667 - 21 Jul 2025
Viewed by 361
Abstract
The numerical modelling of the melt flow in Si crystal growth plays an important role for improving the resistivity distribution of crystals grown in industrial processes. However, recent series of experiments have shown that the existing numerical model—a finite volume solver with incompressible [...] Read more.
The numerical modelling of the melt flow in Si crystal growth plays an important role for improving the resistivity distribution of crystals grown in industrial processes. However, recent series of experiments have shown that the existing numerical model—a finite volume solver with incompressible laminar approximation of the melt flow—is not always accurate enough to describe the experimental results for 4″ crystals. To improve the simulation results, material properties have been revised. For some of them, such as the Marangoni or thermal expansion coefficients, the literature suggests different values varying by more than a factor of two. Therefore, simulations using different combinations of parameters were run to perform parameter calibration. The study demonstrated that the description of induced heat on the open melting front needs to be modified to obtain the shape of phase boundaries that provides the best agreement to the experiment. It was concluded that new values should be assigned to several material properties in the model, most importantly the Marangoni coefficient M=1.2·104Nm·K, and that an appropriate turbulence model may help to describe the dopant transport more precisely. Full article
(This article belongs to the Special Issue Crystallization Process and Simulation Calculation, Third Edition)
Show Figures

Figure 1

13 pages, 7300 KB  
Article
Strain and Layer Modulations of Optical Absorbance and Complex Photoconductivity of Two-Dimensional InSe: A Study Based on GW0+BSE Calculations
by Chuanghua Yang, Yuan Jiang, Wendeng Huang and Feng Pan
Crystals 2025, 15(7), 666; https://doi.org/10.3390/cryst15070666 - 21 Jul 2025
Viewed by 385
Abstract
Since the definitions of the two-dimensional (2D) optical absorption coefficient and photoconductivity are independent of the thickness of 2D materials, they are more suitable than the dielectric function to describe the optical properties of 2D materials. Based on the many-body GW method and [...] Read more.
Since the definitions of the two-dimensional (2D) optical absorption coefficient and photoconductivity are independent of the thickness of 2D materials, they are more suitable than the dielectric function to describe the optical properties of 2D materials. Based on the many-body GW method and the Bethe–Salpeter equation, we calculated the quasiparticle electronic structure, optical absorbance, and complex photoconductivity of 2D InSe from a single layer (1L) to three layers (3L). The calculation results show that the energy difference between the direct and indirect band gaps in 1L, 2L, and 3L InSe is so small that strain can readily tune its electronic structure. The 2D optical absorbance results calculated taking into account exciton effects show that light absorption increases rapidly near the band gap. Strain modulation of 1L InSe shows that it transforms from an indirect bandgap semiconductor to a direct bandgap semiconductor in the biaxial compressive strain range of −1.66 to −3.60%. The biaxial compressive strain causes a slight blueshift in the energy positions of the first and second absorption peaks in monolayer InSe while inducing a measurable redshift in the energy positions of the third and fourth absorption peaks. Full article
Show Figures

Figure 1

18 pages, 11176 KB  
Article
Impact Mechanical Properties of Magnesium Alloy Structures with Annularly Distributed Multi-Sphere Point Contacts
by Xiaoting Sun, Guibo Yu, Qiao Ma, Yi Wang and Wei Wang
Crystals 2025, 15(7), 665; https://doi.org/10.3390/cryst15070665 - 21 Jul 2025
Viewed by 353
Abstract
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An [...] Read more.
When a high-speed rotating projectile faces high impact loads, the sensitive parts of the control system can get damaged, resulting in operational failure. It is crucial to develop a unique buffer structure that offers impact resistance and has a small contact area. An annularly distributed multi-sphere point contact structure was designed and fabricated on a magnesium alloy substrate based on the Hertz contact theory. The accuracy of the finite element numerical model, constructed using Abaqus/Explicit, was verified through hydraulic impact tests. The impact mechanical properties of the structure were studied by analyzing the influence of the number, diameter, and cavity radius of hemispheres using an experimentally verified finite element model. The axial and radial deformations of the structure were compared and analyzed. The research findings indicate that the deformation and impact resistance of the structure can be greatly influenced by increasing the number of hemispheres, enlarging the hemisphere diameter, and incorporating internal cavities. Specifically, with 6 hemispheres, each with a diameter of Φ 6 mm and a cavity radius of R1.5 mm, the axial and radial deformations are only 1.03 mm and 3.02 mm, respectively. The contact area of a single hemisphere is 7.16 mm2. The study offers new perspectives on choosing buffer structures in high-impact environments. Full article
Show Figures

Figure 1

13 pages, 3804 KB  
Article
Maintaining Glycerol-Based Hexagonal Structures by Crosslinkers for High Permeability Nanofiltration
by Senlin Gu, Luke A. O’Dell and Lingxue Kong
Crystals 2025, 15(7), 664; https://doi.org/10.3390/cryst15070664 - 20 Jul 2025
Viewed by 362
Abstract
Hypothesis: Structural optimization of crosslinkers within a reactive glycerol-based hexagonal lyotropic liquid crystal (HLLC) system is proposed to enhance the interfacial stability of hexagonal mesophases and improve the hexagonal structure retention during polymerization. This targeted modification is anticipated to significantly improve the water [...] Read more.
Hypothesis: Structural optimization of crosslinkers within a reactive glycerol-based hexagonal lyotropic liquid crystal (HLLC) system is proposed to enhance the interfacial stability of hexagonal mesophases and improve the hexagonal structure retention during polymerization. This targeted modification is anticipated to significantly improve the water filtration efficiency of HLLC-templated nanofiltration. Experiments: The effect of crosslinkers on the interfacial stability of glycerol-based hexagonal mesophases was studied by evaluating their concentration accommodation within the mesophases using 13C solid NMR, FTIR and SAXS. Findings: A hydrophilic crosslinker consisting of ten ethylene glycol units shows less interference with the interfacial stability of hexagonal mesophases, therefore contributing to a higher concentration accommodation compared to the one with three ethylene glycol units. This long-chain crosslinker, despite having a low content of reactive groups, effectively connects the cylinders and better retains the hexagonal structures during polymerization than the hydrophobic crosslinker with shorter ethylene glycol units but a higher content of reactive groups. The retained hexagonal nanofiltration membranes show a remarkable pure water permeability of 40 L m−2 h−1 bar−1 µm, resulting from the strong hygroscopic effect of glycerol and the crumpled surface of membranes due to the flexible nature of the system plasticized by glycerol. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

