Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

11 pages, 1698 KiB  
Article
Occurrence of Microplastic Pollution at Oyster Reefs and Other Coastal Sites in the Mississippi Sound, USA: Impacts of Freshwater Inflows from Flooding
by Austin Scircle, James V. Cizdziel, Louis Tisinger, Tarun Anumol and Darren Robey
Toxics 2020, 8(2), 35; https://doi.org/10.3390/toxics8020035 - 15 May 2020
Cited by 85 | Viewed by 7868
Abstract
Much of the seafood that humans consume comes from estuaries and coastal areas where microplastics (MPs) accumulate, due in part to continual input and degradation of plastic litter from rivers and runoff. As filter feeders, oysters (Crassostrea virginica) are especially vulnerable [...] Read more.
Much of the seafood that humans consume comes from estuaries and coastal areas where microplastics (MPs) accumulate, due in part to continual input and degradation of plastic litter from rivers and runoff. As filter feeders, oysters (Crassostrea virginica) are especially vulnerable to MP pollution. In this study, we assessed MP pollution in water at oyster reefs along the Mississippi Gulf Coast when: (1) historic flooding of the Mississippi River caused the Bonnet Carré Spillway to remain open for a record period of time causing major freshwater intrusion to the area and deleterious impacts on the species and (2) the spillway was closed, and normal salinity conditions resumed. Microplastics (~25 µm–5 mm) were isolated using a single-pot method, preparing samples in the same vessel (Mason jars) used for their collection right up until the MPs were transferred onto filters for analyses. The MPs were quantified using Nile Red fluorescence detection and identified using laser direct infrared (LDIR) analysis. Concentrations ranged from ~12 to 381 particles/L and tended to decrease at sites impacted by major freshwater intrusion. With the spillway open, average MP concentrations were positively correlated with salinity (r = 0.87, p = 0.05) for sites with three or more samples examined. However, the dilution effect on MP abundances was temporary, and oyster yields suffered from the extended periods of lower salinity. There were no significant changes in the relative distribution of MPs during freshwater intrusions; most of the MPs (>50%) were in the lower size fraction (~25–90 µm) and consisted mostly of fragments (~84%), followed by fibers (~11%) and beads (~5%). The most prevalent plastic was polyester, followed by acrylates/polyurethanes, polyamide, polypropylene, polyethylene, and polyacetal. Overall, this work provides much-needed empirical data on the abundances, morphologies, and types of MPs that oysters are exposed to in the Mississippi Sound, although how much of these MPs are ingested and their impacts on the organisms deserves further scrutiny. This paper is believed to be the first major application of LDIR to the analysis of MPs in natural waters. Full article
(This article belongs to the Special Issue Prevalence, Fate and Effects of Plastic in Freshwater Environments)
Show Figures

Figure 1

12 pages, 235 KiB  
Article
Chemical Constituents Involved in E-Cigarette, or Vaping Product Use-Associated Lung Injury (EVALI)
by Thivanka Muthumalage, Michelle R. Friedman, Matthew D. McGraw, Gary Ginsberg, Alan E. Friedman and Irfan Rahman
Toxics 2020, 8(2), 25; https://doi.org/10.3390/toxics8020025 - 3 Apr 2020
Cited by 48 | Viewed by 9485
Abstract
The Centers for Disease Control declared e-cigarette, or vaping, product use-associated lung injury (EVALI) a national outbreak due to the high incidence of emergency department admissions and deaths. We have identified chemical constituents in e-cig counterfeit cartridges and compared these to medical-grade and [...] Read more.
The Centers for Disease Control declared e-cigarette, or vaping, product use-associated lung injury (EVALI) a national outbreak due to the high incidence of emergency department admissions and deaths. We have identified chemical constituents in e-cig counterfeit cartridges and compared these to medical-grade and CBD containing cartridges. Apart from vitamin E acetate (VEA) and tetrahydrocannabinol (THC), other potential toxicants were identified including solvent-derived hydrocarbons, silicon conjugated compounds, various terpenes, pesticides/plasticizers/polycaprolactones, and metals. This study provides additional insights into the chemicals associated with EVALI cartridges and thus may contribute to the underlying disease mechanism of acute lung injury. Full article
(This article belongs to the Special Issue Current Knowledge of E-cigarettes and Heated Tobacco Products)
16 pages, 1914 KiB  
Article
Remediation of Cr(VI)-Contaminated Soil by Nano-Zero-Valent Iron in Combination with Biochar or Humic Acid and the Consequences for Plant Performance
by Yuhuan Sun, Fangyuan Zheng, Wenjie Wang, Shuwu Zhang and Fayuan Wang
Toxics 2020, 8(2), 26; https://doi.org/10.3390/toxics8020026 - 3 Apr 2020
Cited by 35 | Viewed by 4520
Abstract
Nano-scale zero-valent iron (nZVI) is among the most common nanoparticles widely used for the treatment of various environmental contaminants. However, little is known about the combined effects of nano-zero-valent iron (nZVI) and other soil amendments on soil remediation and plant performance. For the [...] Read more.
Nano-scale zero-valent iron (nZVI) is among the most common nanoparticles widely used for the treatment of various environmental contaminants. However, little is known about the combined effects of nano-zero-valent iron (nZVI) and other soil amendments on soil remediation and plant performance. For the first time, we studied the remediation of Cr(VI)-contaminated soil using bare nZVI (B-nZVI) and starch-supported nZVI (S-nZVI) in combination with either biochar (BC) or humic acid (HA), and the consequent effects on plant growth and Cr accumulation. Both S-nZVI and B-nZVI decreased the contents of Cr(VI) and available Cr in soil, but increased available Fe content, with S-nZVI generally showing more pronounced effects at a higher dose (1000 mg/kg). B-nZVI exerted no inhibition and even stimulation on plant growth, but 1000 mg/kg S-nZVI produced significant phytotoxicity, resulting in decreased plant growth, low chlorophyll content in leaves, and excessive accumulation of Fe in roots. Each nZVI decreased shoot and root Cr concentrations. BC and HA produced synergistic effects with nZVI on Cr(VI) removal from soil, but HA decreased soil pH and increased the availability of Cr and Fe, implying a potential environmental risk. Addition of BC or HA did not alter the effects of either nZVI on plant growth. In conclusion, combined application of 100 mg/kg nZVI and BC could be an ideal strategy for the remediation of soil contaminated with Cr(VI), whereas high-dose S-nZVI and HA are not recommended in the remediation of agricultural soils for crop production or in the phytostabilization of Cr(VI). Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

13 pages, 1666 KiB  
Article
‘The Plastic Nile’: First Evidence of Microplastic Contamination in Fish from the Nile River (Cairo, Egypt)
by Farhan R. Khan, Yvonne Shashoua, Alex Crawford, Anna Drury, Kevin Sheppard, Kenneth Stewart and Toby Sculthorp
Toxics 2020, 8(2), 22; https://doi.org/10.3390/toxics8020022 - 25 Mar 2020
Cited by 59 | Viewed by 10640
Abstract
The presence of microplastics (MPs) in the world’s longest river, the Nile River, has yet to be reported. This small-scale study aimed to provide the first information about MPs in the Nile River by sampling the digestive tracts of two fish species, the [...] Read more.
The presence of microplastics (MPs) in the world’s longest river, the Nile River, has yet to be reported. This small-scale study aimed to provide the first information about MPs in the Nile River by sampling the digestive tracts of two fish species, the Nile tilapia (Oreochromis niloticus, n = 29) and catfish (Bagrus bayad, n = 14). Fish were purchased from local sellers in Cairo, and then their gastrointestinal tracts were dissected and examined for MPs. Over 75% of the fish sampled contained MPs in their digestive tract (MP prevalence of 75.9% and 78.6% for Nile tilapia and catfish, respectively). The most abundant MP type was fibers (65%), the next most abundant type was films (26.5%), and the remaining MPs were fragments. Polyethylene (PE), polyethylene terephthalate (PET) and polypropylene (PP) were all non-destructively identified by attenuated total reflectance Fourier transform infrared spectroscopy. A comparison with similar studies from marine and freshwater environments shows that this high level of MP ingestion is rarely found and that fish sampled from the Nile River in Cairo are potentially among the most in danger of consuming MPs worldwide. Further research needs to be conducted, but, in order to mitigate microplastic pollution in the Nile River, we must act now. Full article
(This article belongs to the Special Issue Prevalence, Fate and Effects of Plastic in Freshwater Environments)
Show Figures

Figure 1

14 pages, 530 KiB  
Article
A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead
by Soisungwan Satarug, Glenda C. Gobe, Pailin Ujjin and David A. Vesey
Toxics 2020, 8(1), 18; https://doi.org/10.3390/toxics8010018 - 2 Mar 2020
Cited by 26 | Viewed by 4292
Abstract
Environmental exposure to moderate-to-high levels of cadmium (Cd) and lead (Pb) is associated with nephrotoxicity. In comparison, the health impacts of chronic low-level exposure to Cd and Pb remain controversial. The aim of this study was to therefore evaluate kidney dysfunction associated with [...] Read more.
Environmental exposure to moderate-to-high levels of cadmium (Cd) and lead (Pb) is associated with nephrotoxicity. In comparison, the health impacts of chronic low-level exposure to Cd and Pb remain controversial. The aim of this study was to therefore evaluate kidney dysfunction associated with chronic low-level exposure to Cd and Pb in a population of residents in Bangkok, Thailand. The mean age and the estimated glomerular filtration rate (eGFR) for 392 participants (195 men and 197 women) were 34.9 years and 104 mL/min/1.73 m2, respectively, while the geometric mean concentrations of urinary Cd and Pb were 0.25 μg/L (0.45 μg/g of creatinine) and 0.89 μg/L (1.52 μg/g of creatinine), respectively. In a multivariable regression analysis, the eGFR varied inversely with blood urea nitrogen in both men (β = −0.125, p = 0.044) and women (β = −0.170, p = 0.008), while inverse associations of the eGFR with urinary Cd (β = −0.132, p = 0.043) and urinary Pb (β = −0.130, p = 0.044) were seen only in women. An increased urinary level of Cd to the median level of 0.38 μg/L (0.44 μg/g of creatinine) was associated with a decrease in the eGFR by 4.94 mL/min/1.73 m2 (p = 0.011). The prevalence odds of a reduced eGFR rose 2.5-, 2.9- and 2.3-fold in the urinary Cd quartile 3 (p = 0.013), the urinary Cd quartile 4 (p = 0.008), and the urinary Pb quartile 4 (p = 0.039), respectively. This study suggests that chronic exposure to low-level Cd is associated with a decline in kidney function and that women may be more susceptible than men to nephrotoxicity due to an elevated intake of Cd and Pb. Full article
(This article belongs to the Special Issue Toxic Metals, Chronic Diseases and Related Cancers)
Show Figures

