Microstructure and Characterization of Crystalline Materials

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Crystal Engineering".

Deadline for manuscript submissions: 10 September 2025 | Viewed by 530

Special Issue Editors

Research Institute of Aero–Engine, Beihang University, Beijing 100191, China
Interests: superalloys; mechanical property; deformation mechanism
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Institute of Reactor Engineering and Technology, China Institute of Atomic Energy, Beijing 102413, China
Interests: molecular dynamics; density functional theory
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Metal Working and Physical Metallurgy of Non-Ferrous Metals, Faculty of Non-Ferrous Metals, AGH University of Krakow, al. Adama Mickiewicza 30, 30-059 Cracow, Poland
Interests: investment casting; AM; plastic working; SPD; 3D scanning; thermography; DIC; tomography; expert systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metallic and composite crystalline materials play an important role in many applications across a wide range of fields, including aviation, automotives, energy, and medicine. Despite many known techniques and technologies for the production and processing of crystalline materials and additional interoperational and postprocessing treatments, research is still being carried out to obtain a modified structure in order to improve the expected properties in response to the constantly varying requirements of users.

High-temperature and load-bearing structures require materials with reliable, reproducible properties. Their design allows parts of the structure to deform plastically, as long as the structure does not collapse. Crystal defects such as dislocation are central to the understanding of plasticity. The continuum slip theory of crystals provides a classical framework of plasticity with physically well-defined roots in the dislocation mechanics of metals. Reliable algorithmic settings of crystal plasticity are needed for the structural design of single crystals, as they provide a cornerstone for multiscale analyses of evolving microstructures in polycrystals. In addition, many time-dependent deformation processes at elevated temperatures produce significant concurrent microstructure changes that can profoundly alter the mechanical properties. Thus, it is necessary to reveal the dislocation characteristics and the microstructure evolution of crystalline materials to provide instructions for the design of these materials.

The purpose of this Special Issue is to present the latest results of basic and applied research in the field of crystalline material development, microstructural evolution, deformation mechanisms, and technologies for their production and processing, including casting, additive manufacturing, plastic working, SPD, heat treatments supported by numerical simulations, expert systems, and the use of artificial intelligence and its ability to improve properties, efficiency, and new applications, e.g., in the field of astronautics. Additionally, aspects related to modern research techniques are of interest, ensuring an increase in cognitive values.

Researchers are invited to contribute to this Special Issue, “Microstructure and Characterization of Crystalline Materials”, which is intended to serve as a unique multidisciplinary forum covering broad aspects of science, technology, and the application of crystal plasticity. It will also cover the microstructure evolution of metals, alloys, intermetallics, composites, destructive and nondestructive testing, computer simulations, and expert systems. Prospective authors are encouraged to submit original and unpublished papers in this subject area.

Dr. Wenqi Guo
Dr. Yankun Dou
Prof. Dr. Krzysztof Zaba
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metallic and composite materials
  • casting
  • AM
  • plastic working
  • SPD
  • microstructure evolution and characterization
  • plasticity
  • mechanical properties
  • destructive and nondestructive testing
  • computer simulations
  • expert systems

