Synthesis and Characterization of Oxide Nanoparticles

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Inorganic Crystalline Materials".

Deadline for manuscript submissions: 15 September 2025 | Viewed by 5224

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Mechanics and Technology, National University of Science and Technology POLITEHNICA Bucharest - Pitești University Centre, Targu din Vale, Romania
Interests: oxide nanoparticles elaboration and characterization; influence of nanometric scale on properties; applications of nanostructured particles

E-Mail Website
Guest Editor
Advanced and Nanostructured Materials Laboratory, National R&D Institute for Non-Ferrous and Rare Metals, 102 Biruintei Bv., 077145 Pantelimon, Romania
Interests: nanostructured materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will focus on the fundamental and applied aspects of oxide nanoparticles, with a specific emphasis on synthesis and characterization techniques. The development of novel and sustainable methods for synthesizing oxide nanoparticles with a controlled size, morphology, composition, and surface properties turns out to be important for their potential applications in various fields, such as catalysis, energy conversion and storage (batteries, solar cells), environmental remediation, biomedicine and drug delivery, sensors, electronics, and optoelectronics.
By focusing on both fundamental and applied research, this journal aims to bridge the gap between synthesis, characterization, and the development of novel functional oxide nanomaterials.

Dr. Adriana-Gabriela Schiopu
Dr. Laura Madalina Cursaru
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oxide nanoparticles elaboration
  • emerging nanostructured materials
  • morphostructural characterization of nanoparticles
  • optical applications of nanoparticles
  • nanostructured thin films
  • antibacterial properties

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 5708 KiB  
Article
Boosting the Optical Activity of Titanium Oxide Through Conversion from Nanoplates to Nanotubes and Nanoparticle-Supported Nanolayers
by Adil Alshoaibi
Crystals 2025, 15(2), 187; https://doi.org/10.3390/cryst15020187 - 16 Feb 2025
Viewed by 480
Abstract
The nano-architecture of titanium oxide is a key element of a wide range of applications, mainly optical and catalytic activities. Therefore, the current study focuses on engineering and designing three interesting nanostructures of titanium oxides: nanoplates, nanotubes, and nanoparticle-supported nanolayers. The nanoplates of [...] Read more.
The nano-architecture of titanium oxide is a key element of a wide range of applications, mainly optical and catalytic activities. Therefore, the current study focuses on engineering and designing three interesting nanostructures of titanium oxides: nanoplates, nanotubes, and nanoparticle-supported nanolayers. The nanoplates of titanium oxides were prepared and confirmed by TEM images, X-ray diffraction, and EDX analysis. These nanoplates have an anatase phase, with the distance across the corners in the range of 15 nm. These nanoplates were modified and developed through a rolling process with sodium doping to generate the Na-doped TiO2 nanotubes. These nanotubes were observed by TEM images and X-ray diffraction. In addition, the doping process of titanium oxides with sodium was confirmed by EDX analysis. A novel nano-architecture of titanium oxide was designed by supporting titanium oxide nanoparticles over Zn/Al nanolayers. The optical properties and activity of titanium oxides with the different morphologies indicated that titanium oxides became a highly photo-active photocatalyst after conversion to nanotubes. This finding was observed through the reduction in the band gap energy to 2.7 eV. Additionally, after 37 min of exposure to UV light, the titanium oxide nanotubes totally broke down and transformed the green dye of NGB into carbon dioxide and water. Furthermore, the kinetic analysis verified that the green dyes’ degradation was expedited by the high activity of nanotubes. Ultimately, based on these findings, it was possible to design an efficient photocatalyst for water purification by converting nanoplates into nanotubes, doping titanium sites with sodium ions, and creating new active sites for titanium oxides through defect-induced super radical formation. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

19 pages, 4523 KiB  
Article
Cr3+ Doping Effects on Structural, Optical, and Morphological Characteristics of BaTiO3 Nanoparticles and Their Bioactive Behavior
by Efracio Mamani Flores, Bertha Silvana Vera Barrios, Julio César Huillca Huillca, Jesús Alfredo Chacaltana García, Carlos Armando Polo Bravo, Henry Edgardo Nina Mendoza, Alberto Bacilio Quispe Cohaila, Francisco Gamarra Gómez, Rocío María Tamayo Calderón, Gabriela de Lourdes Fora Quispe and Elisban Juani Sacari Sacari
Crystals 2024, 14(11), 998; https://doi.org/10.3390/cryst14110998 - 19 Nov 2024
Cited by 1 | Viewed by 1226
Abstract
This study investigates the effects of chromium (Cr3+) doping on BaTiO3 nanoparticles synthesized via the sol–gel route. X-ray diffraction confirms a Cr-induced cubic-to-tetragonal phase transition, with lattice parameters and crystallite size varying systematically with Cr3+ content. UV–visible spectroscopy reveals [...] Read more.
This study investigates the effects of chromium (Cr3+) doping on BaTiO3 nanoparticles synthesized via the sol–gel route. X-ray diffraction confirms a Cr-induced cubic-to-tetragonal phase transition, with lattice parameters and crystallite size varying systematically with Cr3+ content. UV–visible spectroscopy reveals a monotonic decrease in bandgap energy from 3.168 eV (pure BaTiO3) to 2.604 eV (5% Cr3+-doped BaTiO3). Raman and FTIR spectroscopy elucidate structural distortions and vibrational mode alterations caused by Cr3+ incorporation. Transmission electron microscopy and energy-dispersive X-ray spectroscopy verify nanoscale morphology and successful Cr3+ doping (up to 1.64 atom%). Antioxidant activity, evaluated using the DPPH assay, shows stable radical scavenging for pure BaTiO3 (40.70–43.33%), with decreased activity at higher Cr3+ doping levels. Antibacterial efficacy against Escherichia coli peaks at 0.5% Cr3+ doping (10.569 mm inhibition zone at 1.5 mg/mL), decreasing at higher concentrations. This study demonstrates the tunability of structural, optical, and bioactive properties in Cr3+-doped BaTiO3 nanoparticles, highlighting their potential as multifunctional materials for electronics, photocatalysis, and biomedical applications. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 2118 KiB  
Review
Tailoring the Synthesis Method of Metal Oxide Nanoparticles for Desired Properties
by Adriana-Gabriela Schiopu, Daniela Monica Iordache, Mihai Oproescu, Laura Mădălina Cursaru and Adriana-Miruna Ioța
Crystals 2024, 14(10), 899; https://doi.org/10.3390/cryst14100899 - 17 Oct 2024
Cited by 2 | Viewed by 3017
Abstract
Metal oxide nanoparticles (MONs) are particles with at least one dimension in the nanoscale range (1–100 nm). Their unique properties, significantly different from their bulk counterparts, make them promising materials for a wide range of applications in fields such as medicine, electronics, catalysis, [...] Read more.
Metal oxide nanoparticles (MONs) are particles with at least one dimension in the nanoscale range (1–100 nm). Their unique properties, significantly different from their bulk counterparts, make them promising materials for a wide range of applications in fields such as medicine, electronics, catalysis, environmental remediation, and energy storage. The precise control of MONs’ properties, including size, shape, composition, crystallinity, and surface chemistry, is significant for optimizing their performance. This study aims to investigate the characteristics of synthesis methods of MONs. Correlation between synthesis parameters and properties highlights that creating nanomaterials with defined and controlled dimensions is a complex task that requires a deep understanding of various factors. Also, this study presents a model with adaptive parameters for synthesis conditions to acquire desired nanometric scale for particles size, which represents an essential task. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

Back to TopTop