Figure 1

10 pages, 571 KiB  
Article
Biomonitoring of Trace Elements in Subjects Living Near a Hazardous Waste Incinerator: Concentrations in Autopsy Tissues
by Francisco García, Montse Marquès, Eneko Barbería, Pilar Torralba, Inés Landin, Carlos Laguna, José L. Domingo and Martí Nadal
Toxics 2020, 8(1), 11; https://doi.org/10.3390/toxics8010011 - 11 Feb 2020
Cited by 10 | Viewed by 2587
Abstract
The only hazardous waste incinerator (HWI) in Spain started to operate in 1999. Twenty years later, the levels of 11 trace elements (As, Be, Cd, Cr, Hg, Mn, Ni, Pb, Sn, Tl and V) were analyzed in five different autopsy tissues (kidney, liver, [...] Read more.
The only hazardous waste incinerator (HWI) in Spain started to operate in 1999. Twenty years later, the levels of 11 trace elements (As, Be, Cd, Cr, Hg, Mn, Ni, Pb, Sn, Tl and V) were analyzed in five different autopsy tissues (kidney, liver, brain, bone and lung) from 20 individuals who had been living near the facility. In 2019, As, Be, Tl and V were not detected in any of the analyzed tissues, while Hg could be only quantified in very few samples. The highest levels of Cd and Pb were found in kidney and bone, respectively, while those of Mn were observed in liver and kidney. In turn, the mean concentrations of Cr and Sn were very similar in all tissues. A consistent temporal trend (1998–2019) was only found for Cr and Pb. On the one hand, the mean Cr concentrations in kidney and bone have increased progressively since 1998. In contrast, the mean levels of Pb decreased significantly over time, probably due to ban of Pb as gasoline additive. The data global analysis indicates that the emissions of trace elements by the HWI have not increased the exposure and/or accumulation of these elements in individuals living near the facility. Full article
(This article belongs to the Special Issue Toxic Metals, Chronic Diseases and Related Cancers)
Show Figures

Figure 1

10 pages, 2305 KiB  
Article
Enchytraeus crypticus Avoid Soil Spiked with Microplastic
by Stephan Pflugmacher, Johanna H. Huttunen, Marya-Anne von Wolff, Olli-Pekka Penttinen, Yong Jun Kim, Sanghun Kim, Simon M. Mitrovic and Maranda Esterhuizen-Londt
Toxics 2020, 8(1), 10; https://doi.org/10.3390/toxics8010010 - 10 Feb 2020
Cited by 29 | Viewed by 3898
Abstract
Microplastics (MPs) of varying sizes are widespread pollutants in our environment. The general opinion is that the smaller the size, the more dangerous the MPs are due to enhanced uptake possibilities. It would be of considerably ecological significance to understand the response of [...] Read more.
Microplastics (MPs) of varying sizes are widespread pollutants in our environment. The general opinion is that the smaller the size, the more dangerous the MPs are due to enhanced uptake possibilities. It would be of considerably ecological significance to understand the response of biota to microplastic contamination both physically and physiologically. Here, we report on an area choice experiment (avoidance test) using Enchytraeus crypticus, in which we mixed different amounts of high-density polyethylene microplastic particles into the soil. In all experimental scenarios, more Enchytraeids moved to the unspiked sections or chose a lower MP-concentration. Worms in contact with MP exhibited an enhanced oxidative stress status, measured as the induced activity of the antioxidative enzymes catalase and glutathione S-transferase. As plastic polymers per se are nontoxic, the exposure time employed was too short for chemicals to leach from the microplastic, and as the microplastic particles used in these experiments were too large (4 mm) to be consumed by the Enchytraeids, the likely cause for the avoidance and oxidative stress could be linked to altered soil properties. Full article
(This article belongs to the Special Issue Prevalence, Fate and Effects of Plastic in Freshwater Environments)
Show Figures

Figure 1

19 pages, 1583 KiB  
Article
Analysis of Cannabinoid-Containing Fluids in Illicit Vaping Cartridges Recovered from Pulmonary Injury Patients: Identification of Vitamin E Acetate as a Major Diluent
by Bryan Duffy, Lingyun Li, Shijun Lu, Lorie Durocher, Mark Dittmar, Emily Delaney-Baldwin, Deepika Panawennage, David LeMaster, Kristen Navarette and David Spink
Toxics 2020, 8(1), 8; https://doi.org/10.3390/toxics8010008 - 24 Jan 2020
Cited by 76 | Viewed by 16669
Abstract
Beginning in June of 2019, there was a marked increase in reported cases of serious pulmonary injury associated with vaping. The condition, referred to as e-cigarette or vaping product use-associated lung injury (EVALI), does not appear to involve an infectious agent; rather, a [...] Read more.
Beginning in June of 2019, there was a marked increase in reported cases of serious pulmonary injury associated with vaping. The condition, referred to as e-cigarette or vaping product use-associated lung injury (EVALI), does not appear to involve an infectious agent; rather, a chemical adulterant or contaminant in vaping fluids is suspected. In August of 2019, the Wadsworth Center began receiving vaporizer cartridges recovered from patients with EVALI for analysis. Having no a priori information of what might be in the cartridges, we employed untargeted analyses using gas chromatography-mass spectrometry and high-resolution mass spectrometry to identify components of concern. Additionally, we employed targeted analyses used for New York medical marijuana products. Here, we report on the analyses of 38 samples from the first 10 New York cases of EVALI for which we obtained cartridges. The illicit fluids had relatively low cannabinoid content, sometimes with unusual Δ9-/Δ8-tetrahydrocannabinol ratios, sometimes containing pesticides and many containing diluents. A notable diluent was α-tocopheryl acetate (vitamin E acetate; VEA), which was found in 64% of the cannabinoid-containing fluids. To investigate potential sources of the VEA, we analyzed six commercial cannabis-oil diluents/thickeners. Three were found to be >95% VEA, two were found to be primarily squalane, and one was primarily α-bisabolol. The cause(s) of EVALI is unknown. VEA and squalane are components of some personal care products; however, there is growing concern that vaping large amounts of these compounds is not safe. Full article
(This article belongs to the Special Issue Current Knowledge of E-cigarettes and Heated Tobacco Products)
Show Figures

Graphical abstract

14 pages, 853 KiB  
Article
Releases of Fire-Derived Contaminants from Polymer Pipes Made of Polyvinyl Chloride
by Ngee Sing Chong, Saidi Abdulramoni, Dwight Patterson and Heather Brown
Toxics 2019, 7(4), 57; https://doi.org/10.3390/toxics7040057 - 11 Nov 2019
Cited by 24 | Viewed by 6453
Abstract
In order to assess the human exposure risks from the release of contaminants from water pipes made of polyvinyl chloride (PVC), experiments were carried out by subjecting the PVC pipe material to burning and leaching conditions followed by analysis of the emission and [...] Read more.
In order to assess the human exposure risks from the release of contaminants from water pipes made of polyvinyl chloride (PVC), experiments were carried out by subjecting the PVC pipe material to burning and leaching conditions followed by analysis of the emission and leachate samples. The emissions of burning pipes were analyzed by both infrared spectrometry and gas chromatography-mass spectrometry (GC-MS). The emission test results indicate the presence of chlorinated components including chlorine dioxide, methyl chloride, methylene chloride, allyl chloride, vinyl chloride, ethyl chloride, 1-chlorobutane, tetrachloroethylene, chlorobenzene, and hydrogen chloride were detected in the emissions of burning PVC pipes. Furthermore, the concentrations of benzene, 1,3-butadiene, methyl methacrylate, carbon monoxide, acrolein, and formaldehyde were found at levels capable of affecting human health adversely. The analysis of PVC pipe leachates using GC-MS shows that there are 40–60 tentatively identified compounds, mostly long-chain hydrocarbons such as tetradecane, hexadecane, octadecane, and docosane, were released when the burned PVC materials were soaked in deionized water for one week. Quantitative analysis shows that 2-butoxyethanol, 2-ethyl-1-hexanol, and diethyl phthalate were found in the burned PVC polymer at the average levels of 2.7, 14.0, and 3.1 micrograms per gram (μg/g) of pipe material. This study has significant implications for understanding the benzene contamination of drinking water in the aftermath of wildfires that burned polymer pipes in California. Full article
(This article belongs to the Section Toxicology)
Show Figures

Figure 1

12 pages, 959 KiB  
Article
Biomonitoring of Trace Elements in Hair of Schoolchildren Living Near a Hazardous Waste Incinerator—A 20 Years Follow-Up
by Roser Esplugas, Montse Mari, Montse Marquès, Marta Schuhmacher, José L. Domingo and Martí Nadal
Toxics 2019, 7(4), 52; https://doi.org/10.3390/toxics7040052 - 1 Oct 2019
Cited by 26 | Viewed by 3683
Abstract
Since 1998, a monitoring program is periodically performed to assess the environmental and human health impact of air chemicals potentially emitted by a hazardous waste incinerator (HWI) located in Constantí (Catalonia, Spain). In 2017, samples of hair were collected from 94 schoolchildren (aged [...] Read more.
Since 1998, a monitoring program is periodically performed to assess the environmental and human health impact of air chemicals potentially emitted by a hazardous waste incinerator (HWI) located in Constantí (Catalonia, Spain). In 2017, samples of hair were collected from 94 schoolchildren (aged 10–13 years) living nearby and the levels of 11 trace elements (As, Be, Cd, Cr, Hg, Mn, Ni, Pb, Sn, Tl and V) were determined. The concentrations showed the following descending order: Pb > Hg > Ni > Sn > Mn > Cr. In turn, As, Be and Tl were not detected, while Cd and V were found only in a few samples. Some metal levels were significantly, positively correlated. Some significant differences were also noticed according to the gender and the specific zone of residence. Finally, the levels of trace elements showed fluctuations through time. Cr and Pb showed a significant decrease in comparison to the concentrations obtained in the baseline study (1998). According to the current results, metal emissions from the HWI are not relevant in terms of human health impact since their levels were similar and even lower than those reported in other contaminated areas. Full article
(This article belongs to the Special Issue Toxic Metals, Chronic Diseases and Related Cancers)
Show Figures