16 pages, 3610 KB  
Article
Multiple-Q States in Bilayer Triangular-Lattice Systems with Bond-Dependent Anisotropic Interaction
by Satoru Hayami
Crystals 2025, 15(7), 663; https://doi.org/10.3390/cryst15070663 - 20 Jul 2025
Viewed by 420
Abstract
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram [...] Read more.
We investigate magnetic instabilities toward multiple-Q states in centrosymmetric bilayer triangular-lattice systems. By focusing on the interplay between the layer-dependent Dzyaloshinskii–Moriya interaction and layer-independent bond-dependent anisotropic interaction, both of which originate from the relativistic spin-orbit coupling, we construct a low-temperature phase diagram based on an effective spin model that also includes frustrated isotropic exchange interactions. Employing simulated annealing, we reveal the stabilization of three distinct double-Q phases in the absence of an external magnetic field, each characterized by noncoplanar spin textures with spatially modulated local scalar spin chirality. Under applied magnetic fields, we identify field-induced phase transitions among single-Q, double-Q, and triple-Q states, some of which exhibit a finite net scalar spin chirality indicative of topologically nontrivial order. These findings highlight centrosymmetric systems with sublattice-dependent Dzyaloshinskii–Moriya interactions as promising platforms for realizing a variety of multiple-Q spin textures. Full article
Show Figures

Figure 1

37 pages, 5856 KB  
Article
Machine Learning-Based Recommender System for Pulsed Laser Ablation in Liquid: Recommendation of Optimal Processing Parameters for Targeted Nanoparticle Size and Concentration Using Cosine Similarity and KNN Models
by Anesu Nyabadza and Dermot Brabazon
Crystals 2025, 15(7), 662; https://doi.org/10.3390/cryst15070662 - 20 Jul 2025
Viewed by 2485
Abstract
Achieving targeted nanoparticle (NP) size and concentration combinations in Pulsed Laser Ablation in Liquid (PLAL) remains a challenge due to the highly nonlinear relationships between laser processing parameters and NP properties. Despite the promise of PLAL as a surfactant-free, scalable synthesis method, its [...] Read more.
Achieving targeted nanoparticle (NP) size and concentration combinations in Pulsed Laser Ablation in Liquid (PLAL) remains a challenge due to the highly nonlinear relationships between laser processing parameters and NP properties. Despite the promise of PLAL as a surfactant-free, scalable synthesis method, its industrial adoption is hindered by empirical trial-and-error approaches and the lack of predictive tools. The current literature offers limited application of machine learning (ML), particularly recommender systems, in PLAL optimization and automation. This study addresses this gap by introducing a ML-based recommender system trained on a 3 × 3 design of experiments with three replicates covering variables, such as fluence (1.83–1.91 J/cm2), ablation time (5–25 min), and laser scan speed (3000–3500 mm/s), in producing magnesium nanoparticles from powders. Multiple ML models were evaluated, including K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), Random Forest, and Decision trees. The DT model achieved the best performance for predicting the NP size with a mean percentage error (MPE) of 10%. The XGBoost model was optimal for predicting the NP concentration attaining a competitive MPE of 2%. KNN and Cosine similarity recommender systems were developed based on a database generated by the ML predictions. This intelligent, data-driven framework demonstrates the potential of ML-guided PLAL for scalable, precise NP fabrication in industrial applications. Full article
Show Figures

Graphical abstract

11 pages, 1578 KB  
Article
Impact of Hydrofluoric Acid, Ytterbium Fiber Lasers, and Hydroxyapatite Nanoparticles on Surface Roughness and Bonding Strength of Resin Cement with Different Viscosities to Lithium Disilicate Glass Ceramic: SEM and EDX Analysis
by Abdullah Aljamhan and Fahad Alkhudhairy
Crystals 2025, 15(7), 661; https://doi.org/10.3390/cryst15070661 - 20 Jul 2025
Cited by 1 | Viewed by 409
Abstract
This study looks at the effect of surface conditioners hydrofluoric acid (HFA), Ytterbium fibre laser (YFL), and Hydroxyapatite nanoparticles (HANPs) on the surface roughness (Ra) and shear bond strength (SBS) of different viscosity resin cements to lithium disilicate glass ceramic (LDC). A total [...] Read more.
This study looks at the effect of surface conditioners hydrofluoric acid (HFA), Ytterbium fibre laser (YFL), and Hydroxyapatite nanoparticles (HANPs) on the surface roughness (Ra) and shear bond strength (SBS) of different viscosity resin cements to lithium disilicate glass ceramic (LDC). A total of 78 IPS Emax discs were prepared and categorized into groups based on conditioning methods. Group 1 HFA–Silane (S), Group 2: YFL-S, and Group 3: HANPs-S. A scanning electron microscope (n = 1) and profilometer (n = 5) were used on each conditioned group for the assessment of surface topography and Ra. A total of 20 LDC discs for each conditioned group were subsequently categorized into two subgroups based on the application of high- and low-viscosity dual-cured resin cement. SBS and failure mode were assessed. ANOVA and post hoc Tukey tests were employed to identify significant differences in Ra and SBS among different groups. LDC conditioned with HFA-S, HANPs-S, and YFL-S demonstrated comparable Ra scores (p > 0.05). Also, irrespective of the type of conditioning regime, the use of low-viscosity cement improves bond values when bonded to the LDC. LDC treated with YFL-S and HANPs-S can serve as an effective substitute for HFA-S in enhancing the Ra and surface characteristics of LDC. The low-viscosity resin cement demonstrated superior performance by achieving greater bond strength. Full article
Show Figures