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 13986 KiB  
Article
Orientation-Dependent Nanomechanical Behavior of Pentaerythritol Tetranitrate as Probed by Multiple Nanoindentation Tip Geometries
by Morgan C. Chamberlain, Alexandra C. Burch, Milovan Zečević, Virginia W. Manner, Marc J. Cawkwell and David F. Bahr
Crystals 2025, 15(5), 426; https://doi.org/10.3390/cryst15050426 - 30 Apr 2025
Viewed by 64
Abstract
Nanoindentation can be leveraged to aid in the high fidelity modeling of dislocation mediated plasticity in pentaerythritol tetranitrate (PETN), an anisotropic energetic molecular crystal. Moreover, nanoindentation tip parameters such as tip geometry, size, and degree of acuity can be utilized to target anisotropic [...] Read more.
Nanoindentation can be leveraged to aid in the high fidelity modeling of dislocation mediated plasticity in pentaerythritol tetranitrate (PETN), an anisotropic energetic molecular crystal. Moreover, nanoindentation tip parameters such as tip geometry, size, and degree of acuity can be utilized to target anisotropic behavior. In this work, nanoindentation was conducted across a range of orientations on the (110) face of PETN to characterize resultant yield behavior, mechanical property measurements, and resultant slip behavior and fracture initiation. Three different indentation tips were utilized: a 3-sided pyramidal Berkovich tip, a 4-sided high aspect ratio Knoop tip, and a 90° conical tip. Ultimately, indenter tip radius was documented to impact yield behavior, whereas tip geometry affected larger scale processes such as slip, and tip acuity was the dominating factor that led to fracture. The axisymmetric conical tip, serving as a baseline, showed the least amount of variation in mechanical property measurements but also the largest distribution of maximum shear stress at which initial yielding occurred. Its high degree of acuity, however, was more prone to induce fracture at higher loads. The Knoop tip was shown to be suitable for average measurements, but also for elucidation of certain anisotropic features. A distinctly higher perceived hardness at 45° was measured with the Knoop tip, indicating less dislocation motion in that direction also observed in this work via scanning probe microscopy. Lastly, the commonly used Berkovich tip was a good compromise whereby it provided a representative volume element describing the average behavior of the material. These results can be utilized to target desired anisotropic behavior in a wider range of molecular crystals, as well as to inform theoretical considerations for dislocation mediated plasticity in PETN. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

18 pages, 2968 KiB  
Article
Research on the Mechanical and Photoelectric Properties Regulation of the New-Type Ceramic Material Ta2AlC
by Zhongzheng Zhang, Chunhong Zhang, Xinmao Qin and Wanjun Yan
Crystals 2025, 15(4), 309; https://doi.org/10.3390/cryst15040309 - 26 Mar 2025
Viewed by 221
Abstract
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation [...] Read more.
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation of the mechanical and photoelectric properties of Ta2AlC through doping using the first-principles pseudopotential plane-wave method. We specifically calculated the geometric structure, mechanical properties, electronic structure, Mulliken population analysis, and optical properties of Ta2AlC doped with V, Ga, or Si. The results indicate that doping induces significant changes in the structural parameters of Ta2AlC. By applying the Born’s criterion as the standard for mechanical stability, we have calculated that the structures of Ta2AlC, both before and after doping, are stable. The mechanical property calculations revealed that V and Si doping weaken the material’s resistance to deformation while enhancing its plasticity. In contrast, Ga doping increases the material’s resistance to lateral deformation and brittleness. Doping also increases the anisotropy of Ta2AlC. Electronic structure calculations confirmed that Ta2AlC is a conductor with excellent electrical conductivity, which is not diminished by doping. The symmetric distribution of spin-up and spin-down electronic state densities indicates that the Ta2AlC system remains non-magnetic after doping. The partial density of states diagrams successfully elucidated the influence of dopant atoms on the band structure and electronic state density. Mulliken population analysis revealed that V and Ga doping enhance the covalent interactions between C-Ta and Al-Ta atoms, whereas Si doping weakens these interactions. Optical property calculations showed that V and Si doping significantly enhance the electromagnetic energy storage capacity and dielectric loss of Ta2AlC, while Ga doping has minimal effect. The reflectivity of doped and undoped Ta2AlC reaches over 90% in the ultraviolet region, indicating its potential as an anti-ultraviolet coating material. In the visible light region, both doped and undoped Ta2AlC exhibit a similar metallic gray appearance, suggesting its potential as a temperature control coating material. The light loss of Ta2AlC is limited to a narrow energy range, indicating that doping does not affect its use as a light storage material. These results demonstrate that different dopants can effectively modulate the mechanical and photoelectric properties of Ta2AlC. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

Back to TopTop