Figure 1

12 pages, 2485 KiB  
Article
Development, Cytotoxicity and Eye Irritation Profile of a New Sunscreen Formulation Based on Benzophenone-3-poly(ε-caprolactone) Nanocapsules
by Thallysson Carvalho Barbosa, Lívia Éven Dias Nascimento, Cristiane Bani, Taline Almeida, Marcelo Nery, Rafael Silva Santos, Luana Renyelle de Oliveira Menezes, Aleksandra Zielińska, Ana Rita Fernandes, Juliana Cordeiro Cardoso, Alessandro Jäger, Eliezer Jäger, Elena Sanchez-Lopez, Luciana Nalone, Eliana Barbosa Souto and Patrícia Severino
Toxics 2019, 7(4), 51; https://doi.org/10.3390/toxics7040051 - 22 Sep 2019
Cited by 22 | Viewed by 4914
Abstract
The objective of this work was to characterize the toxicological profile of a newly developed sunscreen formulation based on polymeric nanocapsules (NCs) loading benzophenone-3 (BZP3). NCs composed of poly(ε-caprolactone) carrot oil and Pluronic® F68 were produced by emulsification-diffusion method. Their mean particle [...] Read more.
The objective of this work was to characterize the toxicological profile of a newly developed sunscreen formulation based on polymeric nanocapsules (NCs) loading benzophenone-3 (BZP3). NCs composed of poly(ε-caprolactone) carrot oil and Pluronic® F68 were produced by emulsification-diffusion method. Their mean particle size (Z-Ave) ranged from 280 to 420 nm, polydispersity index (PDI) was below 0.37, while zeta potential (ZP) reached about |+11 mV|. No cytotoxic effects were observed in L929 fibroblast cell line for the blank (i.e., non-loaded) NCs and BZP3-loaded NCs (BZP3-NCs). The semi-solid sunscreen formulation was stable over time (centrifugation testing) and exhibited non-Newtonian pseudoplastic behavior, which is typical of products for topical application onto the skin. The sun protection factor (SPF) value reached 8.84, when incorporating BZP3-NCs (SPF of 8.64) into the semi-solid formulation. A synergistic effect was also observed when combining the formulation ingredients of nanocapsules, i.e., SPF of carrot oil was 6.82, blank NCs was 6.84, and BZP3-loaded NCs was 8.64. From the hen’s egg-chorioallantoic membrane test (HET-CAM) test, the non-irritation profile of the developed formulations could also be confirmed. The obtained results show a promising use of poly(ε-caprolactone) nanocapsules to be loaded with lipophilic sunscreens as benzophenone-3. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

11 pages, 1821 KiB  
Article
Experimental Study on Fluorine Release from Photovoltaic Backsheet Materials Containing PVF and PVDF during Pyrolysis and Incineration in a Technical Lab-Scale Reactor at Various Temperatures
by Philipp Danz, Venkat Aryan, Edda Möhle and Nicole Nowara
Toxics 2019, 7(3), 47; https://doi.org/10.3390/toxics7030047 - 18 Sep 2019
Cited by 35 | Viewed by 4490
Abstract
With a sharp increase in photovoltaic (PV) installations across the world, PV waste is now a relatively new addition to the e-waste category. From 45,000 tonnes in 2016, the PV waste stream is rapidly increasing and is projected to reach 60 million tonnes [...] Read more.
With a sharp increase in photovoltaic (PV) installations across the world, PV waste is now a relatively new addition to the e-waste category. From 45,000 tonnes in 2016, the PV waste stream is rapidly increasing and is projected to reach 60 million tonnes by 2050. Backsheets are composite structures made from several material layers of polymer, adhesive, and primer. Widely used PV backsheets can be classified into three core types: (a) KPK (Kynar®/polyethylene terephthalate (PET)/Kynar®), (b) TPT (Tedlar®/PET/Tedlar®), and (c) PPE (PET/PET/ethylvinylacetate). Kynar® and Tedlar® are based on polyvinylidene fluoride (PVDF) and polyvinyl fluoride (PVF), respectively. PPE backsheets are fluorine-free composites made primarily from PET. With increasing focus on the end-of-life (EoL) handling of PV waste, the handling of fluoropolymers, which is largely unexplored, requires closer examination to avoid environmental damage. The aim of this study was to obtain information on the fluorine released from PV backsheet materials into the gas phase during combustion and pyrolysis as EoL pathways. Therefore, several experimental trials were conducted to measure fluorine transfer into the gas phase at 300 °C, 400 °C, 500 °C, and 900 °C (for pyrolysis) and at 750 °C, 850 °C, and 950 °C (for incineration). Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

8 pages, 1704 KiB  
Article
Real-Time Assessment of E-Cigarettes and Conventional Cigarettes Emissions: Aerosol Size Distributions, Mass and Number Concentrations
by Spyros Lampos, Evangelia Kostenidou, Konstantinos Farsalinos, Zoi Zagoriti, Aristeidis Ntoukas, Konstantinos Dalamarinis, Panagiotis Savranakis, George Lagoumintzis and Konstantinos Poulas
Toxics 2019, 7(3), 45; https://doi.org/10.3390/toxics7030045 - 30 Aug 2019
Cited by 21 | Viewed by 7434
Abstract
Cigarette smoke is a complex mixture of chemical compounds which are emitted during the processes of tobacco combustion. Electronic cigarettes (e-cigs) are expected to produce less harmful compounds due to the absence of tobacco leaf combustion. However, potential risks of the passive exposure [...] Read more.
Cigarette smoke is a complex mixture of chemical compounds which are emitted during the processes of tobacco combustion. Electronic cigarettes (e-cigs) are expected to produce less harmful compounds due to the absence of tobacco leaf combustion. However, potential risks of the passive exposure to the aerosol exhaled by e-cig users have been raised in the last decade. In this study, the aerosols with diameter less than 1 μm (PM1) produced by vaping of various e-cig liquids were compared to those generated by smoking conventional cigarettes in real time. The mass and number concentration along with the number size distribution were measured in a closed room of 35 m3 volume. Our results showed that aerosols emitted from e-cig liquids had a different profile compared to those from conventional cigarettes. Although e-cigs initially produced higher particle mass and number concentrations, their emissions had much shorter lifetime of approximately 10–20 s, in comparison with the conventional and hand-rolling cigarette particulate emissions which had a dissipation time of approximately 1.4 h in a 35 m3 room. E-cigs emitted aerosols which volatilized rapidly, as they probably consisted almost only of propylene glycol and/or vegetable glycerin. Full article
(This article belongs to the Special Issue Current Knowledge of E-cigarettes and Heated Tobacco Products)
Show Figures

Figure 1

23 pages, 3909 KiB  
Article
Health Impact Assessment of Sulfolane on Embryonic Development of Zebrafish (Danio rerio)
by Soham M. Shah, Michael Wahba, Linlong Yu, Gopal Achari and Hamid R. Habibi
Toxics 2019, 7(3), 42; https://doi.org/10.3390/toxics7030042 - 23 Aug 2019
Cited by 15 | Viewed by 4134
Abstract
Sulfolane is a widely used polar, aprotic solvent that has been detected by chemical analysis in groundwater and creeks around the world including Alberta, Canada (800 µg/mL), Louisiana, USA (2900 µg/mL) and Brisbane, Australia (4344 µg/mL). Previous research provided information on adverse effects [...] Read more.
Sulfolane is a widely used polar, aprotic solvent that has been detected by chemical analysis in groundwater and creeks around the world including Alberta, Canada (800 µg/mL), Louisiana, USA (2900 µg/mL) and Brisbane, Australia (4344 µg/mL). Previous research provided information on adverse effects of sulfolane on mammals, but relatively little information is available on aquatic organisms. This study tested the effects of sulfolane (0–5000 µg/mL) on early development of zebrafish larvae, using various morphometric (survival, hatching, yolk sac and pericardial oedema, haemorrhaging, spinal malformations, swim bladder inflation), growth (larval length, eye volume, yolk sac utilisation), behavioural (touch response, locomotor activity and transcript abundance parameters (ahr1a, cyp1a, thraa, dio1, dio2, dio3, 11βhsd2, gr, aqp3a, cyp19a1b, ddc, gria2b and hsp70) for 120 h. Embryos were chronically exposed to sulfolane throughout the experimental period. For locomotor activity, however, we also investigated acute response to 2-h sulfolane treatment. Sulfolane sensitivity causing significant impairment in the observed parameters were different depending on parameters measured, including survival (concentrations greater than 800 µg/mL), morphometric and growth (800–1000 µg/mL), behaviour (500–800 µg/mL) and transcript abundance (10 µg/mL). The overall results provide novel information on the adverse health impacts of sulfolane on an aquatic vertebrate species, and an insight into developmental impairments following exposure to environmental levels of sulfolane in fish embryos. Full article
(This article belongs to the Special Issue Contaminant Effects on Zebrafish Embryos)
Show Figures

Figure 1

8 pages, 1286 KiB  
Article
Consumption of Minerals, Toxic Metals and Hydroxymethylfurfural: Analysis of Infant Foods and Formulae
by Christian Vella and Everaldo Attard
Toxics 2019, 7(2), 33; https://doi.org/10.3390/toxics7020033 - 8 Jun 2019
Cited by 19 | Viewed by 4669
Abstract
Infant foods and formulae may contain toxic substances and elements which can be neo-formed contaminants or derived from raw materials or processing. The content of minerals, toxic elements, and hydroxymethylfurfural (HMF) in infant foods and formulae were evaluated. The effect of storage temperature [...] Read more.
Infant foods and formulae may contain toxic substances and elements which can be neo-formed contaminants or derived from raw materials or processing. The content of minerals, toxic elements, and hydroxymethylfurfural (HMF) in infant foods and formulae were evaluated. The effect of storage temperature on HMF formation in infant formulae and its potential as a quality parameter was also evaluated. Prune-based foods contained the highest HMF content. HMF significantly increased when the storage temperature was elevated to 30 °C for 21 days. All trace elements were present in adequate amounts, while the concentration of nickel was higher when compared to those of other studies. The study indicates that HMF can be used as a quality indicator for product shelf-life and that the concentrations of minerals and toxic elements vary greatly due to the diverse compositions of foods and formulae. Such contaminants need to be monitored as infants represent a vulnerable group compared to adults. Full article
(This article belongs to the Special Issue Analysis of Chemical Contaminants in Food)
Show Figures

Graphical abstract

19 pages, 2816 KiB  
Article
Protective Effects of Centella asiatica on Cognitive Deficits Induced by D-gal/AlCl3 via Inhibition of Oxidative Stress and Attenuation of Acetylcholinesterase Level
by Samaila Musa Chiroma, Mohamad Taufik Hidayat Baharuldin, Che Norma Mat Taib, Zulkhairi Amom, Saravanan Jagadeesan, Mohd Ilham Adenan, Onesimus Mahdi and Mohamad Aris Mohd Moklas
Toxics 2019, 7(2), 19; https://doi.org/10.3390/toxics7020019 - 30 Mar 2019
Cited by 29 | Viewed by 5063
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with cholinergic dysfunctions and impaired redox homeostasis. The plant Centella asiatica (CA) is renowned for its nutritional benefits and herbal formulas for promoting health, enhancing cognition, and its neuroprotective effects. The present study aims to [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with cholinergic dysfunctions and impaired redox homeostasis. The plant Centella asiatica (CA) is renowned for its nutritional benefits and herbal formulas for promoting health, enhancing cognition, and its neuroprotective effects. The present study aims to investigate the protective role of CA on D-gal/AlCl3-induced cognitive deficits in rats. The rats were divided into six groups and administered with donepezil 1 mg/kg/day, CA (200, 400, and 800 mg/kg/day) and D-gal 60 mg/kg/day + AlCl3 200 mg/kg/day for 10 weeks. The ethology of the rats was evaluated by the Morris water maze test. The levels of acetylcholinesterase (AChE), phosphorylated tau (P-tau), malondialdehyde (MDA) and activities of superoxide dismutase (SOD), in the hippocampus and cerebral cortex were estimated by enzyme-linked immunosorbent assay (ELISA). Additionally, the ultrastructure of the prefrontal cortex of the rats’ was observed using transmission electron microscopy (TEM). Rats administered with D-gal/AlCl3 exhibited cognitive deficits, decreased activities of SOD, and marked increase in AChE and MDA levels. Further, prominent alterations in the ultrastructure of the prefrontal cortex were observed. Conversely, co-administration of CA with D-gal/AlCl3 improved cognitive impairment, decreased AChE levels, attenuated the oxidative stress in hippocampus and cerebral cortex, and prevented ultrastructural alteration of neurons in the prefrontal cortex. Irrespective of the dose of CA administered, the protective effects were comparable to donepezil. In conclusion, this study suggests that CA attenuated the cognitive deficits in rats by restoring cholinergic function, attenuating oxidative stress, and preventing the morphological aberrations. Full article
(This article belongs to the Special Issue Toxicity of Chemical Mixtures)
Show Figures

