Characterization and Modelling of the Deformation and Failure of Engineering Metallic Materials
Author Contributions
Funding
Conflicts of Interest
References
- Singh, M.; Kumar, P.; Biswas, A. An overview of recent developments in Al metal matrix nanocomposites for strength-ductility synergy. Mater. Today Proc. 2022, 80, 168–175. [Google Scholar] [CrossRef]
- Sohrabi, M.J.; Kalhor, A.; Mirzadeh, H.; Rodak, K.; Kim, H.S. Tailoring the strengthening mechanisms of high-entropy alloys toward excellent strength-ductility synergy by metalloid silicon alloying: A review. Prog. Mater. Sci. 2024, 144, 101295. [Google Scholar] [CrossRef]
- Zhao, L.; Zheng, W.; Hu, Y.; Guo, Q.; Zhang, D. Heterostructured metal matrix composites for structural applications: A review. J. Mater. Sci. 2024, 59, 9768–9801. [Google Scholar] [CrossRef]
- Wang, S.; Hu, Z.; Huang, Z.; Gao, B.; Chen, X.; Hu, J.; Zhu, Y.; Li, Y.; Zhou, H. New deformation mechanism and strength-ductility synergy in pure titanium with high density twin. Int. J. Plast. 2024, 174, 103908. [Google Scholar] [CrossRef]
- Gupta, A.; Khatirkar, R.; Singh, J. A review of microstructure and texture evolution during plastic deformation and heat treatment of β-Ti alloys. J. Alloy Compd. 2022, 899, 163242. [Google Scholar] [CrossRef]
- Georgantzia, E.; Gkantou, M.; Kamaris, G.S. Aluminium alloys as structural material: A review of research. Eng. Struct. 2021, 227, 111372. [Google Scholar] [CrossRef]
- Verma, R.P.; Lila, M.K. A short review on aluminium alloys and welding in structural applications. Mater. Today Proc. 2021, 46, 10687–10691. [Google Scholar] [CrossRef]
- Bai, J.; Yang, Y.; Wen, C.; Chen, J.; Zhou, G.; Jiang, B.; Peng, X.; Pan, F. Applications of magnesium alloys for aerospace: A review. J. Magnes. Alloy 2023, 11, 3609–3619. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, H.; Zhao, Y.; Zhou, Q.; Luo, C.; Hua, Q.; Ouyang, X.; Zhang, S. Recent advances and strategies for high-performance coatings. Prog. Mater. Sci. 2023, 136, 101125. [Google Scholar] [CrossRef]
- Zhang, J.; Miao, J.; Balasubramani, N.; Cho, D.H.; Avey, T.; Chang, C.-Y.; Luo, A.A. Magnesium research and applications: Past, present and future. J. Magnes. Alloy 2023, 11, 3867–3895. [Google Scholar] [CrossRef]
- Liu, H.; Yu, H.; Guo, C.; Chen, X.; Zhong, S.; Zhou, L.; Osman, A.; Lu, J. Review on Fatigue of Additive Manufactured Metallic Alloys: Microstructure, Performance, Enhancement, and Assessment Methods. Adv. Mater. 2023, 36, e2306570. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhan, M.; Fu, M.W. Microstructural and geometrical size effects on the fatigue of metallic materials. Int. J. Mech. Sci. 2022, 218, 107058. [Google Scholar] [CrossRef]
- Farh, H.M.H.; Seghier, M.E.A.B.; Zayed, T. A comprehensive review of corrosion protection and control techniques for metallic pipelines. Eng. Fail. Anal. 2022, 143, 106885. [Google Scholar] [CrossRef]
- Li, S.; Powell, C.A.; Mathaudhu, S.; Gwalani, B.; Devaraj, A.; Wang, C. Review of recent progress on in situ TEM shear deformation: A retrospective and perspective view. J. Mater. Sci. 2022, 57, 12177–12201. [Google Scholar] [CrossRef]
