Microstructure and Characterization of Crystalline Materials

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Crystal Engineering".

Deadline for manuscript submissions: 20 March 2026 | Viewed by 2911

Special Issue Editors

Research Institute of Aero–Engine, Beihang University, Beijing 100191, China
Interests: superalloy; high-entropy alloy; materials design; mechanical behavior; microstructure characterization
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Institute of Reactor Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
Interests: molecular dynamics; density functional theory
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Metal Working and Physical Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
Interests: investment casting; AM; plastic working; SPD; 3D scanning; thermography; DIC; tomography; expert systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metallic and composite crystalline materials play an important role in many applications across a wide range of fields, including aviation, automotives, energy, and medicine. Despite many known techniques and technologies for the production and processing of crystalline materials and additional interoperational and postprocessing treatments, research is still being carried out to obtain a modified structure in order to improve the expected properties in response to the constantly varying requirements of users.

High-temperature and load-bearing structures require materials with reliable, reproducible properties. Their design allows parts of the structure to deform plastically, as long as the structure does not collapse. Crystal defects such as dislocation are central to the understanding of plasticity. The continuum slip theory of crystals provides a classical framework of plasticity with physically well-defined roots in the dislocation mechanics of metals. Reliable algorithmic settings of crystal plasticity are needed for the structural design of single crystals, as they provide a cornerstone for multiscale analyses of evolving microstructures in polycrystals. In addition, many time-dependent deformation processes at elevated temperatures produce significant concurrent microstructure changes that can profoundly alter the mechanical properties. Thus, it is necessary to reveal the dislocation characteristics and the microstructure evolution of crystalline materials to provide instructions for the design of these materials.

The purpose of this Special Issue is to present the latest results of basic and applied research in the field of crystalline material development, microstructural evolution, deformation mechanisms, and technologies for their production and processing, including casting, additive manufacturing, plastic working, SPD, heat treatments supported by numerical simulations, expert systems, and the use of artificial intelligence and its ability to improve properties, efficiency, and new applications, e.g., in the field of astronautics. Additionally, aspects related to modern research techniques are of interest, ensuring an increase in cognitive values.

Researchers are invited to contribute to this Special Issue, “Microstructure and Characterization of Crystalline Materials”, which is intended to serve as a unique multidisciplinary forum covering broad aspects of science, technology, and the application of crystal plasticity. It will also cover the microstructure evolution of metals, alloys, intermetallics, composites, destructive and nondestructive testing, computer simulations, and expert systems. Prospective authors are encouraged to submit original and unpublished papers in this subject area.

Dr. Wenqi Guo
Dr. Yankun Dou
Prof. Dr. Krzysztof Zaba
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metallic and composite materials
  • casting
  • AM
  • plastic working
  • SPD
  • microstructure evolution and characterization
  • plasticity
  • mechanical properties
  • destructive and nondestructive testing
  • computer simulations
  • expert systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 3403 KB  
Article
Microstructural and XRD Investigations on Zn After Plastic Deformation
by Alessandra Ceci, Girolamo Costanza and Maria Elisa Tata
Crystals 2025, 15(10), 908; https://doi.org/10.3390/cryst15100908 - 21 Oct 2025
Viewed by 260
Abstract
This work presents a microstructural analysis and X-ray diffraction (XRD) investigation of the plastic deformation in commercially pure, single-phase hexagonal close-packed (hcp) Zn subjected to rolling and tensile tests up to failure. Samples were examined by optical microscope and XRD; hardness was assessed [...] Read more.
This work presents a microstructural analysis and X-ray diffraction (XRD) investigation of the plastic deformation in commercially pure, single-phase hexagonal close-packed (hcp) Zn subjected to rolling and tensile tests up to failure. Samples were examined by optical microscope and XRD; hardness was assessed by Vickers microhardness. High-resolution diffraction profiles with Kα1/Kα2 deconvolution were used to identify deformation-induced texture and to estimate the dislocation density. Results show that rolling (40% thickness reduction) and tensile test change texture and cause peak shifts and broadening, with corresponding microstructural changes. Microhardness changes from 28–45 HV (annealed) to 30–50 HV after deformation. After rolling, the texture (002) is the most intense reflection and (004) increases without significant angular shifts. Tensile tests induce low-angle shifts of (101) and (004), as well as selective texture changes (appearance of (103) and (110)). The (101) full width at half maximum increases from β(2θ) = 0.115° (annealed) to 0.160° (rolled) and 0.140° (after tensile test), yielding dislocation densities from 2.73 × 106 cm−2 (annealed) to 3.03 × 1011 cm−2 (rolled) and 3.38 × 1010 cm−2 (after tensile test). Finally, this study quantifies the XRD parameters (full width at half maximum, angular shifts and dislocation density). Plastic deformation of pure Zn leads to significant microstructural changes, including grain refinement, the generation of dislocations, and the formation of new crystallographic orientations, which are then observable in XRD patterns as peak broadening, shifts, and texture development. The severity of these effects depends on the level of deformation. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

