Machine Learning-Based Recommender System for Pulsed Laser Ablation in Liquid: Recommendation of Optimal Processing Parameters for Targeted Nanoparticle Size and Concentration Using Cosine Similarity and KNN Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection (Pulsed Laser Ablation in Liquid Experiments)
- A = Absorbance (unitless)
- ε= Molar absorptivity (or molar extinction coefficient) in L/mol·cm
- C = Concentration of the absorbing species in mol/L
- L = Path length of the sample cell in cm (10 mm in this case)
- Absorbance (A) is related to the intensity of incident (I0) and transmitted (I) light by
2.2. Machine Learning Algorithms and Hyperparameter Tuning
2.2.1. Decision Trees
2.2.2. Random Forest
2.2.3. XGBoost
2.2.4. Support Vector Regression
- Linear kernel, which is effective when the relationship between features and target is approximately linear;
- Polynomial kernel, suitable for modeling more complex relationships with curved boundaries;
- Radial Basis Function (RBF) kernel, widely used for its ability to capture highly nonlinear patterns;
- Sigmoid kernel, which also models nonlinear relationships but behaves differently due to its resemblance to activation functions in neural networks.
2.2.5. K-Nearest Neighbor
2.2.6. Multiple Linear Regression
2.2.7. Multiple Polynomial Regression
2.2.8. Evaluation Metrics
- 1.
- R-squared value (R2):
- 2.
- Mean absolute error (MAE):
- 3.
- Mean percentage error (MPE):
- 4.
- Mean absolute percentage error (MAPE):
- 5.
- Root mean squared error (RMSE):
2.3. Recommender Systems
3. Results and Discussion
3.1. Exploratory Data Analysis (EDA)
3.2. Machine Learning Models
Effect of Data Augmentation
3.3. Recommender System
4. Recommendations
5. Conclusions
- Research Question and Gap: The study addressed the lack of machine learning-based, data-driven methods for selecting Pulsed laser ablation in liquid (PLAL) parameters to control nanoparticle (NP) size and concentration combinations. This area historically driven by trial-and-error and DOE methods, which limits practical and industrial applications of the technology. There was not a direct comparison of the developed recommender system with literature examples since this is the first article to propose such approach.
- Approach and Models Used: seven machine learning models, including K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), Support Vector Regressor, Random Forest, Decision trees (DT), Multiple linear regression, and Multiple Polynomial regression, were developed and compared to predict NP properties and enable a recommender system. The DT model achieved the best performance for predicting the NP size with the XGBoost model achieved the best performance for predicting the NP concentration. The XGBoost model attained a competitive mean percentage error (MPE) of 2% for NP concentration while the DT model attained an MPE of 10% for NP size prediction. The optimized recommender system based on KNN attained a MPAE of 8% and 29% for NP size and concentration, respectively.