- Gussev, M.; McClintock, D.; Byun, T.; Lach, T. Recent progress in analysis of strain-induced phenomena in irradiated metallic materials and advanced alloys using SEM-EBSD in-situ tensile testing. Curr. Opin. Solid State Mater. Sci. 2023, 28, 101132. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, Y.; Ye, H.; He, Y.; Li, H.; Sun, Y.; Yang, F.; Wang, R. Atomic-Scale Structure Dynamics of Nanocrystals Revealed by In Situ and Environmental Transmission Electron Microscopy. Adv. Mater. 2023, 35, e2206911. [Google Scholar] [CrossRef]
- Weidner, A.; Biermann, H. Review on Strain Localization Phenomena Studied by High-Resolution Digital Image Correlation. Adv. Eng. Mater. 2021, 23, 2001409. [Google Scholar] [CrossRef]
- Janeliukstis, R.; Chen, X. Review of digital image correlation application to large-scale composite structure testing. Compos. Struct. 2021, 271, 114143. [Google Scholar] [CrossRef]
- Guo, E.; Du, Z.; Chen, X.; Chen, Z.; Kang, H.; Cao, Z.; Lu, Y.; Wang, T. Development of magnesium alloys: Advanced characterization using synchrotron radiation techniques. J. Mater. Sci. Technol. 2024, 195, 93–110. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.; Dai, H.; Yang, Z.; Chen, Z.; Wang, Y.; Chen, Y.; Peng, W.; Shan, W.; Duan, H. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 2020, 13, 1529–1565. [Google Scholar] [CrossRef]
- Hu, R.; Jin, S.; Sha, G. Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis. Prog. Mater. Sci. 2022, 123, 100854. [Google Scholar] [CrossRef]
- Baba, N.; Hata, S.; Saito, H.; Kaneko, K. Three-dimensional electron tomography and recent expansion of its applications in materials science. Microscopy 2022, 72, 111–134. [Google Scholar] [CrossRef]
- Wang, H.; Su, L.; Yu, H.; Lu, C.; Tieu, A.K.; Liu, Y.; Zhang, J. A new finite element model for multi-cycle accumulative roll-bonding process and experiment verification. Mater. Sci. Eng. A 2018, 726, 93–101. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, G.X. Finite-Element-Based Deep-Learning Model for Deformation Behavior of Digital Materials. Adv. Theory Simulations 2020, 3, 2000031. [Google Scholar] [CrossRef]
- Bate, P.; Ashby, M.F.; Humphreys, F.; Sellar, C.; Shercliff, H.; Stowell, M. Modelling deformation microstructure with the crystal plasticity finite–element method. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1999, 357, 1589–1601. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.; Bieler, T.; Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2010, 58, 1152–1211. [Google Scholar] [CrossRef]
- Renversade, L.; Quey, R. Intra-grain orientation distributions in deformed aluminium: Synchrotron X-ray diffraction experiment and crystal-plasticity finite-element simulation. Acta Mater. 2023, 262, 119419. [Google Scholar] [CrossRef]
- Zhou, X.; Zan, S.; Zeng, Y.; Guo, R.; Wang, G.; Wang, T.; Zhao, L.; Chen, M. Comprehensive study of plastic deformation mechanism of polycrystalline copper using crystal plasticity finite element. J. Mater. Res. Technol. 2024, 30, 9221–9236. [Google Scholar] [CrossRef]
- Depriester, D.; Goulmy, J.; Barrallier, L. Crystal Plasticity simulations of in situ tensile tests: A two-step inverse method for identification of CP parameters, and assessment of CPFEM capabilities. Int. J. Plast. 2023, 168, 103695. [Google Scholar] [CrossRef]
- Shen, P.; Liu, Y.; Zhang, X. Crystal Plasticity Finite Element Modeling of the Influences of Ultrafine-Grained Austenite on the Mechanical Response of a Medium-Mn Steel. Crystals 2024, 14, 405. [Google Scholar] [CrossRef]