Figure 1

8 pages, 1575 KiB  
Article
Effects of AgNPs on the Snail Biomphalaria glabrata: Survival, Reproduction and Silver Accumulation
by Eduardo Cyrino Oliveira-Filho, Daphne Heloísa de Freitas Muniz, Esther Lima de Carvalho, Paolin Rocio Cáceres-Velez, Maria Luiza Fascineli, Ricardo Bentes Azevedo and Cesar Koppe Grisolia
Toxics 2019, 7(1), 12; https://doi.org/10.3390/toxics7010012 - 1 Mar 2019
Cited by 21 | Viewed by 3837
Abstract
Silver nanoparticles (AgNPs) are used intensively in medical and industrial applications. Environmental concerns have arisen from the potential release of this material into aquatic ecosystems. The aims of this research were to evaluate the potential accumulation of silver in the whole body of [...] Read more.
Silver nanoparticles (AgNPs) are used intensively in medical and industrial applications. Environmental concerns have arisen from the potential release of this material into aquatic ecosystems. The aims of this research were to evaluate the potential accumulation of silver in the whole body of organisms and analyze the effects of AgNPs on the survival and reproduction of the snail Biomphalaria glabrata. Results show slow acute toxicity with a 10-day LC50 of 18.57 mg/L and an effective decrease in the eggs and egg clutches per organism exposed to tested concentrations. Based on these data, the No Observed Effect Concentration (NOEC) observed was <1 mg/L for snail reproduction. For silver accumulation, we observed that uptake was faster than elimination, which was very slow and still incomplete 35 days after the end of the experiment. However, the observed accumulation was not connected with a concentration/response relationship, since the amount of silver was not equivalent to a higher reproductive effect. The data observed show that AgNPs are toxic to B. glabrata, and suggest that the snail has internal mechanisms to combat the presence of Ag in its body, ensuring survival and reduced reproduction and showing that the species seems to be a potential indicator for Ag presence in contaminated aquatic ecosystems. Full article
(This article belongs to the Special Issue Nanoparticles Toxicity and Impacts on Biodiversity)
Show Figures

Figure 1

14 pages, 1132 KiB  
Article
Trace Element Uptake by Herbaceous Plants from the Soils at a Multiple Trace Element-Contaminated Site
by Obinna Elijah Nworie, Junhao Qin and Chuxia Lin
Toxics 2019, 7(1), 3; https://doi.org/10.3390/toxics7010003 - 17 Jan 2019
Cited by 25 | Viewed by 6152
Abstract
The uptake of trace elements by wild herbaceous plants in a multiple trace element-contaminated site was investigated. The bioaccumulation factor (BF) of trace elements was markedly variable among the different plant species. On average, the BF for various trace elements was in the [...] Read more.
The uptake of trace elements by wild herbaceous plants in a multiple trace element-contaminated site was investigated. The bioaccumulation factor (BF) of trace elements was markedly variable among the different plant species. On average, the BF for various trace elements was in the following decreasing order: Zn > Cu > Mn > Ni > As > Pb > Cr. The translocation factor among the investigated plant species was also considerably variable and showed the following decreasing order: Mn > Zn > Ni > Cu > Cr > As > Pb. Several hyperaccumulating plants were identified: Artemisia vulgaris for As, Mn and Zn, Phalaris arundinacea for Mn and Ni, Heracleum sphondylium for Cr and Zn, and Bistorta officinalis for Mn and Zn. The marked accumulation of trace elements in the plant tissue suggests that the site may not be suitable for urban agricultural production. The plant tissue-borne trace elements could affect microbial activities and consequently interfere with the ecosystem functioning in the affected areas. Full article
Show Figures

Figure 1

Editorial

3 pages, 186 KiB  
Editorial
Cadmium Sources and Toxicity
by Soisungwan Satarug
Toxics 2019, 7(2), 25; https://doi.org/10.3390/toxics7020025 - 6 May 2019
Cited by 45 | Viewed by 6623
Abstract
This special issue of Toxics, Cadmium (Cd) sources and toxicity, consists of one comprehensive review [...] Full article
(This article belongs to the Special Issue Cadmium Sources and Toxicity)

Review

25 pages, 1007 KiB  
Review
Alternative Methods for Skin-Sensitization Assessment
by Dominika Gądarowska, Joanna Kalka, Anna Daniel-Wójcik and Inga Mrzyk
Toxics 2022, 10(12), 740; https://doi.org/10.3390/toxics10120740 - 29 Nov 2022
Cited by 8 | Viewed by 3190
Abstract
Skin sensitization is a term used to refer to the regulatory hazard known as allergic contact dermatitis (ACD) in humans or contact hypersensitivity in rodents, an important health endpoint considered in chemical hazard and risk assessments. Information on skin sensitization potential is required [...] Read more.
Skin sensitization is a term used to refer to the regulatory hazard known as allergic contact dermatitis (ACD) in humans or contact hypersensitivity in rodents, an important health endpoint considered in chemical hazard and risk assessments. Information on skin sensitization potential is required in various regulatory frameworks, such as the Directive of the European Parliament and the Council on Registration, Evaluation and Authorization of Chemicals (REACH). The identification of skin-sensitizing chemicals previously required the use of animal testing, which is now being replaced by alternative methods. Alternative methods in the field of skin sensitization are based on the measurement or prediction of key events (KE), i.e., (i) the molecular triggering event, i.e., the covalent binding of electrophilic substances to nucleophilic centers in skin proteins; (ii) the activation of keratinocytes; (iii) the activation of dendritic cells; (iv) the proliferation of T cells. This review article focuses on the current state of knowledge regarding the methods corresponding to each of the key events in skin sensitization and considers the latest trends in the development and modification of these methods. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

32 pages, 5946 KiB  
Review
Characterization of the Toxicological Impact of Heavy Metals on Human Health in Conjunction with Modern Analytical Methods
by Dana Claudia Filipoiu, Simona Gabriela Bungau, Laura Endres, Paul Andrei Negru, Alexa Florina Bungau, Bianca Pasca, Andrei-Flavius Radu, Alexandra Georgiana Tarce, Mihaela Alexandra Bogdan, Tapan Behl, Aurelia Cristina Nechifor, Syed Shams ul Hassan and Delia Mirela Tit
Toxics 2022, 10(12), 716; https://doi.org/10.3390/toxics10120716 - 23 Nov 2022
Cited by 23 | Viewed by 5666
Abstract
Increased environmental pollution, urbanization, and a wide variety of anthropogenic activities have led to the release of toxic pollutants into the environment, including heavy metals (HMs). It has been found that increasing concentrations of HMs lead to toxicity, mineral imbalances, and serious diseases, [...] Read more.
Increased environmental pollution, urbanization, and a wide variety of anthropogenic activities have led to the release of toxic pollutants into the environment, including heavy metals (HMs). It has been found that increasing concentrations of HMs lead to toxicity, mineral imbalances, and serious diseases, which are occurring more and more frequently. Therefore, testing has become imperative to detect these deficiencies in a timely manner. The detection of traces of HMs, especially toxic ones, in human tissues, various biological fluids, or hair is a complex, high-precision analysis that enables early diagnosis, addressing people under constant stress or exposed to a toxic environment; the test also targets people who have died in suspicious circumstances. Tissue mineral analysis (TMA) determines the concentration of toxic minerals/metals at the intracellular level and can therefore determine correlations between measured concentrations and imbalances in the body. Framing the already-published information on the topic, this review aimed to explore the toxicity of HMs to human health, the harmful effects of their accumulation, the advantages vs. the disadvantages of choosing different biological fluids/tissues/organs necessary for the quantitative measurement of HM in the human body, as well as the choice of the optimal method, correlated with the purpose of the analysis. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

42 pages, 2669 KiB  
Review
Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder
by Claudia Gundacker, Karine Audouze, Raimund Widhalm, Sebastian Granitzer, Martin Forsthuber, Florence Jornod, Maria Wielsøe, Manhai Long, Thórhallur Ingi Halldórsson, Maria Uhl and Eva Cecilie Bonefeld-Jørgensen
Toxics 2022, 10(11), 684; https://doi.org/10.3390/toxics10110684 - 12 Nov 2022
Cited by 10 | Viewed by 3119
Abstract
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation [...] Read more.
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored. Full article
Show Figures

Figure 1

17 pages, 773 KiB  
Review
Exposure to Microplastics during Early Developmental Stage: Review of Current Evidence
by Nur Hanisah Amran, Siti Sarah Mohamad Zaid, Mohd Helmy Mokhtar, Latifah Abd Manaf and Shatrah Othman
Toxics 2022, 10(10), 597; https://doi.org/10.3390/toxics10100597 - 10 Oct 2022
Cited by 13 | Viewed by 5755
Abstract
In the last few decades, microplastics (MPs) have been among the emerging environmental pollutants that have received serious attention from scientists and the general population due to their wide range of potentially harmful effects on living organisms. MPs may originate from primary sources [...] Read more.
In the last few decades, microplastics (MPs) have been among the emerging environmental pollutants that have received serious attention from scientists and the general population due to their wide range of potentially harmful effects on living organisms. MPs may originate from primary sources (micro-sized plastics manufactured on purpose) and secondary sources (breakdown of large plastic items through physical, chemical, and biological processes). Consequently, serious concerns are escalating because MPs can be easily disseminated and contaminate environments, including terrestrial, air, groundwater, marine, and freshwater systems. Furthermore, an exposure to even low doses of MPs during the early developmental stage may induce long-term health effects, even later in life. Accordingly, this study aims to gather the current evidence regarding the effects of MPs exposure on vital body systems, including the digestive, reproductive, central nervous, immune, and circulatory systems, during the early developmental stage. In addition, this study provides essential information about the possible emergence of various diseases later in life (i.e., adulthood). Full article
Show Figures