- Recommendations: The model is ready for deployment in physical experiments. Future work will involve extrapolation beyond the design space (targeting beyond 52–240 nm range explored herein), and adaptation to other materials other than magnesium.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guillén, G.G.; Zuñiga Ibarra, V.A.; Mendivil Palma, M.I.; Krishnan, B.; Avellaneda, D.A.; Shaji, S. Effects of Liquid Medium and Ablation Wavelength on the Properties of Cadmium Sulfide Nanoparticles Formed by Pulsed-Laser Ablation. Chem. Phys. Chem. 2017, 18, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamaoy, A.; Chikarakara, E.; Jawad, H.; Gupta, K.; Kumar, D.; Rao, M.S.R.; Krishnamurthy, S.; Morshed, M.; Fox, E.; Brougham, D.; et al. Liquid Phase-Pulsed Laser Ablation: A route to fabricate different carbon nanostructures. Appl. Surf. Sci. 2014, 302, 141–144. [Google Scholar] [CrossRef]
- Saraj, C.S.; Singh, S.C.; Verma, G.; Alquliah, A.; Li, W.; Guo, C. Rapid fabrication of CuMoO4 nanocomposites via electric field assisted pulsed-laser ablation in liquids for electrochemical hydrogen generation. Appl. Surf. Sci. Adv. 2023, 13, 100358. [Google Scholar] [CrossRef]
- Hahn, A.; Barcikowski, S.; Chichkov, B.N. Influences on nanoparticle production during pulsed laser ablation. J. Laser Micro Nanoeng. 2007, 3, 73–77. [Google Scholar] [CrossRef]
- Pereira, H.; Moura, C.G.; Miranda, G.; Silva, F.S. Influence of liquid media and laser energy on the production of MgO nanoparticles by laser ablation. Opt. Laser Technol. 2021, 142, 107181. [Google Scholar] [CrossRef]
- Attallah, A.H.; Abdulwahid, F.S.; Ali, Y.A.; Haider, A.J. Effect of Liquid and Laser Parameters on Fabrication of Nanoparticles via Pulsed Laser Ablation in Liquid with Their Applications: A Review. Plasmon. 2023, 18, 1307–1323. [Google Scholar] [CrossRef]
- Fazio, E.; Gökce, B.; De Giacomo, A.; Meneghetti, M.; Compagnini, G.; Tommasini, M.; Waag, F.; Lucotti, A.; Zanchi, C.G.; Ossi, P.M.; et al. Nanoparticles Engineering by Pulsed Laser Ablation in Liquids: Concepts and Applications. Nanomaterials 2020, 10, 2317. [Google Scholar] [CrossRef] [PubMed]
- Khairani, I.Y.; Mínguez-Vega, G.; Doñate-Buendía, C.; Gökce, B. Green nanoparticle synthesis at scale: A perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production. Phys. Chem. Chem. Phys. 2023, 25, 19380–19408. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.C.; Yiu, T.H. Investigation of Laser Ablation Quality Based on Data Science and Machine Learning XGBoost Classifier. Appl. Sci. 2024, 14, 326. [Google Scholar] [CrossRef]
- Hussein, M.M.; Mutlag, H.; Shareef, H. Optimization of an artificial neural network to estimate laser ablation efficiency. Laser Phys. 2019, 29, 115603. [Google Scholar] [CrossRef]
- Wang, B.; Wang, P.; Song, J.; Lam, Y.C.; Song, H.; Wang, Y.; Liu, S. A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures. J. Mater. Process Technol. 2022, 308, 117716. [Google Scholar] [CrossRef]
- Oh, S.; Ki, H. Deep learning model for predicting hardness distribution in laser heat treatment of AISI H13 tool steel. Appl. Therm. Eng. 2019, 153, 583–595. [Google Scholar] [CrossRef]
- Chaudhari, P.; Agarwal, H.; Bhateja, V. Data augmentation for cancer classification in oncogenomics: An improved KNN based approach. Evol. Intell. 2021, 14, 489–498. [Google Scholar] [CrossRef]
- Juwara, L.; El-Hussuna, A.; El Emam, K. An evaluation of synthetic data augmentation for mitigating covariate bias in health data. Patterns 2024, 5, 100946. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, Y.M.; Hong, S.; Han, B.; Nam, K.T.; Jung, Y. Closed-loop optimization of nanoparticle synthesis enabled by robotics and machine learning. Matter 2023, 6, 677–690. [Google Scholar] [CrossRef]