28 pages, 6292 KB  
Article
Analysis of Radiation Hardening Effect of Ferritic Martensitic Steel Based on Bayesian Optimization
by Yue He, Jiaming Bao, Shi Wu, Bing Bai, Xinfu He and Wen Yang
Crystals 2025, 15(10), 864; https://doi.org/10.3390/cryst15100864 - 30 Sep 2025
Viewed by 237
Abstract
Ferritic/martensitic (F/M) steel is a candidate material for key structures in fourth-generation nuclear energy systems (such as fusion reactors and fast reactors). Irradiation hardening behavior is a core index to evaluate the material’s stable performance in a high-neutron-irradiation environment. In this study, based [...] Read more.
Ferritic/martensitic (F/M) steel is a candidate material for key structures in fourth-generation nuclear energy systems (such as fusion reactors and fast reactors). Irradiation hardening behavior is a core index to evaluate the material’s stable performance in a high-neutron-irradiation environment. In this study, based on 2048 composition and property data, a correlation model between key elements and their interactions and irradiation hardening in F/M steel was constructed using a Bayesian optimization neural network, which realized quantitative prediction of the effect of composition on hardening behavior. Studies have shown that the addition of about 9.0% Cr, about 0.8% Si, Mo content higher than about 0.25%, and the addition of Ti, Mn can effectively suppress the irradiation hardening of F/M steel, while the addition of N, Ta, and C will aggravate its irradiation hardening, and the addition of W and V has little effect on the irradiation hardening of F/M steel. There is an interaction between the two elements. C-Cr has a strong synergistic mechanism, which will cause serious hardening when the content is higher than 0.05% and the Cr content is higher than 10%. Cr-Si has a strong antagonistic mechanism, which can achieve the comprehensive irradiation hardening effect in the 9Cr-0.8Si combination. N-Mn needs N controlled lower than 0.01%. Mo-W needs to control Mo content higher than 0.5% to alleviate irradiation hardening. There is a weak synergistic effect in Si-V; when the content is between 0.3% and 0.8% and the V content is between 0.2% and 0.3%, it can assist in optimizing the composition of F/M steel. Through the optimization of multi-element combination, the composition of F/M steel with lower irradiation hardening can be designed. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

13 pages, 3867 KB  
Article
Effect of Hot Isostatic Pressing on Mechanical Properties of K417G Nickel-Based Superalloy
by Fan Wang, Yuandong Wei, Yi Zhou, Wenqi Guo, Zexu Yang, Jinghui Jia, Shusuo Li and Haigen Zhao
Crystals 2025, 15(7), 643; https://doi.org/10.3390/cryst15070643 - 11 Jul 2025
Viewed by 521
Abstract
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as [...] Read more.
The cast nickel-based superalloy K417G exhibits excellent high-temperature strength, but non-equilibrium solidification during casting can cause defects such as irreparable interdendritic microporosity, which significantly degrades its fatigue and creep properties. This study uses hot isostatic pressing (HIP) to eliminate internal flaws such as porosity in the K417G alloy, aiming to improve its mechanical properties. We investigated the microstructure and mechanical properties of K417G under two thermal conditions: solution heat treatment (SHT) and hot isostatic pressing (HIP). The results indicate that HIP significantly reduces microporosity. Compared to SHT, HIP improves the mechanical performance of K417G. The creep fracture mechanism shifts from intergranular brittle fracture (SHT) to ductile fracture (HIP). Consequently, HIP increases the alloy′s creep life approximately threefold and raises its fatigue limit by about 20 MPa. This improvement is attributed to pore density reduction, which decreases stress concentration zones and homogenizes the microstructure, thereby impeding fatigue crack nucleation and extending the crack incubation period. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