Figure 1

32 pages, 2428 KiB  
Review
Nanoplastics and Microplastics May Be Damaging Our Livers
by Jianli Yin, Ye Ju, Honghao Qian, Jia Wang, Xiaohan Miao, Ying Zhu, Liting Zhou and Lin Ye
Toxics 2022, 10(10), 586; https://doi.org/10.3390/toxics10100586 - 4 Oct 2022
Cited by 19 | Viewed by 3900
Abstract
Plastics in the environment can be degraded and even broken into pieces under the action of natural factors, and the degraded products with a particle size of less than 5 mm are called microplastics (MPs). MPs exist in a variety of environmental media [...] Read more.
Plastics in the environment can be degraded and even broken into pieces under the action of natural factors, and the degraded products with a particle size of less than 5 mm are called microplastics (MPs). MPs exist in a variety of environmental media that come into contact with the human body. It can enter the body through environmental media and food chains. At present, there are many studies investigating the damage of MPs to marine organisms and mammals. The liver is the largest metabolizing organ and plays an important role in the metabolism of MPs in the body. However, there is no available systematic review on the toxic effects of MPs on the liver. This paper summarizes the adverse effects and mechanisms of MPs on the liver, by searching the literature and highlighting the studies that have been published to date, and provides a scenario for the liver toxicity caused by MPs. Full article
Show Figures

Graphical abstract

14 pages, 1175 KiB  
Review
Copper Effect on Microalgae: Toxicity and Bioremediation Strategies
by Elena Cavalletti, Giovanna Romano, Fortunato Palma Esposito, Lucia Barra, Pasquale Chiaiese, Sergio Balzano and Angela Sardo
Toxics 2022, 10(9), 527; https://doi.org/10.3390/toxics10090527 - 6 Sep 2022
Cited by 18 | Viewed by 4490
Abstract
Microalgae are increasingly recognised as suitable microorganisms for heavy metal (HM) removal, since they are able to adsorb them onto their cell wall and, in some cases, compartmentalise them inside organelles. However, at relatively high HM concentrations, they could also show signs of [...] Read more.
Microalgae are increasingly recognised as suitable microorganisms for heavy metal (HM) removal, since they are able to adsorb them onto their cell wall and, in some cases, compartmentalise them inside organelles. However, at relatively high HM concentrations, they could also show signs of stress, such as organelle impairments and increased activities of antioxidant enzymes. The main aim of this review is to report on the mechanisms adopted by microalgae to counteract detrimental effects of high copper (Cu) concentrations, and on the microalgal potential for Cu bioremediation of aquatic environments. Studying the delicate balance between beneficial and detrimental effects of Cu on microalgae is of particular relevance as this metal is widely present in aquatic environments facing industrial discharges. This metal often induces chloroplast functioning impairment, generation of reactive oxygen species (ROS) and growth rate reduction in a dose-dependent manner. However, microalgae also possess proteins and small molecules with protective role against Cu and, in general, metal stress, which increase their resistance towards these pollutants. Our critical literature analysis reveals that microalgae can be suitable indicators of Cu pollution in aquatic environments, and could also be considered as components of eco-sustainable devices for HM bioremediation in association with other organisms. Full article
Show Figures

Figure 1

24 pages, 1283 KiB  
Review
Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment
by Saroj Bala, Diksha Garg, Banjagere Veerabhadrappa Thirumalesh, Minaxi Sharma, Kandi Sridhar, Baskaran Stephen Inbaraj and Manikant Tripathi
Toxics 2022, 10(8), 484; https://doi.org/10.3390/toxics10080484 - 19 Aug 2022
Cited by 113 | Viewed by 17091
Abstract
Environmental pollution brought on by xenobiotics and other related recalcitrant compounds have recently been identified as a major risk to both human health and the natural environment. Due to their toxicity and non-biodegradability, a wide range of pollutants, such as heavy metals, polychlorinated [...] Read more.
Environmental pollution brought on by xenobiotics and other related recalcitrant compounds have recently been identified as a major risk to both human health and the natural environment. Due to their toxicity and non-biodegradability, a wide range of pollutants, such as heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals are present in the environment. Bioremediation is an effective cleaning technique for removing toxic waste from polluted environments that is gaining popularity. Various microorganisms, including aerobes and anaerobes, are used in bioremediation to treat contaminated sites. Microorganisms play a major role in bioremediation, given that it is a process in which hazardous wastes and pollutants are eliminated, degraded, detoxified, and immobilized. Pollutants are degraded and converted to less toxic forms, which is a primary goal of bioremediation. Ex situ or in situ bioremediation can be used, depending on a variety of factors, such as cost, pollutant types, and concentration. As a result, a suitable bioremediation method has been chosen. This review focuses on the most recent developments in bioremediation techniques, how microorganisms break down different pollutants, and what the future holds for bioremediation in order to reduce the amount of pollution in the world. Full article
Show Figures

Figure 1

20 pages, 1331 KiB  
Review
Multiple Targets of Toxicity in Environmental Exposure to Low-Dose Cadmium
by Soisungwan Satarug, Glenda C. Gobe and David A. Vesey
Toxics 2022, 10(8), 472; https://doi.org/10.3390/toxics10080472 - 13 Aug 2022
Cited by 15 | Viewed by 2946
Abstract
Dietary assessment reports and population surveillance programs show that chronic exposure to low levels of environmental cadmium (Cd) is inevitable for most people, and adversely impacts the health of children and adults. Based on a risk assessment model that considers an increase in [...] Read more.
Dietary assessment reports and population surveillance programs show that chronic exposure to low levels of environmental cadmium (Cd) is inevitable for most people, and adversely impacts the health of children and adults. Based on a risk assessment model that considers an increase in the excretion of β2-microglobulin (β2M) above 300 μg/g creatinine to be the “critical” toxicity endpoint, the tolerable intake level of Cd was set at 0.83 µg/kg body weight/day, and a urinary Cd excretion rate of 5.24 µg/g creatinine was considered to be the toxicity threshold level. The aim of this review is to draw attention to the many other toxicity endpoints that are both clinically relevant and more appropriate to derive Cd exposure limits than a β2M endpoint. In the present review, we focus on a reduction in the glomerular filtration rate and diminished fecundity because chronic exposure to low-dose Cd, reflected by its excretion levels as low as 0.5 µg/g creatinine, have been associated with dose-dependent increases in risk of these pathological symptoms. Some protective effects of the nutritionally essential elements selenium and zinc are highlighted. Cd-induced mitochondrial dysfunction is discussed as a potential mechanism underlying gonadal toxicities and infertility. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

17 pages, 727 KiB  
Review
Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants
by Jingyu Tao and Lingli Lu
Toxics 2022, 10(8), 411; https://doi.org/10.3390/toxics10080411 - 22 Jul 2022
Cited by 44 | Viewed by 5405
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants [...] Read more.
Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants. Full article
(This article belongs to the Special Issue Safety Utilization and Remediation of Heavy Metal Polluted Farmland)
Show Figures

Figure 1

21 pages, 1627 KiB  
Review
Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility
by Luigi Montano, Concetta Pironti, Gabriella Pinto, Maria Ricciardi, Amalia Buono, Carlo Brogna, Marta Venier, Marina Piscopo, Angela Amoresano and Oriana Motta
Toxics 2022, 10(7), 365; https://doi.org/10.3390/toxics10070365 - 1 Jul 2022
Cited by 58 | Viewed by 10392
Abstract
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the [...] Read more.
In the last decade or so, polychlorinated biphenyls (PCBs) garnered renewed attention in the scientific community due to new evidence pointing at their continued presence in the environment and workplaces and the potential human risks related to their presence. PCBs move from the environment to humans through different routes; the dominant pathway is the ingestion of contaminated foods (fish, seafood and dairy products), followed by inhalation (both indoor and outdoor air), and, to a lesser extent, dust ingestion and dermal contact. Numerous studies reported the environmental and occupational exposure to these pollutants, deriving from building materials (flame-retardants, plasticizers, paints, caulking compounds, sealants, fluorescent light ballasts, etc.) and electrical equipment. The highest PCBs contaminations were detected in e-waste recycling sites, suggesting the need for the implementation of remediation strategies of such polluted areas to safeguard the health of workers and local populations. Furthermore, a significant correlation between PCB exposure and increased blood PCB concentrations was observed in people working in PCB-contaminated workplaces. Several epidemiological studies suggest that environmental and occupational exposure to high concentrations of PCBs is associated with different health outcomes, such as neuropsychological and neurobehavioral deficits, dementia, immune system dysfunctions, cardiovascular diseases and cancer. In addition, recent studies indicate that PCBs bioaccumulation can reduce fertility, with harmful effects on the reproductive system that can be passed to offspring. In the near future, further studies are needed to assess the real effects of PCBs exposure at low concentrations for prolonged exposure in workplaces and specific indoor environments. Full article
Show Figures

Graphical abstract

23 pages, 13718 KiB  
Review
Exposure Routes and Health Risks Associated with Pesticide Application
by Muyesaier Tudi, Hairong Li, Hongying Li, Li Wang, Jia Lyu, Linsheng Yang, Shuangmei Tong, Qiming Jimmy Yu, Huada Daniel Ruan, Albert Atabila, Dung Tri Phung, Ross Sadler and Des Connell
Toxics 2022, 10(6), 335; https://doi.org/10.3390/toxics10060335 - 19 Jun 2022
Cited by 72 | Viewed by 8432
Abstract
Pesticides play an important role in agricultural development. However, pesticide application can result in both acute and chronic human toxicities, and the adverse effects of pesticides on the environment and human health remain a serious problem. There is therefore a need to discuss [...] Read more.
Pesticides play an important role in agricultural development. However, pesticide application can result in both acute and chronic human toxicities, and the adverse effects of pesticides on the environment and human health remain a serious problem. There is therefore a need to discuss the application methods for pesticides, the routes of pesticide exposure, and the health risks posed by pesticide application. The health problems related to pesticide application and exposure in developing countries are of particular concern. The purpose of this paper is to provide scientific information for policymakers in order to allow the development of proper pesticide application technics and methods to minimize pesticide exposure and the adverse health effects on both applicators and communities. Studies indicate that there are four main pesticide application methods, including hydraulic spraying, backpack spraying, basal trunk spraying, and aerial spraying. Pesticide application methods are mainly selected by considering the habits of target pests, the characteristics of target sites, and the properties of pesticides. Humans are directly exposed to pesticides in occupational, agricultural, and household activities and are indirectly exposed to pesticides via environmental media, including air, water, soil, and food. Human exposure to pesticides occurs mainly through dermal, oral, and respiratory routes. People who are directly and/or indirectly exposed to pesticides may contract acute toxicity effects and chronic diseases. Although no segment of the general population is completely protected against exposure to pesticides and their potentially serious health effects, a disproportionate burden is shouldered by people in developing countries. Both deterministic and probabilistic human health risk assessments have their advantages and disadvantages and both types of methods should be comprehensively implemented in research on exposure and human health risk assessment. Equipment for appropriate pesticide application is important for application efficiency to minimize the loss of spray solution as well as reduce pesticide residuals in the environment and adverse human health effects due to over-spraying and residues. Policymakers should implement various useful measures, such as integrated pest management (IPM) laws that prohibit the use of pesticides with high risks and the development of a national implementation plan (NIP) to reduce the adverse effects of pesticides on the environment and on human health. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