Figure 1

13 pages, 2195 KB  
Article
Electrical Characterization of a Novel Piezoelectric-Enhanced Supercapacitor with a PET/ITO/PVDF-Tr-FE/PEDOT:PSS:Graphene/LiTaO3/Al Structure
by Mariya Aleksandrova and Ivaylo Pandiev
Crystals 2025, 15(7), 660; https://doi.org/10.3390/cryst15070660 - 20 Jul 2025
Viewed by 578
Abstract
This paper presents the electrical characterization of a flexible supercapacitor with a unique architecture incorporating a piezoelectric PVDF-TrFE film sandwiched between PEDOT:PSS:Graphene and LiTaO3 as a charge-generating and charge-transferring layer. Impedance spectroscopy measurements reveal frequency-dependent capacitance behavior, reflecting the contributions of both [...] Read more.
This paper presents the electrical characterization of a flexible supercapacitor with a unique architecture incorporating a piezoelectric PVDF-TrFE film sandwiched between PEDOT:PSS:Graphene and LiTaO3 as a charge-generating and charge-transferring layer. Impedance spectroscopy measurements reveal frequency-dependent capacitance behavior, reflecting the contributions of both piezoelectric and supercapacitor capacitances. Charge–discharge cycling tests demonstrate the device’s energy storage capabilities and indicate a potential enhancement through the piezoelectric effect. Supercapacitor cycling tests demonstrate the device’s energy storage capabilities, with an estimated specific capacitance of 10.14 F/g, a power density of 16.3 W/g, an energy density of 5.63 Wh/kg, and a Coulombic efficiency of 96.1% from an active area of 1 cm2. The proposed structure can serve as an independent harvester and storage for low-power, wearable sensors. Full article
Show Figures

Figure 1

18 pages, 11678 KB  
Article
Inclusions, Chemical Composition, and Spectral Characteristics of Pinkish-Purple to Purple Spinels from Mogok, Myanmar
by Danyu Guo, Geng Li, Liqun Weng, Meilun Zhang and Fabian Dietmar Schmitz
Crystals 2025, 15(7), 659; https://doi.org/10.3390/cryst15070659 - 19 Jul 2025
Viewed by 379
Abstract
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical [...] Read more.
With the increasing market demand for spinels of various colors, purple spinel—long regarded as a symbol of nobility—has attracted growing attention. In this study, pinkish-purple to purple spinels from the Mogok region of Myanmar were systematically examined using conventional gemological, spectroscopic, and chemical analytical techniques. Raman analysis reveals that these spinels commonly contain octahedral inclusions composed of calcite, dolomite, magnesite, and graphite. Chemically, the samples are primarily magnesia-alumina spinels. Color variation is influenced by trace elements: increasing Cr and V contents enhance the red hue, while higher Fe concentrations intensify the purple tone. UV–Vis spectra show that Cr3+ and V3+ jointly contribute to absorptions at 388 nm and 548 nm, with Fe2+ and Fe3+ responsible for the bands at 371 nm and 457 nm, respectively, together controlling the pink-to-purple color variation. Most samples display four Cr3+-related peaks near 700 nm; however, these are absent in deeply purple spinels. In contrast, light pink spinels show weaker absorption at 371 nm and 457 nm, attributed to Fe2+ and Fe3+. Fluorescence spectra confirm characteristic Cr3+ emission bands at 673 nm, 684 nm, 696 nm, 706 nm, and 716 nm, indicating a strong crystal field environment. Raman spectra have peaks mainly around 312 cm−1, 406 cm−1, 665 cm−1, and 768 cm−1. The peaks of the infrared spectrum mainly appear around 840 cm−1, 729 cm−1, 587 cm−1, 545 cm−1, and 473 cm−1. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

12 pages, 2191 KB  
Article
Whispering Gallery Modes in a Micro-Cavity Within a Single Sn-Doped CdS Nanowire Featuring a Regular Hexagonal Cross-Section
by Jiangang Yu, Ziwei Li, Ye Tian, Fengchao Li, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(7), 658; https://doi.org/10.3390/cryst15070658 - 18 Jul 2025
Viewed by 413
Abstract
CdS nanowires have garnered considerable attention lately for their promising potential in next-generation nanolaser devices, attributed to their relatively high stability and exceptional emission efficiency within the Ⅱ–Ⅵ semiconductor family. In this study, tin-doped CdS nanowires with varying dimensions were synthesized, and the [...] Read more.
CdS nanowires have garnered considerable attention lately for their promising potential in next-generation nanolaser devices, attributed to their relatively high stability and exceptional emission efficiency within the Ⅱ–Ⅵ semiconductor family. In this study, tin-doped CdS nanowires with varying dimensions were synthesized, and the underlying mechanisms responsible for the formation of micro-cavities within these nanowires were systematically explored through scanning electron microscopy (SEM) analysis and photoluminescence mapping. The results show that a very distinct hexagonal-shaped micro-cavity is observed on the cross-section of CdS nanowires, and the size of the micro-cavity is determined by the radius of the nanowire. Additionally, through the use of angle-resolved micro-fluorescence Fourier imaging technology, it is found that under high excitation density conditions, the micro-cavity mode is more prominent at higher collection angles, which is consistent with the mode of the wall-pass cavity micro-cavity. Finally, the formation of the full reflection spectrum of the micro-cavity mode is confirmed through the wavelength shift and intensity shift phenomena related to the excitation power. These results further deepen our understanding of the micro-cavity modes in tin-doped cadmium sulfide nanowires, which may be of great significance for the application of these nanowires in new optical devices. Full article
Show Figures

Figure 1

11 pages, 2975 KB  
Article
Crystallographic Combinations: Understanding Polymorphism and Approximate Symmetry in N-(1,3-Thiazol-2-yl)benzamide
by Johannes C. Voigt, Michael J. Hall and Paul G. Waddell
Crystals 2025, 15(7), 657; https://doi.org/10.3390/cryst15070657 - 18 Jul 2025
Viewed by 642
Abstract
A new polymorph of N-(1,3-thiazol-2-yl)benzamide crystallises in the monoclinic space group Pc with four crystallographically independent molecules (Z′ = 4) in the asymmetric unit. Where the previously reported polymorphs exhibit two distinct hydrogen-bonded dimer geometries exclusively, the asymmetric unit of the new [...] Read more.
A new polymorph of N-(1,3-thiazol-2-yl)benzamide crystallises in the monoclinic space group Pc with four crystallographically independent molecules (Z′ = 4) in the asymmetric unit. Where the previously reported polymorphs exhibit two distinct hydrogen-bonded dimer geometries exclusively, the asymmetric unit of the new polymorph comprises both. Approximate symmetry was observed to relate the molecules of these dimers. These approximate symmetry elements combine to form a structure with distorted P21/c space group symmetry, rationalising the unexpectedly high number of crystallographically independent molecules. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Graphical abstract