- Frankus, F.; Pachaury, Y.; El-Azab, A.; Devincre, B.; Poulsen, H.F.; Winther, G. Investigating the formation of a geometrically necessary boundary using discrete dislocation dynamics. J. Mech. Phys. Solids 2025, 199, 106069. [Google Scholar] [CrossRef]
- Yuan, T.; He, N.; Ma, S.; Cheng, Y.; Jiang, Y.X.; He, L.; Chen, C.; Chen, Y.; Ye, H. Atomic structure and molecular dynamics simulation of a symmetrical tilt [011](511)Σ27 grain boundary in polysynthetically twinned TiAl crystals. Mater. Charact. 2025, 227, 115275. [Google Scholar] [CrossRef]
- Qin, X.; Liang, Y.; Gu, J. Effects of Stress State, Crack—γ/γ′ Phase Interface Relative Locations and Orientations on the Deformation and Crack Propagation Behaviors of the Ni-Based Superalloy—A Molecular Dynamics Study. Crystals 2023, 13, 1446. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Gao, Y.; Wang, G.; Shi, W. Performance Analysis of 7075 Aluminum Alloy Strengthened by Cavitation Water Jet Peening at Different Scanning Speeds. Crystals 2022, 12, 1451. [Google Scholar] [CrossRef]
- Ding, X.; Ma, S.; Zhang, J.; Jiang, Z.; Li, H.; Wang, S.; Wang, C.; Zhong, J. Numerical Simulation and Process Study on Laser Shock Peening of 1Cr18Ni9Ti Material. Crystals 2023, 13, 1279. [Google Scholar] [CrossRef]
- Abdi, M.; Ebrahimi, R.; Bagherpour, E. Improvement of Hydrogenation and Dehydrogenation Kinetics of As-Cast AZ91 Magnesium Alloy via Twin Parallel Channel Angular Extrusion Processing. Crystals 2022, 12, 1428. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, H.; Ma, D. Experimental Study on Laser Lap Welding of Aluminum–Steel with Pre-Fabricated Copper–Nickel Binary Coating. Crystals 2025, 15, 300. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, Y.; Ma, G.; Sun, X.; Lu, L. Dry Sliding Wear Behavior and Mild–Severe Wear Transition of the AA2195-T6 Alloy under Different Loads. Crystals 2023, 13, 698. [Google Scholar] [CrossRef]
- Wang, X.; Du, Z.; Zhang, F.; Zhu, Y.; Liu, Y.; Wang, H. Plastic Damage Assessment in 316 Austenitic Steel Using the Misorientation Parameters from an In Situ EBSD Technique. Crystals 2022, 12, 1126. [Google Scholar] [CrossRef]
- Chang, T.-Y.; Vandenbroeder, G.; Frazer, D.M.; Yushu, D.; Pitts, S.; Chen, T. Nanoindentation Stress Relaxation to Quantify Dislocation Velocity–Stress Exponent. Crystals 2024, 14, 680. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Ge, Q.; Wang, X.; Shen, Y. Improving Texture Prediction by Increasing Mesh Resolution in Submodel: A Crystal Plasticity FE Study and Experiment Verification. Crystals 2023, 13, 849. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Su, L.; Bagherpour, E.; Xing, Q. Characterization and Modelling of the Deformation and Failure of Engineering Metallic Materials. Crystals 2025, 15, 642. https://doi.org/10.3390/cryst15070642
Wang H, Su L, Bagherpour E, Xing Q. Characterization and Modelling of the Deformation and Failure of Engineering Metallic Materials. Crystals. 2025; 15(7):642. https://doi.org/10.3390/cryst15070642
Chicago/Turabian StyleWang, Hui, Lihong Su, Ebad Bagherpour, and Qiang Xing. 2025. "Characterization and Modelling of the Deformation and Failure of Engineering Metallic Materials" Crystals 15, no. 7: 642. https://doi.org/10.3390/cryst15070642
APA StyleWang, H., Su, L., Bagherpour, E., & Xing, Q. (2025). Characterization and Modelling of the Deformation and Failure of Engineering Metallic Materials. Crystals, 15(7), 642. https://doi.org/10.3390/cryst15070642