14 pages, 304 KiB  
Review
Glyphosate, Roundup and the Failures of Regulatory Assessment
by Eva Novotny
Toxics 2022, 10(6), 321; https://doi.org/10.3390/toxics10060321 - 13 Jun 2022
Cited by 12 | Viewed by 6591
Abstract
Roundup is the most widely used herbicide in agriculture. It contains glyphosate as the ‘active ingredient’, together with formulants. There are various versions of Roundup, with somewhat different effects depending on the formulants. Most genetically-modified crops are designed to tolerate Roundup, thus allowing [...] Read more.
Roundup is the most widely used herbicide in agriculture. It contains glyphosate as the ‘active ingredient’, together with formulants. There are various versions of Roundup, with somewhat different effects depending on the formulants. Most genetically-modified crops are designed to tolerate Roundup, thus allowing spraying against weeds during the growing season of the crop without destroying it. Having been so heavily used, this herbicide is now found in the soil, water, air, and even in humans worldwide. Roundup may also remain as a residue on edible crops. Many studies have found harm to the environment and to health, making it imperative to regulate the use of Roundup and to ensure that its various formulations pose no danger when used in the long-term. Unfortunately, regulators may only assess the ‘active ingredient’, glyphosate, and ignore the toxicity of the formulants, which can be far more toxic than the active ingredient. This omission is in violation of a ruling by the Court of Justice of the European Union. There are close ties between the regulators and the industry they are supposed to regulate. Objectionable practices include ‘revolving doors’ between the regulators and the industry, heavy reliance on unpublished papers produced by the industry while dismissing papers published by independent scientists, and strong covert influence on the regulatory process by industry. Although this paper focuses on the European Union (EU), the situation is much the same in the United States. Full article
38 pages, 1950 KiB  
Review
IVIVE: Facilitating the Use of In Vitro Toxicity Data in Risk Assessment and Decision Making
by Xiaoqing Chang, Yu-Mei Tan, David G. Allen, Shannon Bell, Paul C. Brown, Lauren Browning, Patricia Ceger, Jeffery Gearhart, Pertti J. Hakkinen, Shruti V. Kabadi, Nicole C. Kleinstreuer, Annie Lumen, Joanna Matheson, Alicia Paini, Heather A. Pangburn, Elijah J. Petersen, Emily N. Reinke, Alexandre J. S. Ribeiro, Nisha Sipes, Lisa M. Sweeney, John F. Wambaugh, Ronald Wange, Barbara A. Wetmore and Moiz Mumtazadd Show full author list remove Hide full author list
Toxics 2022, 10(5), 232; https://doi.org/10.3390/toxics10050232 - 1 May 2022
Cited by 35 | Viewed by 11092
Abstract
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to [...] Read more.
During the past few decades, the science of toxicology has been undergoing a transformation from observational to predictive science. New approach methodologies (NAMs), including in vitro assays, in silico models, read-across, and in vitro to in vivo extrapolation (IVIVE), are being developed to reduce, refine, or replace whole animal testing, encouraging the judicious use of time and resources. Some of these methods have advanced past the exploratory research stage and are beginning to gain acceptance for the risk assessment of chemicals. A review of the recent literature reveals a burst of IVIVE publications over the past decade. In this review, we propose operational definitions for IVIVE, present literature examples for several common toxicity endpoints, and highlight their implications in decision-making processes across various federal agencies, as well as international organizations, including those in the European Union (EU). The current challenges and future needs are also summarized for IVIVE. In addition to refining and reducing the number of animals in traditional toxicity testing protocols and being used for prioritizing chemical testing, the goal to use IVIVE to facilitate the replacement of animal models can be achieved through their continued evolution and development, including a strategic plan to qualify IVIVE methods for regulatory acceptance. Full article
(This article belongs to the Special Issue Computational Toxicology: Expanding Frontiers in Risk Assessment)
Show Figures

Figure 1

30 pages, 2505 KiB  
Review
Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China
by Muhammad Adnan, Baohua Xiao, Peiwen Xiao, Peng Zhao, Ruolan Li and Shaheen Bibi
Toxics 2022, 10(5), 231; https://doi.org/10.3390/toxics10050231 - 30 Apr 2022
Cited by 53 | Viewed by 8896
Abstract
Contamination by heavy metals is a significant issue worldwide. In recent decades, soil heavy metals pollutants in China had adverse impacts on soil quality and threatened food security and human health. Anthropogenic inputs mainly generate heavy metal contamination in China. In this review, [...] Read more.
Contamination by heavy metals is a significant issue worldwide. In recent decades, soil heavy metals pollutants in China had adverse impacts on soil quality and threatened food security and human health. Anthropogenic inputs mainly generate heavy metal contamination in China. In this review, the approaches were used in these investigations, focusing on geochemical strategies and metal isotope methods, particularly useful for determining the pathway of mining and smelting derived pollution in the soil. Our findings indicate that heavy metal distribution substantially impacts topsoils around mining and smelting sites, which release massive amounts of heavy metals into the environment. Furthermore, heavy metal contamination and related hazards posed by Pb, Cd, As, and Hg are more severe to plants, soil organisms, and humans. It’s worth observing that kids are particularly vulnerable to Pb toxicity. And this review also provides novel approaches to control and reduce the impacts of heavy metal pollution. Hydrometallurgy offers a potential method for extracting metals and removing potentially harmful heavy metals from waste to reduce pollution. However, environmentally friendly remediation of contaminated sites is a significant challenge. This paper also evaluates current technological advancements in the remediation of polluted soil, such as stabilization/solidification, natural attenuation, electrokinetic remediation, soil washing, and phytoremediation. The ability of biological approaches, especially phytoremediation, is cost-effective and favorable to the environment. Full article
Show Figures

Graphical abstract

20 pages, 2159 KiB  
Review
Recent Advances in Minimizing Cadmium Accumulation in Wheat
by Min Zhou and Zhengguo Li
Toxics 2022, 10(4), 187; https://doi.org/10.3390/toxics10040187 - 12 Apr 2022
Cited by 15 | Viewed by 3831
Abstract
Cadmium (Cd), a toxic heavy metal, affects the yield and quality of crops. Wheat (Triticum aestivum L.) can accumulate high Cd content in the grain, which poses a major worldwide hazard to human health. Advances in our understanding of Cd toxicity for [...] Read more.
Cadmium (Cd), a toxic heavy metal, affects the yield and quality of crops. Wheat (Triticum aestivum L.) can accumulate high Cd content in the grain, which poses a major worldwide hazard to human health. Advances in our understanding of Cd toxicity for plants and humans, different parameters influencing Cd uptake and accumulation, as well as phytoremediation technologies to relieve Cd pollution in wheat have been made very recently. In particular, the molecular mechanisms of wheat under Cd stress have been increasingly recognized. In this review, we focus on the recently described omics and functional genes uncovering Cd stress, as well as different mitigation strategies to reduce Cd toxicity in wheat. Full article
(This article belongs to the Special Issue New Lights on Phytoremediation)
Show Figures

Figure 1

30 pages, 660 KiB  
Review
Titanium and Zinc Based Nanomaterials in Agriculture: A Promising Approach to Deal with (A)biotic Stresses?
by Sónia Silva, Maria Celeste Dias and Artur M. S. Silva
Toxics 2022, 10(4), 172; https://doi.org/10.3390/toxics10040172 - 31 Mar 2022
Cited by 23 | Viewed by 3659
Abstract
Abiotic stresses, such as those induced by climatic factors or contaminants, and biotic stresses prompted by phytopathogens and pests inflict tremendous losses in agriculture and are major threats to worldwide food security. In addition, climate changes will exacerbate these factors as well as [...] Read more.
Abiotic stresses, such as those induced by climatic factors or contaminants, and biotic stresses prompted by phytopathogens and pests inflict tremendous losses in agriculture and are major threats to worldwide food security. In addition, climate changes will exacerbate these factors as well as their negative impact on crops. Drought, salinity, heavy metals, pesticides, and drugs are major environmental problems that need deep attention, and effective and sustainable strategies to mitigate their effects on the environment need to be developed. Besides, sustainable solutions for agrocontrol must be developed as alternatives to conventional agrochemicals. In this sense, nanotechnology offers promising solutions to mitigate environmental stress effects on plants, increasing plant tolerance to the stressor, for the remediation of environmental contaminants, and to protect plants against pathogens. In this review, nano-sized TiO2 (nTiO2) and ZnO (nZnO) are scrutinized, and their potential to ameliorate drought, salinity, and xenobiotics effects in plants are emphasized, in addition to their antimicrobial potential for plant disease management. Understanding the level of stress alleviation in plants by these nanomaterials (NM) and relating them with the application conditions/methods is imperative to define the most sustainable and effective approaches to be adopted. Although broad-spectrum reviews exist, this article provides focused information on nTiO2 and nZnO for improving our understanding of the ameliorative potential that these NM show, addressing the gaps in the literature. Full article
(This article belongs to the Special Issue Impacts of Nanomaterials in the Environment)
Show Figures

Figure 1

29 pages, 1487 KiB  
Review
Chemical Fractionation in Environmental Studies of Potentially Toxic Particulate-Bound Elements in Urban Air: A Critical Review
by Ryszard Świetlik and Marzena Trojanowska
Toxics 2022, 10(3), 124; https://doi.org/10.3390/toxics10030124 - 4 Mar 2022
Cited by 15 | Viewed by 2870
Abstract
In recent years, studies of heavy metal air pollution have increasingly gone beyond determining total concentrations of individual toxic metals. Chemical fractionation of potentially toxic elements in airborne particles is becoming an important part of these studies. This review covers the articles that [...] Read more.
In recent years, studies of heavy metal air pollution have increasingly gone beyond determining total concentrations of individual toxic metals. Chemical fractionation of potentially toxic elements in airborne particles is becoming an important part of these studies. This review covers the articles that have been published over the last three decades. Attention was paid to the issue of atmospheric aerosol sampling, sample pretreatment, sequential extraction schemes and conditions of individual extractions. Geochemical forms of metals occurring in the air in urban areas were considered in detail. Based on the data sets from chemical fractionation of particulate matter samples by three sequential extraction procedures (SEPs)—Fernández Espinosa, BCR and Chester’s—the compilation of the chemical distribution patterns of As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn was prepared. The human health risk posed by these toxic and/or carcinogenic elements via inhalation of atmospheric particles was estimated for two categories of polluted urban areas: the commonly encountered pollution level and the high pollution level. Full article
Show Figures