20 pages, 15575 KB  
Article
Transport Properties of One-Dimensional van der Waals Heterostructures Based on Molybdenum Dichalcogenides
by Daulet Sergeyev and Kuanyshbek Shunkeyev
Crystals 2025, 15(7), 656; https://doi.org/10.3390/cryst15070656 - 18 Jul 2025
Viewed by 875
Abstract
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based [...] Read more.
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based on MoS2(24,24) and MoTe2(24,24), the effect of resonant tunneling is suppressed due to electron–phonon scattering. This suppression arises from the fact that these materials are semiconductors with an indirect band gap, where phonon participation is required to conserve momentum during transitions between the valence and conduction bands. In contrast, nanodevices incorporating MoSe2(24,24), which possesses a direct band gap, exhibit resonant tunneling, as quasiparticles can tunnel between the valence and conduction bands without a change in momentum. It was demonstrated that the presence of vacancy defects in the CNT segment significantly degrades quasiparticle transport compared to Stone–Wales (SW) defects. Furthermore, it was revealed that resonant interactions between SW defects in MoTe2(24,24)–hBN(27,27)–CNT(24,24) nanodevices can enhance the differential conductance under certain voltages. These findings may be beneficial for the design and development of nanoscale diodes, back nanodiodes, and tunneling nanodiodes. Full article
Show Figures

Figure 1

21 pages, 4054 KB  
Article
Benzo[c]cinnolinium Trifluoromethanesulfonate Architectures Induced by Organotin(IV) Complexes
by Hélène Cattey and Laurent Plasseraud
Crystals 2025, 15(7), 655; https://doi.org/10.3390/cryst15070655 - 17 Jul 2025
Viewed by 470
Abstract
Four novel crystalline architectures based on benzo[c]cinnolininium trifluoromethanesulonate salts, [C12H9N2]+[CF3SO3], have been isolated as single-crystals, and their structures have been determined by X-ray diffraction analysis. The formation [...] Read more.
Four novel crystalline architectures based on benzo[c]cinnolininium trifluoromethanesulonate salts, [C12H9N2]+[CF3SO3], have been isolated as single-crystals, and their structures have been determined by X-ray diffraction analysis. The formation of the new salts results from reactions involving the dimeric hydroxo di-n-butylstannane trifluoromethanesulfonato complex [n-Bu2Sn(OH)(H2O)(CF3SO3)]2 (1) and benzo[c]cinnoline (C12H8N2, BCC). Organic salts I, II, III, and IV were crystallized through slow evaporation at room temperature from a mixture of toluene/dichloromethane. The cystallographic structures of I, II, and IV exhibit the presence of monoprotonated benzo[c]cinnolinium cations in interactions with a free benzo[c]cinnoline molecule through N–H···N hydrogen bonding, while for salt III, the monoprotonated cation directly interacts with the CF3SO3 anion via an N–H···O interaction. For all four salts, aromatic π-π interactions involving rings of various components (free benzo[c]cinnoline molecule, benzo[c]cinnolinium cation, toluene molecule), combined with weak C–H···O and C–H···F interactions implying the trifluoromethanesulfonate anion, promote the solid-state self-assembly of supramolecular stacks. In parallel to the formation of benzo[c]cinnolinium based-salts, organotin(IV) 1 was converted into a distannoxane compound, 2{[n-Bu2(μ-OH)SnOSn(μ-η2-O3SCF3)n-Bu2]2[n-Bu2(η1-O3SCF3)SnOSn(μ-OH)n-Bu2]2} (3), which was also isolated as a single crystal and whose crystallographic structure was previously established by us. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

20 pages, 967 KB  
Article
A Comprehensive Investigation of the Two-Phonon Characteristics of Heat Conduction in Superlattices
by Pranay Chakraborty, Milad Nasiri, Haoran Cui, Theodore Maranets and Yan Wang
Crystals 2025, 15(7), 654; https://doi.org/10.3390/cryst15070654 - 17 Jul 2025
Viewed by 527
Abstract
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity [...] Read more.
The Anderson localization of phonons in disordered superlattices has been proposed as a route to suppress thermal conductivity beyond the limits imposed by conventional scattering mechanisms. A commonly used signature of phonon localization is the emergence of the nonmonotonic dependence of thermal conductivity κ on system length L, i.e., a κ-L maximum. However, such behavior has rarely been observed. In this work, we conduct extensive non-equilibrium molecular dynamics (NEMD) simulations, using the LAMMPS package, on both periodic superlattices (SLs) and aperiodic random multilayers (RMLs) constructed from Si/Ge and Lennard-Jones materials. By systematically varying acoustic contrast, interatomic bond strength, and average layer thickness, we examine the interplay between coherent and incoherent phonon transport in these systems. Our two-phonon model decomposition reveals that coherent phonons alone consistently exhibit a strong nonmonotonic κ-L. This localization signature is often masked by the diffusive, monotonically increasing contribution from incoherent phonons. We further extract the ballistic-limit mean free paths for both phonon types, and demonstrate that incoherent transport often dominates, thereby concealing localization effects. Our findings highlight the importance of decoupling coherent and incoherent phonon contributions in both simulations and experiments. This work provides new insights and design principles for achieving phonon Anderson localization in superlattice structures. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

17 pages, 410 KB  
Article
Theoretical Analysis of the Factors Determining the Crystal Size Distribution (CSD) During Crystallization in Solution: Rates of Crystal Growth
by Christo N. Nanev
Crystals 2025, 15(7), 653; https://doi.org/10.3390/cryst15070653 - 17 Jul 2025
Viewed by 589
Abstract
Crystalline products with a narrow and uniform distribution of crystals by size (CSD), characterized by a desired average size, are necessary in many practices. Therefore, extensive, but mostly experimental, research is devoted to the problem of obtaining such CSDs. Alternatively, this manuscript presents [...] Read more.
Crystalline products with a narrow and uniform distribution of crystals by size (CSD), characterized by a desired average size, are necessary in many practices. Therefore, extensive, but mostly experimental, research is devoted to the problem of obtaining such CSDs. Alternatively, this manuscript presents a theoretical approach for calculating CSD resulting from crystallization in unstirred solutions. First, classical equations for the rates of diffusion-controlled and kinetically controlled growth of crystals are used to discuss the size-dependent growth of the nucleated crystals and the initial CSD (which arises from the non-simultaneous nucleation of crystals). Then, applying the law of conservation of matter, it is proved that the CSD continues to expand during the growth stage. Furthermore, it is substantiated that, due to their uneven spatial distribution, crystals of the same size can grow at different rates. This depends on whether the crystals are outside the diffusion fields of other crystals or are clustered together in “nests”. Moreover, by calculating the growth rates of crystals in “nests”, an explanation is given for the observation that closely spaced crystals are smaller in size than the separately growing crystals. Finally, the CSD established during the Ostwald ripening is discussed quantitatively, step-by-step. Full article
Show Figures

