Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized
[...] Read more.
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized techniques, have been explored to address this limitation. One approach to solving this problem involves the use of dosimetric materials based on efficient scintillation crystals, which can be placed in the patient’s body using a long optical fiber inserted intra-cavernously, either in front of or next to the tumor. Scintillation crystals with a density close to that of tissue can be used in any location, including the respiratory tract, as they do not interfere with dose distribution. However, in many cases of radiation therapy, the detector may need to be positioned behind the target. In such cases, the use of heavy, high-density, and high-Z
eff scintillators is strongly preferred. The delivered radiation dose was registered using the radioluminescence response of the crystal scintillator and recorded with a compact luminescence spectrometer connected to the scintillator via a long optical fiber (so-called fiber-optic dosimeter). This proposed measurement method is completely non-invasive, safe, and can be performed in real time. To complete the abovementioned task, scintillation detectors based on YAG:Ce (ρ = 4.5 g/cm
3; Z
eff = 35), LuAG:Ce (ρ = 6.75 g/cm
3; Z
eff = 63), and GAGG:Ce (ρ = 6.63 g/cm
3; Z
eff = 54.4) garnet crystals, with different densities ρ and effective atomic numbers Z
eff, were used in this work. The results obtained are very promising. We observed a strong linear correlation between the dose and the scintillation signal recorded by the detector system based on these garnet crystals. The measurements were performed on a specially prepared phantom in the brachytherapy treatment room at the Oncology Center in Bydgoszcz, where in situ measurements of the applied dose in the 0.5–8 Gy range were performed, generated by the
192Ir (394 keV) γ-ray source from the standard Fexitron Elektra treatment system. Finally, we found that GAGG:Ce crystal detectors demonstrated the best figure-of-merit performance among all the garnet scintillators studied.
Full article