Figure 1

14 pages, 378 KiB  
Review
The Other Face of Insulin—Overdose and Its Effects
by Szymon Rzepczyk, Klaudia Dolińska-Kaczmarek, Aleksandra Uruska and Czesław Żaba
Toxics 2022, 10(3), 123; https://doi.org/10.3390/toxics10030123 - 3 Mar 2022
Cited by 7 | Viewed by 26699
Abstract
Insulin is the most effective glycemic-lowering drug, and for people suffering from type 1 diabetes it is a life-saving drug. Its self-dosing by patients may be associated with a higher risk of overdose, both accidental and deliberate. Insulin-induced hypoglycemia causes up to 100,000 [...] Read more.
Insulin is the most effective glycemic-lowering drug, and for people suffering from type 1 diabetes it is a life-saving drug. Its self-dosing by patients may be associated with a higher risk of overdose, both accidental and deliberate. Insulin-induced hypoglycemia causes up to 100,000 emergency department calls per year. Cases of suicide attempts using insulin have been described in the literature since its introduction into therapy, and one of the important factors in their occurrence is the very fact of chronic disease. Up to 90% of patients who go to toxicology wards overdose insulin consciously. Patients with diabetes are burdened with a 2–3 times higher risk of developing depression compared to the general population. For this reason, it is necessary to develop an effective system for detecting a predisposition to overdose, including the assessment of the first symptoms of depression in patients with diabetes. A key role is played by a risk-conscious therapeutic team, as well as education. Further post-mortem testing is also needed for material collection and storage, as well as standardization of analytical methods and interpretation of results, which would allow for more effective detection and analysis of intentional overdose—both by the patient and for criminal purposes. Full article
(This article belongs to the Special Issue Forensic Toxicology: A New Scientific Contribution)
55 pages, 1931 KiB  
Review
PFAS Molecules: A Major Concern for the Human Health and the Environment
by Emiliano Panieri, Katarina Baralic, Danijela Djukic-Cosic, Aleksandra Buha Djordjevic and Luciano Saso
Toxics 2022, 10(2), 44; https://doi.org/10.3390/toxics10020044 - 18 Jan 2022
Cited by 100 | Viewed by 22469
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments. Full article
(This article belongs to the Special Issue Environmental and Human Health Risk Assessment of POPs)
Show Figures

Figure 1

30 pages, 9333 KiB  
Review
Use of Nanotechnology to Mitigate Biofouling in Stainless Steel Devices Used in Food Processing, Healthcare, and Marine Environments
by Hugo Pérez, Gregorio Vargas and Rodolfo Silva
Toxics 2022, 10(1), 35; https://doi.org/10.3390/toxics10010035 - 12 Jan 2022
Cited by 10 | Viewed by 3584
Abstract
In humid environments, the formation of biofilms and microfouling are known to be the detrimental processes that first occur on stainless steel surfaces. This is known as biofouling. Subsequently, the conditions created by metabolites and the activity of organisms trigger corrosion of the [...] Read more.
In humid environments, the formation of biofilms and microfouling are known to be the detrimental processes that first occur on stainless steel surfaces. This is known as biofouling. Subsequently, the conditions created by metabolites and the activity of organisms trigger corrosion of the metal and accelerate corrosion locally, causing a deterioration in, and alterations to, the performance of devices made of stainless steel. The microorganisms which thus affect stainless steel are mainly algae and bacteria. Within the macroorganisms that then damage the steel, mollusks and crustaceans are the most commonly observed. The aim of this review was to identify the mechanisms involved in biofouling on stainless steel and to evaluate the research done on preventing or mitigating this problem using nanotechnology in humid environments in three areas of human activity: food manufacturing, the implantation of medical devices, and infrastructure in marine settings. Of these protective processes that modify the steel surfaces, three approaches were examined: the use of inorganic nanoparticles; the use of polymeric coatings; and, finally, the generation of nanotextures. Full article
(This article belongs to the Special Issue Assessment of the (Eco)Toxicity of Nanomaterials)
Show Figures

Figure 1

35 pages, 494 KiB  
Review
Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review
by Maria Luisa Fernandez-Marcos
Toxics 2022, 10(1), 31; https://doi.org/10.3390/toxics10010031 - 11 Jan 2022
Cited by 11 | Viewed by 2873
Abstract
The presence of toxic substances is one of the major causes of degradation of soil quality. Wildfires, besides affecting various chemical, physical, and biological soil properties, produce a mixture of potentially toxic substances which can reach the soil and water bodies and cause [...] Read more.
The presence of toxic substances is one of the major causes of degradation of soil quality. Wildfires, besides affecting various chemical, physical, and biological soil properties, produce a mixture of potentially toxic substances which can reach the soil and water bodies and cause harm to these media. This review intends to summarise the current knowledge on the generation by wildfires of potentially toxic substances, their effects on soil organisms, and other associated risks, addressing the effects of fire on metal mobilisation, the pyrolytic production of potentially toxic compounds, and the detoxifying effect of charcoal. Numerous studies ascertained inhibitory effects of ash on seed germination and seedling growth as well as its toxicity to soil and aquatic organisms. Abundant publications addressed the mobilisation of heavy metals and trace elements by fire, including analyses of total concentrations, speciation, availability, and risk of exportation to water bodies. Many publications studied the presence of polycyclic aromatic hydrocarbons (PAH) and other organic pollutants in soils after fire, their composition, decline over time, the risk of contamination of surface and ground waters, and their toxicity to plants, soil, and water organisms. Finally, the review addresses the possible detoxifying role of charcoal in soils affected by fire. Full article
(This article belongs to the Special Issue Current Developments in Soil Ecotoxicology)
21 pages, 1792 KiB  
Review
The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review
by Mitchell R. Slobodian, Jesse D. Petahtegoose, Athena L. Wallis, Danica C. Levesque and Thomas J. S. Merritt
Toxics 2021, 9(10), 269; https://doi.org/10.3390/toxics9100269 - 16 Oct 2021
Cited by 41 | Viewed by 3737
Abstract
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals [...] Read more.
The biological effects of environmental metal contamination are important issues in an industrialized, resource-dependent world. Different metals have different roles in biology and can be classified as essential if they are required by a living organism (e.g., as cofactors), or as non-essential metals if they are not. While essential metal ions have been well studied in many eukaryotic species, less is known about the effects of non-essential metals, even though essential and non-essential metals are often chemically similar and can bind to the same biological ligands. Insects are often exposed to a variety of contaminated environments and associated essential and non-essential metal toxicity, but many questions regarding their response to toxicity remain unanswered. Drosophila melanogaster is an excellent insect model species in which to study the effects of toxic metal due to the extensive experimental and genetic resources available for this species. Here, we review the current understanding of the impact of a suite of essential and non-essential metals (Cu, Fe, Zn, Hg, Pb, Cd, and Ni) on the D. melanogaster metal response system, highlighting the knowledge gaps between essential and non-essential metals in D. melanogaster. This review emphasizes the need to use multiple metals, multiple genetic backgrounds, and both sexes in future studies to help guide future research towards better understanding the effects of metal contamination in general. Full article
(This article belongs to the Special Issue Heavy Metal Exposure and Gene Expression)
Show Figures

Figure 1

13 pages, 1887 KiB  
Review
Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy
by Ines Klein and Helmar C. Lehmann
Toxics 2021, 9(10), 229; https://doi.org/10.3390/toxics9100229 - 22 Sep 2021
Cited by 66 | Viewed by 8710
Abstract
Peripheral neuropathy is one of the most common side effects of chemotherapy, affecting up to 60% of all cancer patients receiving chemotherapy. Moreover, paclitaxel induces neuropathy in up to 97% of all gynecological and urological cancer patients. In cancer cells, paclitaxel induces cell [...] Read more.
Peripheral neuropathy is one of the most common side effects of chemotherapy, affecting up to 60% of all cancer patients receiving chemotherapy. Moreover, paclitaxel induces neuropathy in up to 97% of all gynecological and urological cancer patients. In cancer cells, paclitaxel induces cell death via microtubule stabilization interrupting cell mitosis. However, paclitaxel also affects cells of the central and peripheral nervous system. The main symptoms are pain and numbness in hands and feet due to paclitaxel accumulation in the dorsal root ganglia. This review describes in detail the pathomechanisms of paclitaxel in the peripheral nervous system. Symptoms occur due to a length-dependent axonal sensory neuropathy, where axons are symmetrically damaged and die back. Due to microtubule stabilization, axonal transport is disrupted, leading to ATP undersupply and oxidative stress. Moreover, mitochondria morphology is altered during paclitaxel treatment. A key player in pain sensation and axonal damage is the paclitaxel-induced inflammation in the spinal cord as well as the dorsal root ganglia. An increased expression of chemokines and cytokines such as IL-1β, IL-8, and TNF-α, but also CXCR4, RAGE, CXCL1, CXCL12, CX3CL1, and C3 promote glial activation and accumulation, and pain sensation. These findings are further elucidated in this review. Full article
Show Figures

Figure 1

30 pages, 7683 KiB  
Review
Microplastics in the Environment: Intake through the Food Web, Human Exposure and Toxicological Effects
by Concetta Pironti, Maria Ricciardi, Oriana Motta, Ylenia Miele, Antonio Proto and Luigi Montano
Toxics 2021, 9(9), 224; https://doi.org/10.3390/toxics9090224 - 16 Sep 2021
Cited by 105 | Viewed by 19762
Abstract
Recently, studies on microplastics (MPs) have increased rapidly due to the growing awareness of the potential health risks related to their occurrence. The first part of this review is devoted to MP occurrence, distribution, and quantification. MPs can be transferred from the environment [...] Read more.
Recently, studies on microplastics (MPs) have increased rapidly due to the growing awareness of the potential health risks related to their occurrence. The first part of this review is devoted to MP occurrence, distribution, and quantification. MPs can be transferred from the environment to humans mainly through inhalation, secondly from ingestion, and, to a lesser extent, through dermal contact. As regards food web contamination, we discuss the microplastic presence not only in the most investigated sources, such as seafood, drinking water, and salts, but also in other foods such as honey, sugar, milk, fruit, and meat (chickens, cows, and pigs). All literature data suggest not-negligible human exposure to MPs through the above-mentioned routes. Consequently, several research efforts have been devoted to assessing potential human health risks. Initially, toxicological studies were conducted with aquatic organisms and then with experimental mammal animal models and human cell cultures. In the latter case, toxicological effects were observed at high concentrations of MPs (polystyrene is the most common MP benchmark) for a short time. Further studies must be performed to assess the real consequences of MP contamination at low concentrations and prolonged exposure. Full article
Show Figures

Figure 1

35 pages, 2987 KiB  
Review
Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements
by Fotis Bilias, Thomai Nikoli, Dimitrios Kalderis and Dionisios Gasparatos
Toxics 2021, 9(8), 184; https://doi.org/10.3390/toxics9080184 - 4 Aug 2021
Cited by 28 | Viewed by 5732
Abstract
Soil contamination with potentially toxic elements (PTEs) is considered one of the most severe environmental threats, while among remediation strategies, research on the application of soil amendments has received important consideration. This review highlights the effects of biochar application on soil properties and [...] Read more.
Soil contamination with potentially toxic elements (PTEs) is considered one of the most severe environmental threats, while among remediation strategies, research on the application of soil amendments has received important consideration. This review highlights the effects of biochar application on soil properties and the bioavailability of potentially toxic elements describing research areas of intense current and emerging activity. Using a visual scientometric analysis, our study shows that between 2019 and 2020, research sub-fields like earthworm activities and responses, greenhouse gass emissions, and low molecular weight organic acids have gained most of the attention when biochar was investigated for soil remediation purposes. Moreover, biomasses like rice straw, sewage sludge, and sawdust were found to be the most commonly used feedstocks for biochar production. The effect of biochar on soil chemistry and different mechanisms responsible for PTEs’ immobilization with biochar, are also briefly reported. Special attention is also given to specific PTEs most commonly found at contaminated soils, including Cu, Zn, Ni, Cr, Pb, Cd, and As, and therefore are more extensively revised in this paper. This review also addresses some of the issues in developing innovative methodologies for engineered biochars, introduced alongside some suggestions which intend to form a more focused soil remediation strategy. Full article
(This article belongs to the Special Issue Health Risk Assessment of Potentially Toxic Elements)
Show Figures