Figure 1

15 pages, 5721 KB  
Article
Temperature-Dependent Martensitic Transformation in Cold-Rolled AISI 304 Stainless Steel
by Jaka Burja, Jernej Lindič, Barbara Šetina Batič and Aleš Nagode
Crystals 2025, 15(7), 652; https://doi.org/10.3390/cryst15070652 - 16 Jul 2025
Viewed by 518
Abstract
This study investigates the influence of plastic deformation and temperature on the formation of mechanically induced martensite and the associated changes in hardness in AISI 304 austenitic stainless steel. Cold rolling was performed at three temperatures (20 °C, 0 °C, and −196 °C) [...] Read more.
This study investigates the influence of plastic deformation and temperature on the formation of mechanically induced martensite and the associated changes in hardness in AISI 304 austenitic stainless steel. Cold rolling was performed at three temperatures (20 °C, 0 °C, and −196 °C) and various degrees of deformation (10–70%). Microstructural changes, including the formation of ε and α′ martensite, were characterized using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The results confirm that martensitic transformation proceeds via the γ → ε → α′ sequence, with transformation rates and martensite fractions increasing at lower temperatures and higher strains. The stacking fault energy of 25.9 mJ/m2 favors this transformation pathway. Transformation rates of α′ martensite fractions significantly increased at lower temperatures and higher strains, 91.8% α′ martensite was observed at just 30% deformation at −196 °C. Hardness measurements revealed a strong correlation with martensite content: strain hardening dominated at lower deformations, while martensite formation became the primary hardening mechanism at higher deformations, especially at cryogenic temperatures. The highest hardness (551 HV) was observed in samples deformed to 70% at −196 °C. The findings provide insights into optimizing the mechanical properties of AISI 304 stainless steel through controlled deformation and temperature conditions. Full article
(This article belongs to the Special Issue Crystallization of High Performance Metallic Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 6052 KB  
Article
Crystal Form Investigation and Morphology Control of Salbutamol Sulfate via Spherulitic Growth
by Xinyue Qiu, Hongcheng Li, Yanni Du, Xuan Chen, Shichao Du, Yan Wang and Fumin Xue
Crystals 2025, 15(7), 651; https://doi.org/10.3390/cryst15070651 - 16 Jul 2025
Viewed by 479
Abstract
Salbutamol sulfate is a selective β2-receptor agonist used to treat asthma and chronic obstructive pulmonary disease. The crystals of salbutamol sulfate usually appear as needles with a relatively large aspect ratio, showing poor powder properties. In this study, spherical particles of salbutamol sulfate [...] Read more.
Salbutamol sulfate is a selective β2-receptor agonist used to treat asthma and chronic obstructive pulmonary disease. The crystals of salbutamol sulfate usually appear as needles with a relatively large aspect ratio, showing poor powder properties. In this study, spherical particles of salbutamol sulfate were obtained via antisolvent crystallization. Four different antisolvents, including ethanol, n-propanol, n-butanol, and sec-butanol, were selected, and their effects on crystal form and morphology were compared. Notably, a new solvate of salbutamol sulfate with sec-butanol has been obtained. The novel crystal form was characterized by single-crystal X-ray diffraction, revealing a 1:1 stoichiometric ratio between solvent and salbutamol sulfate in the crystal lattice. In addition, the effects of crystallization temperature, solute concentration, ratio of antisolvent to solvent, feeding rate, and stirring rate on the morphology of spherical particles were investigated in different antisolvents. We have found that crystals grown from the n-butanol–water system at optimal conditions (25 °C, antisolvent/solvent ratio of 9:1, and drug concentration of 0.2 g·mL−1) could be developed into compact and uniform spherulites. The morphological evolution process was also monitored, and the results indicated a spherulitic growth pattern, in which sheaves of plate-like crystals gradually branched into a fully developed spherulite. This work paves a feasible way to develop new crystal forms and prepare spherical particles of pharmaceuticals. Full article
(This article belongs to the Special Issue Crystallization and Purification)
Show Figures

Figure 1

19 pages, 2558 KB  
Article
Development of Patient-Specific Lattice Structured Femoral Stems Based on Finite Element Analysis and Machine Learning
by Rashwan Alkentar, Sándor Manó, Dávid Huri and Tamás Mankovits
Crystals 2025, 15(7), 650; https://doi.org/10.3390/cryst15070650 - 15 Jul 2025
Cited by 1 | Viewed by 564 | Correction
Abstract
Hip implant optimization is increasingly receiving attention due to the development of manufacturing technology and artificial intelligence interaction in the current research. This study investigates the development of hip implant stem design with the application of lattice structures, and the utilization of the [...] Read more.
Hip implant optimization is increasingly receiving attention due to the development of manufacturing technology and artificial intelligence interaction in the current research. This study investigates the development of hip implant stem design with the application of lattice structures, and the utilization of the MATLAB regression learner app in finding the best predictive regression model to calculate the mechanical behavior of the implant’s stem based on some of the design parameters. Many cases of latticed hip implants (using 3D lattice infill type) were designed in the ANSYS software, and then 3D printed to undergo simulations and lab experiments. A surrogate model of the implant was used in the finite element analysis (FEA) instead of the geometrically latticed model to save computation time. The model was then generalized and used to calculate the mechanical behavior of new variables of hip implant stem and a database was generated for surgeon so they can choose the lattice parameters for desirable mechanical behavior. This study shows that neural networks algorithms showed the highest accuracy with predicting the mechanical behavior reaching a percentage above 90%. Patients’ weight and shell thickness were proven to be the most affecting factors on the implant’s mechanical behavior. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