- Bakhtiyari, A.N.; Wang, Z.; Wang, L.; Zheng, H. A review on applications of artificial intelligence in modeling and optimization of laser beam machining. Opt. Laser Technol. 2021, 135, 106721. [Google Scholar] [CrossRef]
- Shao, W.; Lin, X.; Huang, Y.; Qu, L.; Zhuo, W.; Liu, H. Effect of Kernel Functions on the Performance of Support Vector Regression Algorithm in Predicting Patient-Specific Organ Doses from CT Scans. Radiat. Sci. Technol. 2025, 11, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, H.; Xia, L.; Zou, Z.; Soares, C.G. Kernel-based support vector regression for nonparametric modeling of ship maneuvering motion. Ocean. Eng. 2020, 216, 107994. [Google Scholar] [CrossRef]
- Shanawad, S.S.; Chethan, B.; Prasad, V.; Sunilkumar, A.; Veena, V.S. Humidity sensing performance of the magnesium oxide nanoparticles. J. Mater. Sci. Mater. Electron. 2023, 34, 244. [Google Scholar] [CrossRef]
- Sosnin, I.M.; Akimov, E.G.; Merson, E.D.; Golovanov, A.A.; Merson, D.L.; Kostin, V.I.; Linderov, M.L. Magnesium nanoparticles as a highly stable anode for the electrochemical cell. Mater. Sci. Eng. B 2023, 296, 116648. [Google Scholar] [CrossRef]
- Fouda, A.; Eid, A.M.; Abdel-Rahman, M.A.; EL-Belely, E.F.; Awad, M.A.; Hassan, S.E.D.; AL-Faifi, Z.E.; Hamza, M.F. Enhanced Antimicrobial, Cytotoxicity, Larvicidal, and Repellence Activities of Brown Algae, Cystoseira crinita-Mediated Green Synthesis of Magnesium Oxide Nanoparticles. Front. Bioeng. Biotechnol. 2022, 10, 849921. [Google Scholar] [CrossRef] [PubMed]
Model Type | Hyperparameters Tunned |
---|---|
Decision tree |
|
Random forest |
|
XGBoost |
|
Support vector regressor |
|
KNN |
|
MLR |
|
MPR |
|
Time (min) | Scan Speed (mm/s) | Fluence (J/cm2) | Size SD | Concentration SD | Overall Size SD | Overall Concentration SD |
---|---|---|---|---|---|---|
2 | 3000 | 1.83 | 43.85 | 0.09 | 27.20 | 0.15 |
2 | 3000 | 1.88 | 35.78 | 0.09 | ||
2 | 3000 | 1.91 | 16.77 | 0.02 | ||
2 | 3250 | 1.83 | 51.07 | 0.13 | ||
2 | 3250 | 1.88 | 37.53 | 0.08 | ||
2 | 3250 | 1.91 | 17.16 | 0.12 | ||
2 | 3500 | 1.83 | 20.64 | 0.09 | ||
2 | 3500 | 1.88 | 34.89 | 0.15 | ||
2 | 3500 | 1.91 | 29.25 | 0.11 | ||
5 | 3000 | 1.83 | 21.23 | 0.12 | ||
5 | 3000 | 1.88 | 24.24 | 0.05 | ||
5 | 3000 | 1.91 | 27.03 | 0.05 | ||
5 | 3250 | 1.83 | 2.05 | 0.15 | ||
5 | 3250 | 1.88 | 10.56 | 0.11 | ||
5 | 3250 | 1.91 | 43.66 | 0.21 | ||
5 | 3500 | 1.83 | 36.73 | 0.19 | ||
5 | 3500 | 1.88 | 4.09 | 0.07 | ||
5 | 3500 | 1.91 | 57.89 | 0.23 | ||
25 | 3000 | 1.83 | 61.49 | 0.66 | ||
25 | 3000 | 1.88 | 12.62 | 0.11 | ||
25 | 3000 | 1.91 | 21.40 | 0.14 | ||
25 | 3250 | 1.83 | 7.71 | 0.40 | ||
25 | 3250 | 1.88 | 13.14 | 0.21 | ||
25 | 3250 | 1.91 | 5.16 | 0.10 | ||
25 | 3500 | 1.83 | 31.52 | 0.05 | ||
25 | 3500 | 1.88 | 21.84 | 0.23 | ||
25 | 3500 | 1.91 | 45.16 | 0.20 |
Model Type | Hyperparameters Tunned |
---|---|
Decision tree | {‘max_depth’: 2, ‘max_features’: None, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2} |
Random forest | {‘max_depth’: 2, ‘max_features’: None, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘n_estimators’: 10} |
XGboost | {‘colsample_bytree’: 1, ‘learning_rate’: 0.5, ‘max_depth’: 2, ‘n_estimators’: 5, ‘subsample’: 1} |
Support vector regressor | {‘svr__C’: 0.1, ‘svr__epsilon’: 0.01, ‘svr__gamma’: ‘scale’, ‘svr__kernel’: ‘linear’} |
KNN | {‘n_neighbors’: 5, ‘p’: 1, ‘weights’: ‘uniform’} |
MLR | {‘linreg__fit_intercept’: True, ‘linreg__positive’: False} |
MPR | {‘linreg__fit_intercept’: True, ‘linreg__positive’: True, ‘poly__degree’: 3, ‘poly__include_bias’: False} |
Metric | DT | RF | XGBoost | SVR | KNN | MLR | MPR |
---|---|---|---|---|---|---|---|
Train MAE | 0.16 | 0.15 | 0.15 | 0.16 | 0.15 | 0.16 | 0.16 |
Train RMSE | 0.24 | 0.23 | 0.23 | 0.25 | 0.22 | 0.24 | 0.23 |
Train MAPE | 19.19 | 18.48 | 19.53 | 22.17 | 18.23 | 22.17 | 20.52 |
Train MPE | −5.71 | −4.74 | −7.88 | −11.96 | −6.19 | −6.66 | −6.19 |
Train R2 | 0.89 | 0.90 | 0.90 | 0.89 | 0.91 | 0.89 | 0.90 |
Test MAE | 0.13 | 0.13 | 0.12 | 0.15 | 0.15 | 0.17 | 0.17 |
Test RMSE | 0.17 | 0.16 | 0.15 | 0.18 | 0.19 | 0.21 | 0.20 |
Test MAPE | 18.59 | 18.22 | 19.43 | 24.75 | 20.57 | 26.05 | 25.86 |
Test MPE | 5.97 | 6.50 | 2.43 | 0.92 | 9.73 | 9.03 | 7.23 |
Metric | DT | RF | XGBoost | SVR | KNN | MLR | MPR |
---|---|---|---|---|---|---|---|
Train MAE | 27.03 | 25.30 | 26.98 | 25.61 | 26.56 | 27.93 | 28.35 |
Train RMSE | 34.02 | 33.15 | 36.51 | 37.46 | 35.79 | 37.87 | 36.20 |
Train MAPE | 22.33 | 20.93 | 22.39 | 20.47 | 21.65 | 23.08 | 23.40 |
Train MPE | −7.03 | −6.76 | −7.27 | −4.12 | −7.05 | −8.42 | −7.69 |
Train R2 | 0.38 | 0.42 | 0.29 | 0.25 | 0.32 | 0.24 | 0.30 |
Test MAE | 29.64 | 32.09 | 31.40 | 29.63 | 38.70 | 30.43 | 31.77 |
Test RMSE | 36.76 | 38.50 | 38.39 | 37.63 | 44.21 | 37.09 | 38.11 |
Test MAPE | 22.82 | 24.26 | 22.90 | 21.41 | 28.51 | 23.00 | 23.67 |
Test MPE | −9.62 | −10.08 | −7.48 | −5.55 | −14.08 | −10.09 | −10.12 |
Recommender System Type | Evaluation Metric | With 331 Data Points in the Database | With 1331 Datapoints in the Database |
---|---|---|---|
Cosine Similarity | MAPE (NP size) | 36.64 | 36.61 |
MAPE (NP concentration) | 47.02 | 46.99 | |
KNN with n_neighbors = 1 metric = Euclidean | MAPE (NP size) | 7.53 | 7.53 |
MAPE (NP concentration) | 28.22 | 28.22 | |
KNN with n_neighbors = 1 metric = Euclidean | MAPE (NP size) | 8.24 | 8.24 |
MAPE (NP concentration) | 28.85 | 28.85 | |
KNN with n_neighbors = 3 metric = Euclidean | MAPE (NP size) | 8.72 | 8.72 |
MAPE (NP concentration) | 32.42 | 32.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyabadza, A.; Brabazon, D. Machine Learning-Based Recommender System for Pulsed Laser Ablation in Liquid: Recommendation of Optimal Processing Parameters for Targeted Nanoparticle Size and Concentration Using Cosine Similarity and KNN Models. Crystals 2025, 15, 662. https://doi.org/10.3390/cryst15070662
Nyabadza A, Brabazon D. Machine Learning-Based Recommender System for Pulsed Laser Ablation in Liquid: Recommendation of Optimal Processing Parameters for Targeted Nanoparticle Size and Concentration Using Cosine Similarity and KNN Models. Crystals. 2025; 15(7):662. https://doi.org/10.3390/cryst15070662
Chicago/Turabian StyleNyabadza, Anesu, and Dermot Brabazon. 2025. "Machine Learning-Based Recommender System for Pulsed Laser Ablation in Liquid: Recommendation of Optimal Processing Parameters for Targeted Nanoparticle Size and Concentration Using Cosine Similarity and KNN Models" Crystals 15, no. 7: 662. https://doi.org/10.3390/cryst15070662
APA StyleNyabadza, A., & Brabazon, D. (2025). Machine Learning-Based Recommender System for Pulsed Laser Ablation in Liquid: Recommendation of Optimal Processing Parameters for Targeted Nanoparticle Size and Concentration Using Cosine Similarity and KNN Models. Crystals, 15(7), 662. https://doi.org/10.3390/cryst15070662