Figure 1

24 pages, 5386 KiB  
Review
A Review of Dietary Intake of Acrylamide in Humans
by Clara Amalie Gade Timmermann, Signe Sonne Mølck, Manik Kadawathagedara, Anne Ahrendt Bjerregaard, Margareta Törnqvist, Anne Lise Brantsæter and Marie Pedersen
Toxics 2021, 9(7), 155; https://doi.org/10.3390/toxics9070155 - 30 Jun 2021
Cited by 52 | Viewed by 6332
Abstract
The dietary intake of acrylamide (AA) is a health concern, and food is being monitored worldwide, but the extent of AA exposure from the diet is uncertain. The aim of this review was to provide an overview of estimated dietary intake. We performed [...] Read more.
The dietary intake of acrylamide (AA) is a health concern, and food is being monitored worldwide, but the extent of AA exposure from the diet is uncertain. The aim of this review was to provide an overview of estimated dietary intake. We performed a PubMed search identifying studies that used dietary questionnaires and recalls to estimate total dietary AA intake. A total of 101 studies were included, corresponding to 68 original study populations from 26 countries. Questionnaires were used in 57 studies, dietary recalls were used in 33 studies, and 11 studies used both methods. The estimated median AA intake ranged from 0.02 to 1.53 μg/kg body weight/day between studies. Children were represented in 25 studies, and the body-weight-adjusted estimated AA intake was up to three times higher for children than adults. The majority of studies were from Europe (n = 65), Asia (n = 17), and the USA (n = 12). Studies from Asia generally estimated lower intakes than studies from Europe and the USA. Differences in methods undermine direct comparison across studies. The assessment of AA intake through dietary questionnaires and recalls has limitations. The integration of these methods with the analysis of validated biomarkers of exposure/internal dose would improve the accuracy of dietary AA intake exposure estimation. This overview shows that AA exposure is widespread and the large variation across and within populations shows a potential for reduced intake among those with the highest exposure. Full article
Show Figures

Figure 1

19 pages, 2077 KiB  
Review
Nanopesticides in Agriculture: Benefits and Challenge in Agricultural Productivity, Toxicological Risks to Human Health and Environment
by Marco Chaud, Eliana B. Souto, Aleksandra Zielinska, Patricia Severino, Fernando Batain, Jose Oliveira-Junior and Thais Alves
Toxics 2021, 9(6), 131; https://doi.org/10.3390/toxics9060131 - 4 Jun 2021
Cited by 111 | Viewed by 15736
Abstract
Nanopesticides are nanostructures with two to three dimensions between 1 to 200 nm, used to carry agrochemical ingredients (AcI). Because of their unique properties, the loading of AcI into nanoparticles offers benefits when compared to free pesticides. However, with the fast development of [...] Read more.
Nanopesticides are nanostructures with two to three dimensions between 1 to 200 nm, used to carry agrochemical ingredients (AcI). Because of their unique properties, the loading of AcI into nanoparticles offers benefits when compared to free pesticides. However, with the fast development of new engineered nanoparticles for pests’ control, a new type of environmental waste is being produced. This paper describes the nanopesticides sources, the harmful environmental and health effects arising from pesticide exposure. The potential ameliorative impact of nanoparticles on agricultural productivity and ecosystem challenges are extensively discussed. Strategies for controlled release and stimuli-responsive systems for slow, sustained, and targeted AcI and genetic material delivery are reported. Special attention to different nanoparticles source, the environmental behavior of nanopesticides in the crop setting, and the most recent advancements and nanopesticides representative research from experimental results are revised. This review also addresses some issues and concerns in developing, formulating and toxicity pesticide products for environmentally friendly and sustainable agriculture. Full article
(This article belongs to the Special Issue Current Research on the Cytotoxicity of Drugs to Humans and Animals)
Show Figures

Figure 1

33 pages, 3847 KiB  
Review
Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications
by Ahmed Alengebawy, Sara Taha Abdelkhalek, Sundas Rana Qureshi and Man-Qun Wang
Toxics 2021, 9(3), 42; https://doi.org/10.3390/toxics9030042 - 25 Feb 2021
Cited by 690 | Viewed by 50589
Abstract
Environmental problems have always received immense attention from scientists. Toxicants pollution is a critical environmental concern that has posed serious threats to human health and agricultural production. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature. This review [...] Read more.
Environmental problems have always received immense attention from scientists. Toxicants pollution is a critical environmental concern that has posed serious threats to human health and agricultural production. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature. This review focuses on the toxic effect of heavy metals (cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn)) and pesticides (insecticides, herbicides, and fungicides) adversely influencing the agricultural ecosystem (plant and soil) and human health. Furthermore, heavy metals accumulation and pesticide residues in soils and plants have been discussed in detail. In addition, the characteristics of contaminated soil and plant physiological parameters have been reviewed. Moreover, human diseases caused by exposure to heavy metals and pesticides were also reported. The bioaccumulation, mechanism of action, and transmission pathways of both heavy metals and pesticides are emphasized. In addition, the bioavailability in soil and plant uptake of these contaminants has also been considered. Meanwhile, the synergistic and antagonistic interactions between heavy metals and pesticides and their combined toxic effects have been discussed. Previous relevant studies are included to cover all aspects of this review. The information in this review provides deep insights into the understanding of environmental toxicants and their hazardous effects. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

30 pages, 1367 KiB  
Review
Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity
by Daniela Ramírez Ortega, Dinora F. González Esquivel, Tonali Blanco Ayala, Benjamín Pineda, Saul Gómez Manzo, Jaime Marcial Quino, Paul Carrillo Mora and Verónica Pérez de la Cruz
Toxics 2021, 9(2), 23; https://doi.org/10.3390/toxics9020023 - 28 Jan 2021
Cited by 78 | Viewed by 9474
Abstract
Lead (Pb) is considered a strong environmental toxin with human health repercussions. Due to its widespread use and the number of people potentially exposed to different sources of this heavy metal, Pb intoxication is recognized as a public health problem in many countries. [...] Read more.
Lead (Pb) is considered a strong environmental toxin with human health repercussions. Due to its widespread use and the number of people potentially exposed to different sources of this heavy metal, Pb intoxication is recognized as a public health problem in many countries. Exposure to Pb can occur through ingestion, inhalation, dermal, and transplacental routes. The magnitude of its effects depends on several toxicity conditions: lead speciation, doses, time, and age of exposure, among others. It has been demonstrated that Pb exposure induces stronger effects during early life. The central nervous system is especially vulnerable to Pb toxicity; Pb exposure is linked to cognitive impairment, executive function alterations, abnormal social behavior, and fine motor control perturbations. This review aims to provide a general view of the cognitive consequences associated with Pb exposure during early life as well as during adulthood. Additionally, it describes the neurotoxic mechanisms associated with cognitive impairment induced by Pb, which include neurochemical, molecular, and morphological changes that jointly could have a synergic effect on the cognitive performance. Full article
Show Figures

Figure 1

26 pages, 400 KiB  
Review
Endocrine Disrupting Chemicals and Thyroid Cancer: An Overview
by Mathilda Alsen, Catherine Sinclair, Peter Cooke, Kimia Ziadkhanpour, Eric Genden and Maaike van Gerwen
Toxics 2021, 9(1), 14; https://doi.org/10.3390/toxics9010014 - 19 Jan 2021
Cited by 56 | Viewed by 7188
Abstract
Endocrine disruptive chemicals (EDC) are known to alter thyroid function and have been associated with increased risk of certain cancers. The present study aims to provide a comprehensive overview of available studies on the association between EDC exposure and thyroid cancer. Relevant studies [...] Read more.
Endocrine disruptive chemicals (EDC) are known to alter thyroid function and have been associated with increased risk of certain cancers. The present study aims to provide a comprehensive overview of available studies on the association between EDC exposure and thyroid cancer. Relevant studies were identified via a literature search in the National Library of Medicine and National Institutes of Health PubMed as well as a review of reference lists of all retrieved articles and of previously published relevant reviews. Overall, the current literature suggests that exposure to certain congeners of flame retardants, polychlorinated biphenyls (PCBs), and phthalates as well as certain pesticides may potentially be associated with an increased risk of thyroid cancer. However, future research is urgently needed to evaluate the different EDCs and their potential carcinogenic effect on the thyroid gland in humans as most EDCs have been studied sporadically and results are not consistent. Full article
(This article belongs to the Special Issue Environmental Exposures Contributing to Thyroid Cancer Risk)
37 pages, 5502 KiB  
Review
Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications
by Ruxandra Vidu, Ecaterina Matei, Andra Mihaela Predescu, Badriyah Alhalaili, Cristian Pantilimon, Claudia Tarcea and Cristian Predescu
Toxics 2020, 8(4), 101; https://doi.org/10.3390/toxics8040101 - 10 Nov 2020
Cited by 74 | Viewed by 6564
Abstract
Removing heavy metals from wastewaters is a challenging process that requires constant attention and monitoring, as heavy metals are major wastewater pollutants that are not biodegradable and thus accumulate in the ecosystem. In addition, the persistent nature, toxicity and accumulation of heavy metal [...] Read more.
Removing heavy metals from wastewaters is a challenging process that requires constant attention and monitoring, as heavy metals are major wastewater pollutants that are not biodegradable and thus accumulate in the ecosystem. In addition, the persistent nature, toxicity and accumulation of heavy metal ions in the human body have become the driving force for searching new and more efficient water treatment technologies to reduce the concentration of heavy metal in waters. Because the conventional techniques will not be able to keep up with the growing demand for lower heavy metals levels in drinking water and wastewaters, it is becoming increasingly challenging to implement technologically advanced alternative water treatments. Nanotechnology offers a number of advantages compared to other methods. Nanomaterials are more efficient in terms of cost and volume, and many process mechanisms are better and faster at nanoscale. Although nanomaterials have already proved themselves in water technology, there are specific challenges related to their stability, toxicity and recovery, which led to innovations to counteract them. Taking into account the multidisciplinary research of water treatment for the removal of heavy metals, the present review provides an updated report on the main technologies and materials used for the removal of heavy metals with an emphasis on nanoscale materials and processes involved in the heavy metals removal and detection. Full article
(This article belongs to the Section Environmental Chemistry)
Show Figures

Figure 1

Back to TopTop