31 pages, 40778 KB  
Article
Crystal Organisation of Muscle Attachment Sites of Bivalved Marine Organisms: A Juxtaposition Between Brachiopod and Bivalved Mollusc Shells
by Sebastian Hoerl, Erika Griesshaber, Daniel Weller, Shahrouz Amini, Verena Häussermann, Maria A. Bitner, Klaus Achterhold, Franz Pfeiffer and Wolfgang W. Schmahl
Crystals 2025, 15(7), 649; https://doi.org/10.3390/cryst15070649 - 15 Jul 2025
Viewed by 422
Abstract
The movement of valves of bivalved invertebrates is enabled through the action of muscles and the interplay between the muscles and the hinge ligament. The muscles that move the valves attach to their internal surface. To promote the structural integrity at the mechanically [...] Read more.
The movement of valves of bivalved invertebrates is enabled through the action of muscles and the interplay between the muscles and the hinge ligament. The muscles that move the valves attach to their internal surface. To promote the structural integrity at the mechanically mismatched interfaces, a specific crystal microstructure and texture are present at the muscle attachment sites. These are different from the crystal microstructure and texture of the rest of the valves. We present here for modern two- and three-layered brachiopod shells (Magellania venosa, Liothyrella neozelanica and Gryphus vitreus) the mode of crystal organisation at sites of adductor and diductor muscle attachments (i) relative to the microstructure and texture that forms the other sections of the valves and (ii) relative to crystal organisation of muscle attachment sites of bivalved invertebrates of other phyla, namely, species of the class Bivalvia. We discuss similarities/differences in Ca-carbonate phase, microstructure and texture between rhynchonellate brachiopods and bivalves, and discuss whether the Ca-carbonate crystal organisation of muscle attachment sites is convergent for bivalved marine organisms. We show significant differences in muscle attachment site architecture and highlight the different structural solutions developed by nature for shells of marine organisms that serve the same purpose. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Graphical abstract

17 pages, 2783 KB  
Article
Hydrostatic-Pressure Modulation of Band Structure and Elastic Anisotropy in Wurtzite BN, AlN, GaN and InN: A First-Principles DFT Study
by Ilyass Ez-zejjari, Haddou El Ghazi, Walid Belaid, Redouane En-nadir, Hassan Abboudi and Ahmed Sali
Crystals 2025, 15(7), 648; https://doi.org/10.3390/cryst15070648 - 15 Jul 2025
Viewed by 566
Abstract
III-Nitride semiconductors (BN, AlN, GaN, and InN) exhibit exceptional electronic and mechanical properties that render them indispensable for high-performance optoelectronic, power, and high-frequency device applications. This study implements first-principles Density Functional Theory (DFT) calculations to elucidate the influence of hydrostatic pressure on the [...] Read more.
III-Nitride semiconductors (BN, AlN, GaN, and InN) exhibit exceptional electronic and mechanical properties that render them indispensable for high-performance optoelectronic, power, and high-frequency device applications. This study implements first-principles Density Functional Theory (DFT) calculations to elucidate the influence of hydrostatic pressure on the electronic, elastic, and mechanical properties of these materials in the wurtzite crystallographic configuration. Our computational analysis demonstrates that the bandgap energy exhibits a positive pressure coefficient for GaN, AlN, and InN, while BN manifests a negative pressure coefficient consistent with its indirect-bandgap characteristics. The elastic constants and derived mechanical properties reveal material-specific responses to applied pressure, with BN maintaining superior stiffness across the pressure range investigated, while InN exhibits the highest ductility among the studied compounds. GaN and AlN demonstrate intermediate mechanical robustness, positioning them as optimal candidates for pressure-sensitive applications. Furthermore, the observed nonlinear trends in elastic moduli under pressure reveal anisotropic mechanical responses during compression, a phenomenon critical for the rational design of strain-engineered devices. The computational results provide quantitative insights into the pressure-dependent behavior of III-N semiconductors, facilitating their strategic implementation and optimization for high-performance applications in extreme environmental conditions, including high-power electronics, deep-space exploration systems, and high-pressure optoelectronic devices. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

16 pages, 3287 KB  
Article
Interference Effect Between a Parabolic Notch and a Screw Dislocation in Piezoelectric Quasicrystals
by Yuanyuan Gao, Guanting Liu, Chengyan Wang and Junjie Fan
Crystals 2025, 15(7), 647; https://doi.org/10.3390/cryst15070647 - 15 Jul 2025
Viewed by 2246
Abstract
This study investigates the coupling mechanism between a parabolic notch and dislocations in one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) based on the theory of complex variable functions. By applying perturbation techniques and the Cauchy integral, analytical solutions for complex potentials are derived, yielding [...] Read more.
This study investigates the coupling mechanism between a parabolic notch and dislocations in one-dimensional (1D) hexagonal piezoelectric quasicrystals (PQCs) based on the theory of complex variable functions. By applying perturbation techniques and the Cauchy integral, analytical solutions for complex potentials are derived, yielding closed-form expressions for the phonon–phason stress field and electric displacement field. Numerical examples reveal several key findings: significant stress concentration occurs at the notch root, accompanied by suppression of electric displacement; interference patterns between dislocation cores and notch-induced stress singularities are identified; the J-integral quantifies distance-dependent forces, size effects, and angular force distributions reflecting notch symmetry; and the energy-driven dislocation slip toward free surfaces leads to the formation of dislocation-free zones. These results provide new insights into electromechanical fracture mechanisms in quasicrystals. Full article
Show Figures

Figure 1

18 pages, 5060 KB  
Article
Research on Fatigue Strength Evaluation Method of Welded Joints in Steel Box Girders with Open Longitudinal Ribs
by Bo Shen, Ming Liu, Yan Wang and Hanqing Zhuge
Crystals 2025, 15(7), 646; https://doi.org/10.3390/cryst15070646 - 15 Jul 2025
Viewed by 478
Abstract
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale [...] Read more.
Based on the engineering background of a new type of segmental-assembled steel temporary beam buttress, the fatigue strength evaluation method of the steel box girders with open longitudinal ribs was taken as the research objective. The fatigue stress calculation analysis and the full-scale fatigue loading test for the steel box girder local component were carried out. The accuracy of the finite-element model was verified by comparing it with the test results, and the rationality of the fatigue strength evaluation methods for welded joints was deeply explored. The results indicate that the maximum nominal stress occurs at the weld toe between the transverse diaphragm and the top plate at the edge of the loading area, which is the fatigue-vulnerable location for the steel box girder local components. The initial static-load stresses at each measuring point were in good agreement with the finite-element calculation results. However, the static-load stress at the measuring point in the fatigue-vulnerable position shows a certain decrease with the increase in the number of cyclic loads, while the stress at other measuring points remains basically unchanged. According to the finite-element model, the fatigue strengths obtained by the nominal stress method and the hot-spot stress method are 72.1 MPa and 93.8 MPa, respectively. It is reasonable to use the nominal stress S-N curve with a fatigue life of 2 million cycles at 70 MPa and the hot-spot stress S-N curve with a fatigue life of 2 million cycles at 90 MPa (FAT90) to evaluate the fatigue of the welded joints in steel box girders with open longitudinal ribs. According to the equivalent structural stress method, the fatigue strength corresponding to 2 million cycles is 94.1 MPa, which is slightly lower than the result corresponding to the main S-N curve but within the range of the standard deviation curve. The research results of this article can provide important guidance for the anti-fatigue design of welded joints in steel box girders with open longitudinal ribs. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