16 pages, 13986 KB  
Article
Orientation-Dependent Nanomechanical Behavior of Pentaerythritol Tetranitrate as Probed by Multiple Nanoindentation Tip Geometries
by Morgan C. Chamberlain, Alexandra C. Burch, Milovan Zečević, Virginia W. Manner, Marc J. Cawkwell and David F. Bahr
Crystals 2025, 15(5), 426; https://doi.org/10.3390/cryst15050426 - 30 Apr 2025
Viewed by 787
Abstract
Nanoindentation can be leveraged to aid in the high fidelity modeling of dislocation mediated plasticity in pentaerythritol tetranitrate (PETN), an anisotropic energetic molecular crystal. Moreover, nanoindentation tip parameters such as tip geometry, size, and degree of acuity can be utilized to target anisotropic [...] Read more.
Nanoindentation can be leveraged to aid in the high fidelity modeling of dislocation mediated plasticity in pentaerythritol tetranitrate (PETN), an anisotropic energetic molecular crystal. Moreover, nanoindentation tip parameters such as tip geometry, size, and degree of acuity can be utilized to target anisotropic behavior. In this work, nanoindentation was conducted across a range of orientations on the (110) face of PETN to characterize resultant yield behavior, mechanical property measurements, and resultant slip behavior and fracture initiation. Three different indentation tips were utilized: a 3-sided pyramidal Berkovich tip, a 4-sided high aspect ratio Knoop tip, and a 90° conical tip. Ultimately, indenter tip radius was documented to impact yield behavior, whereas tip geometry affected larger scale processes such as slip, and tip acuity was the dominating factor that led to fracture. The axisymmetric conical tip, serving as a baseline, showed the least amount of variation in mechanical property measurements but also the largest distribution of maximum shear stress at which initial yielding occurred. Its high degree of acuity, however, was more prone to induce fracture at higher loads. The Knoop tip was shown to be suitable for average measurements, but also for elucidation of certain anisotropic features. A distinctly higher perceived hardness at 45° was measured with the Knoop tip, indicating less dislocation motion in that direction also observed in this work via scanning probe microscopy. Lastly, the commonly used Berkovich tip was a good compromise whereby it provided a representative volume element describing the average behavior of the material. These results can be utilized to target desired anisotropic behavior in a wider range of molecular crystals, as well as to inform theoretical considerations for dislocation mediated plasticity in PETN. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

18 pages, 2968 KB  
Article
Research on the Mechanical and Photoelectric Properties Regulation of the New-Type Ceramic Material Ta2AlC
by Zhongzheng Zhang, Chunhong Zhang, Xinmao Qin and Wanjun Yan
Crystals 2025, 15(4), 309; https://doi.org/10.3390/cryst15040309 - 26 Mar 2025
Viewed by 543
Abstract
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation [...] Read more.
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation of the mechanical and photoelectric properties of Ta2AlC through doping using the first-principles pseudopotential plane-wave method. We specifically calculated the geometric structure, mechanical properties, electronic structure, Mulliken population analysis, and optical properties of Ta2AlC doped with V, Ga, or Si. The results indicate that doping induces significant changes in the structural parameters of Ta2AlC. By applying the Born’s criterion as the standard for mechanical stability, we have calculated that the structures of Ta2AlC, both before and after doping, are stable. The mechanical property calculations revealed that V and Si doping weaken the material’s resistance to deformation while enhancing its plasticity. In contrast, Ga doping increases the material’s resistance to lateral deformation and brittleness. Doping also increases the anisotropy of Ta2AlC. Electronic structure calculations confirmed that Ta2AlC is a conductor with excellent electrical conductivity, which is not diminished by doping. The symmetric distribution of spin-up and spin-down electronic state densities indicates that the Ta2AlC system remains non-magnetic after doping. The partial density of states diagrams successfully elucidated the influence of dopant atoms on the band structure and electronic state density. Mulliken population analysis revealed that V and Ga doping enhance the covalent interactions between C-Ta and Al-Ta atoms, whereas Si doping weakens these interactions. Optical property calculations showed that V and Si doping significantly enhance the electromagnetic energy storage capacity and dielectric loss of Ta2AlC, while Ga doping has minimal effect. The reflectivity of doped and undoped Ta2AlC reaches over 90% in the ultraviolet region, indicating its potential as an anti-ultraviolet coating material. In the visible light region, both doped and undoped Ta2AlC exhibit a similar metallic gray appearance, suggesting its potential as a temperature control coating material. The light loss of Ta2AlC is limited to a narrow energy range, indicating that doping does not affect its use as a light storage material. These results demonstrate that different dopants can effectively modulate the mechanical and photoelectric properties of Ta2AlC. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

Back to TopTop