33 pages, 19356 KB  
Article
Hoffman–Lauritzen Analysis of Crystallization of Hydrolyzed Poly(Butylene Succinate-Co-Adipate)
by Anna Svarcova and Petr Svoboda
Crystals 2025, 15(7), 645; https://doi.org/10.3390/cryst15070645 - 14 Jul 2025
Viewed by 513
Abstract
This study systematically investigates the impact of hydrolytic degradation on the crystallization kinetics and morphology of poly(butylene succinate-co-adipate) (PBSA). Gel Permeation Chromatography (GPC) confirmed extensive chain scission, significantly reducing the polymer’s weight-average molecular weight (Mw from ~103,000 to ~16,000 g/mol) and broadening [...] Read more.
This study systematically investigates the impact of hydrolytic degradation on the crystallization kinetics and morphology of poly(butylene succinate-co-adipate) (PBSA). Gel Permeation Chromatography (GPC) confirmed extensive chain scission, significantly reducing the polymer’s weight-average molecular weight (Mw from ~103,000 to ~16,000 g/mol) and broadening its polydispersity index (PDI from ~2 to 7 after 64 days). Differential scanning calorimetry (DSC) analysis revealed that hydrolytic degradation dramatically accelerated crystallization rates, reducing crystallization time roughly 10-fold (e.g., from ~3000 s to ~300 s), and crystallinity increased from 34% to 63%. Multiple melting peaks suggested the presence of lamellae with varying thicknesses, consistent with the Gibbs–Thomson equation. Isothermal crystallization kinetics were evaluated using the Avrami equation (with n ≈ 3), reciprocal half-time of crystallization, and a novel inflection point slope method, all confirming accelerated crystallization; for instance, the slope increased from 0.00517 to 0.05203. Polarized optical microscopy (POM) revealed evolving spherulite morphologies, including hexagonal and flower-like dendritic spherulites with diamond-shape ends, while wide-angle X-ray diffraction (WAXD) showed a crystallization range shift to higher temperatures (e.g., from 72–61 °C to 82–71 °C) and a 14% increase in crystallite diameter, aligning with increased melting point and lamellar thickness and overall increased crystallinity. Full article
Show Figures

Figure 1

17 pages, 4663 KB  
Article
Low-Cycle Fatigue Behavior of Nuclear-Grade Austenitic Stainless Steel Fabricated by Additive Manufacturing
by Jianhui Shi, Huiqiang Liu, Zhengping Liu, Runzhong Wang, Huanchun Wu, Haitao Dong, Xinming Meng and Min Yu
Crystals 2025, 15(7), 644; https://doi.org/10.3390/cryst15070644 - 13 Jul 2025
Viewed by 467
Abstract
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy [...] Read more.
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM), including additive manufactured (AM) and forged materials. The results showed that the microstructure of the AM material exhibited anisotropy for the X, Y, and Z directions. The tensile and impact properties of the X, Y, and Z directions in AM material were similar. The fatigue life (Nf) of X- and Y-direction specimens was better than that of Z-direction specimens. The tensile, impact, and fatigue properties of all AM materials were lower than those of the forged specimens. The Z direction specimens of AM material showed the best plastic strain by the highest transition fatigue life (NT) during the fatigue strain amplitude at 0.3% to 0.6%. The forged specimens showed the best fatigue properties under the plastic strain amplitude control mode. Fatigue fracture surfaces of AM and forged materials exhibited multi- and single-fatigue crack initiation sites, respectively. This could be attributed to the presence of incompletely melted particles and manufacturing defects inside the AM specimens. The dislocation morphology of AM and forged fatigue specimens was observed to study the low-cycle fatigue behaviors in depth. Full article
Show Figures

Figure 1

13 pages, 3867 KB  
Article
Effect of Hot Isostatic Pressing on Mechanical Properties of K417G Nickel-Based Superalloy
by Fan Wang, Yuandong Wei, Yi Zhou, Wenqi Guo, Zexu Yang, Jinghui Jia, Shusuo Li and Haigen Zhao
Crystals 2025, 15(7), 643; https://doi.org/10.3390/cryst15070643 - 11 Jul 2025
Viewed by 329
Abstract
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as [...] Read more.
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as porosity in the K417G alloy, aiming to improve its mechanical properties. We investigated the microstructure and mechanical properties of K417G under two thermal conditions: solution heat treatment (SHT) and hot isostatic pressing (HIP). The results indicate that HIP significantly reduces microporosity. Compared to SHT, HIP improves the mechanical performance of K417G. The creep fracture mechanism shifts from intergranular brittle fracture (SHT) to ductile fracture (HIP). Consequently, HIP increases the alloy′s creep life approximately threefold and raises its fatigue limit by about 20 MPa. This improvement is attributed to pore density reduction, which decreases stress concentration zones and homogenizes the microstructure, thereby impeding fatigue crack nucleation and extending the crack incubation period. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

5 pages, 175 KB  
Editorial
Characterization and Modelling of the Deformation and Failure of Engineering Metallic Materials
by Hui Wang, Lihong Su, Ebad Bagherpour and Qiang Xing
Crystals 2025, 15(7), 642; https://doi.org/10.3390/cryst15070642 - 11 Jul 2025
Viewed by 376
Abstract
Metallic materials are at the heart of modern industry and infrastructure, valued for their outstanding strength, ductility, and other excellent mechanical properties [...] Full article
14 pages, 1843 KB  
Article
Investigations into Microstructure and Mechanical Properties of As-Cast Mg-Zn-xNd Alloys for Biomedical Applications
by Faruk Mert
Crystals 2025, 15(7), 641; https://doi.org/10.3390/cryst15070641 - 11 Jul 2025
Viewed by 347
Abstract
Magnesium-based biomaterials have emerged as highly promising candidates in the realm of biomedical engineering due to certain unique properties. However, their widespread application has been limited by a number of challenges, such as insufficient mechanical strength and rapid degradation rates. This study sought [...] Read more.
Magnesium-based biomaterials have emerged as highly promising candidates in the realm of biomedical engineering due to certain unique properties. However, their widespread application has been limited by a number of challenges, such as insufficient mechanical strength and rapid degradation rates. This study sought to advance the development of high-performance magnesium alloys by examining the microstructural evolution and associated strengthening mechanisms of Mg-Zn alloys modified with varying Nd contents. Comprehensive characterization techniques—including optical microscopy, XRD, and SEM/EDS—were employed to explain the influence of Nd additions on the microstructures. Mechanical performance was assessed through hardness testing, the RFDA method for elastic modulus, and tensile testing. The microstructural analysis of the as-cast Mg-Zn-Nd alloys revealed a complex phase composition comprising dendritic α-Mg, Mg41Nd5, and a Mg3Nd binary phase enriched with rare earth elements. Notably, increasing the Nd content from 0.5% to 5% by weight resulted in a significant enhancement of hardness, reaching 59 HV compared to 42 HV in the base alloy. The tensile strength increased significantly from 62.9 MPa in the Mg-2.5Zn-0.5Nd alloy to 186.8 MPa in the Mg-2.5Zn-5Nd alloy. The elastic modulus values across all investigated alloys remained consistently comparable, which is expected as the elastic modulus is primarily determined by atomic bonding and is not significantly affected by alloying additions. These findings underscore the potential of Nd-alloyed Mg-Zn systems as viable, mechanically robust alternatives for next-generation biodegradable orthopedic implants. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Performance of Magnesium Alloys)
Show Figures

Figure 1

17 pages, 4195 KB  
Article
Rapid Synthesis of Highly Crystalline ZnO Nanostructures: Comparative Evaluation of Two Alternative Routes
by Emely V. Ruiz-Duarte, Juan P. Molina-Jiménez, Duber A. Avila, Cesar O. Torres and Sindi D. Horta-Piñeres
Crystals 2025, 15(7), 640; https://doi.org/10.3390/cryst15070640 - 11 Jul 2025
Cited by 1 | Viewed by 528
Abstract
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the [...] Read more.
Zinc oxide (ZnO) is a wide bandgap semiconductor of great scientific and technological interest due to its high exciton binding energy and outstanding structural and optical properties, making it an ideal material for applications in optoelectronics, sensors, and photocatalysis. This study presents the rapid synthesis of highly crystalline ZnO nanostructures using two alternative routes: (1) direct thermal decomposition of zinc acetate and (2) a physical-green route assisted by Mangifera indica extract. Both routes were subjected to identical calcination thermal conditions (400 °C for 2 h), allowing for an objective comparison of their effects on structural, vibrational, morphological, and optical characteristics. X-ray diffraction analyses confirmed the formation of a pure hexagonal wurtzite phase in both samples, highlighting a higher crystallinity index (91.6%) and a larger crystallite size (35 nm) in the sample synthesized using the physical-green route. Raman and FTIR spectra supported these findings, revealing greater structural order. Electron microscopy showed significant morphological differences, and UV-Vis analysis showed a red shift in the absorption peak, associated with a decrease in the optical bandgap (from 3.34 eV to 2.97 eV). These results demonstrate that the physical-green route promotes significant improvements in the structural and functional properties of ZnO, without requiring changes in processing temperature or the use of additional chemicals. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

20 pages, 6807 KB  
Article
Enhancing Electrochemical Kinetics and Stability of Biodegradable Mg-Y-Zn Alloys with LPSO Phases via Strategic Micro-Alloying with Ca, Sr, Mn, and Zr
by Lisha Wang, Huiping Wang, Chenchen Zhang, Wei Sun, Yue Wang, Lijuan Wang and Xiaoyan Kang
Crystals 2025, 15(7), 639; https://doi.org/10.3390/cryst15070639 - 11 Jul 2025
Viewed by 403
Abstract
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), [...] Read more.
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS). Electrochemical properties were assessed through potentiodynamic polarization in Hank’s solution, and corrosion rates were determined by hydrogen evolution and weight loss methods. Microalloying significantly enhanced the corrosion resistance of the base Mg-Y-Zn alloy, with corrosion rates decreasing from 2.67 mm/year (unalloyed) to 1.65 mm/year (Ca), 1.36 mm/year (Sr), 1.18 mm/year (Zr), and 1.02 mm/year (Mn). Ca and Sr additions introduced Mg2Ca and Mg17Sr2, while Mn and Zr refined the existing LPSO structure without new phases. Sr refined the LPSO phase and formed a uniformly distributed Mg17Sr2 network, promoting uniform corrosion and suppressing deep localized attacks. Ca-induced Mg2Ca acted as a temporary sacrificial phase, with corrosion eventually propagating along LPSO interfaces. The Mn-containing alloy exhibited the lowest corrosion rate; this is attributed to the suppression of both anodic and cathodic reaction kinetics and the formation of a stable protective surface film. Zr improved general corrosion resistance but increased susceptibility to localized attacks due to dislocation-rich zones. These findings elucidate the corrosion mechanisms in LPSO-containing Mg alloys and offer an effective strategy to enhance the electrochemical stability of biodegradable Mg-based implants. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

17 pages, 5651 KB  
Article
Experimental Investigation on Fatigue Crack Propagation in Surface-Hardened Layer of High-Speed Train Axles
by Chun Gao, Zhengwei Yu, Yuanyuan Zhang, Tao Fan, Bo Zhang, Huajian Song and Hang Su
Crystals 2025, 15(7), 638; https://doi.org/10.3390/cryst15070638 - 11 Jul 2025
Viewed by 482
Abstract
This study examines fatigue crack growth behavior in induction-hardened S38C axle steel with a gradient microstructure. High-frequency three-point bending fatigue tests were conducted to evaluate crack growth rates (da/dN) across three depth-defined regions: a hardened layer, a heterogeneous transition [...] Read more.
This study examines fatigue crack growth behavior in induction-hardened S38C axle steel with a gradient microstructure. High-frequency three-point bending fatigue tests were conducted to evaluate crack growth rates (da/dN) across three depth-defined regions: a hardened layer, a heterogeneous transition zone, and a normalized core. Depth-resolved da/dN–ΔK relationships were established, and Paris Law parameters were extracted. The surface-hardened layer exhibited the lowest crack growth rates and flattest Paris slope, while the transition zone showed notable scatter due to microstructural heterogeneity and residual stress effects. These findings provide experimental insight into the fatigue performance of gradient-structured axle steels and offer guidance for fatigue life prediction and inspection planning. Full article
(This article belongs to the Special Issue Fatigue and Fracture of Crystalline Metal Structures)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop