Consumption of Minerals, Toxic Metals and Hydroxymethylfurfural: Analysis of Infant Foods and Formulae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Determination of pH
2.3. Determination of HMF
2.4. Determination of Trace Elements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mania, M.; Wojciechowska-Mazurek, M.; Starska, K.; Rebeniak, M.; Szynal, T.; Strzelecka, A.; Postupolski, J. Toxic Elements in Commercial Infant Food, Estimated Dietary Intake, and Risk Assessment in Poland. Pol. J. Environ. Stud. 2015, 24, 2525–2536. [Google Scholar] [CrossRef]
- Ojo, R.J.; Olabode, O.S. Analysis of Heavy Metals and Hydrocyanic Acid in Selected Infant Formula in Abuja, Federal Capital Territory of Nigeria. Sch. Acad. J. Biosci. 2013, 1, 318–325. [Google Scholar]
- Tamás, M.J.; Sharma, S.K.; Ibstedt, S.; Jacobson, T.; Christen, P. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 2014, 4, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E.; Fogliano, V. Acrylamide aestand 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT-Food Sci. Tech. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Santonicola, S.; Mercogliano, R. Occurrence and Production of Furan in Commercial Foods. Ital. J. Food Sci. 2016, 28, 2016–2155. [Google Scholar]
- White, J.W., Jr. Spectrophotometric method for hydroxymethylfurfural in honey. AOAC 1979, 62, 509–514. [Google Scholar]
- Berg, I. Validation of MP-AES at the Quantification of Trace Metals in Heavy Matrices with Comparison of Performance to ICP-MS. Available online: http://www.diva-portal.se/smash/get/diva2:853851/FULLTEXT01.pdf (accessed on 26 May 2019).
- Simmons, B.P.; Gelfand, M.S.; Haas, M.; Metts, L.; Ferguson, J. Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infect. Control. Hosp. Epidemiol. 1989, 10, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Mehall, J.R.; Kite, C.A.; Saltzman, D.A.; Wallett, T.; Jackson, R.J.; Smith, S.D. Prospective study of the incidence and complications of bacterial contamination of enteral feeding in neonates. J. Pediatr. Surg. 2002, 37, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Aidoo, K.E.; Mohamed, S.M.; Candlish, A.A.; Tester, R.F.; Elgerbi, A.M. Occurrence of fungi and mycotoxins in some commercial baby foods in North Africa. Food Nutr. Sci. 2011, 2, 751. [Google Scholar] [CrossRef]
- Kabak, B. Aflatoxin M1 and ochratoxin A in baby formulae in Turkey: Occurrence and safety evaluation. Food Control 2012, 26, 182–187. [Google Scholar] [CrossRef]
- Lorán, S.; Bayarri, S.; Conchello, P.; Herrera, A. Risk assessment of PCDD/PCDFs and indicator PCBs contamination in Spanish commercial baby food. Food Chemical Toxicol. 2010, 48, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Pandelova, M.; Piccinelli, R.; Kasham, S.; Henkelmann, B.; Leclercq, C.; Schramm, K.W. Assessment of dietary exposure to PCDD/F and dioxin-like PCB in infant formulae available on the EU market. Chemosphere 2010, 81, 1018–1021. [Google Scholar] [CrossRef] [PubMed]
- Mesías, M.; Guerra-Hernández, E.; García-Villanova, B. Furan content in Spanish baby foods and its relation with potential precursors. CyTA-J. Food 2013, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Madani-Tonekaboni, M.; Kamankesh, M.; Farsani, A.M.M.; Ferdowsi, R.; Mohammad, A. Determination of furfural (F) and hydroxylmethyl furfural (HMF) in baby formulas obtained from Tehran market using dispersive liquid-liquid microextraction (DLLME) followed by high-performance liquid chromatography. Iran J. Nutr. Sci. Food Technol. 2015, 9, 97–107. [Google Scholar]
- Kazi, T.G.; Jalbani, N.; Baig, J.A.; Arain, M.B.; Afridi, H.I.; Jamali, M.K.; Shah, A.Q.; Memon, A.N. Evaluation of toxic elements in baby foods commercially available in Pakistan. Food. Chem. 2010, 119, 1313–1317. [Google Scholar] [CrossRef]
- Al Khalifa, A.S.; Ahmad, D. Determination of key elements by ICP-OES in commercially available infant formulae and baby foods in Saudi Arabia. Afr. J. Food Sci. 2010, 4, 464–468. [Google Scholar]
- Salah, F.A.; Esmat, I.A.; Mohamed, A.B. Heavy metals residues and trace elements in milk powder marketed in Dakahlia Governorate. Int. Food Res. J. 2013, 20, 1807–1812. [Google Scholar]
- Boussaid, A.; Chouaibi, M.; Rezig, L.; Hellal, R.; Donsì, F.; Ferrari, G.; Hamdi, S. Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arab. J. Chem. 2014, 11, 265–274. [Google Scholar] [CrossRef]
- Kalábová, L.V.I.B.K.; Večerek, V. Hydroxymethylfurfural contents in foodstuffs determined by HPLC method. J. Food Nutr. Res. 2006, 45, 34–38. [Google Scholar]
- Čížková, H.; ŠevČík, R.; Rajchl, A.; Voldřich, M. Nutritional quality of commercial fruit baby food. Czech J. Food Sci. 2009, 27, 134–137. [Google Scholar] [CrossRef]
- Michalak, J.; Kuncewicz, A.; Gujska, E. Monitoring selected quality indicators of powdered infant milk formulae. Pol. J. Food Nutr. Sci. 2006, 15, 131. [Google Scholar]
- Chávez-Servín, J.L.; de la Torre Carbot, K.; García-Gasca, T.; Castellote, A.I.; López-Sabater, M.C. Content and evolution of potential furfural compounds in commercial milk-based infant formula powder after opening the packet. Food Chem. 2015, 166, 486–491. [Google Scholar] [CrossRef]
- Chávez-Servín, J.L.; Romeu-Nadal, M.; Castellote, A.I.; López-Sabater, M.C. Evolution of free mono-and di-saccharide content of milk-based formula powder during storage. Food Chem. 2006, 97, 103–108. [Google Scholar] [CrossRef]
- WHO. Joint FAO/WHO. Expert Committee on Food Additives. In: Summary and Conclusions, 61st Meeting: Methyl Mercury. 2003. Available online: http://www.who.int/pcs/jecfa/Summary61.pdf (accessed on 2 May 2019).
- Mehrnia, M.A.; Bashti, A. Evaluation of Toxic Element Contents in Infant Foods Commercially. Iran Bull. Env. Pharmacol. Life Sci. 2014, 3, 249–253. [Google Scholar]
- Aguzue, O.C.; Kakulu, S.E.; Thomas, S.A. Flame atomic absorption spectrophotometric determination of heavy metals in selected infant formula in the Nigerian Market. Arch. Appl. Sci. Res. 2014, 6, 128–132. [Google Scholar]
- EFSA. Scientific Opinion of the Panel on Contaminants in the Food Chain (CONTAM) on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2012, 10, 2985. [Google Scholar]
- Cruz, G.C.; Din, Z.; Feri, C.D.; Balaoing, A.M.; Gonzales, E.M.; Navidad, H.M.; Schlaaff, M.M.F.; Winter, J. Analysis of toxic heavy metals (arsenic, lead and mercury) in selected infant formula milk commercially available in the Philippines by AAS. E-Int. Sci. Res. J. 2009, 1, 40–51. [Google Scholar]
Method | Element | Wavelength (nm) | R2 | LOD (mg/kg) | LOQ (mg/kg) |
---|---|---|---|---|---|
White | HMF | 284.000 | 0.99000 | 0.1122 | 0.3400 |
MP-AES | Cr | 425.433 | 0.99999 | 0.0005 | 0.0014 |
MP-AES | Cu | 324.754 | 1.00000 | 0.0007 | 0.0022 |
MP-AES | Hg | 253.652 | 0.99990 | 0.0789 | 0.2391 |
MP-AES | Ni | 352.454 | 0.99998 | 0.0056 | 0.0169 |
MP-AES | Mn | 403.076 | 1.00000 | 0.0042 | 0.0127 |
MP-AES | Fe | 259.940 | 0.99986 | 0.0037 | 0.0113 |
MP-AES | Zn | 213.857 | 1.00000 | 0.0301 | 0.0912 |
Mean HMF and pH Values | Prune-Based Food | Pear-Based Food | Apple-Based Food | Fish-Based Food | Poultry-Based Food | Ruminant Meat-Based Food | Formulae 0–6 Months | Formulae 6–12 Months |
---|---|---|---|---|---|---|---|---|
Mean HMF mg/kg (at 18 °C) | 99.10 ± 11.45 | 6.327 ± 0.4945 | 9.674 ± 1.004 | 3.133 ± 0.2191 | 1.858 ± 0.1807 | 2.359 ± 0.1171 | 5.27 ± 1.40 | 1.81 ± 0.88 |
Mean HMF mg/kg (at 30 °C) | nd | nd | nd | nd | nd | nd | 7.17 ± 1.44 | 3.57 ± 1.05 |
Mean pH | 3.31 ± 0.05 | 3.558 ± 0.06 | 3.31 ± 0.04 | 5.64 ± 0.82 | 5.61± 0.16 | 5.17 ± 0.38 | 6.76 ± 0.17 | 6.66 ± 0.14 |
Mean Metal Content (mg/kg) | Apple-Based (n = 6) | Pear-Based (n = 6) | Prune-Based (n = 4) | Fish-Based (n = 8) | Poultry-Based (n = 4) | Ruminant Meat-Based (n = 4) | Formulae 0–6 (n = 3) | Formulae 6–12 (n = 3) |
---|---|---|---|---|---|---|---|---|
Cr | 0.21 ± 0.06 | 0.09 ± 0.03 | 0.18 ± 0.07 | 0.07 ± 0.02 | 0.04 ± 0.02 | 0.02 ± 0.01 | 0.29 ± 0.05 | 0.24 ± 0.03 |
Cu | 0.65 ± 0.05 | 0.93 ± 0.11 | 0.66 ± 0.07 | 0.78 ± 0.07 | 0.68 ± 0.04 | 0.75 ± 0.07 | 3.33 ± 0.24 | 3.37 ± 0.21 |
Hg | nd | 0.12 ± 0.12 | nd | nd | nd | nd | nd | nd |
Ni | 0.63 ± 0.08 | 0.85 ± 0.03 | 0.86 ± 0.08 | 0.81 ± 0.06 | 1.07 ± 0.22 | 0.73 ± 0.06 | 0.76 ± 0.00 | 0.82 ± 0.06 |
Fe | 0.86 ± 0.08 | 1.18 ± 0.26 | 1.67 ± 0.4 | 1.55 ± 0.14 | 1.64 ± 0.07 | 1.67 ± 0.41 | 18.34 ± 2.51 | 18.87 ± 3.06 |
Mn | 4.93 ± 0.36 | 3.54 ± 0.06 | 3.22 ± 0.12 | 2.90 ± 0.11 | 2.37 ± 0.04 | 3.25 ± 1 | 2.13 ± 0.41 | 2.05 ± 0.21 |
Zn | 1.07 ± 0.78 | 8.54 ± 8.05 | 1.03 ± 0.34 | 2.61 ± 1.46 | 3.19 ± 0.72 | 5.76 ± 0.69 | 27.24 ± 2.77 | 33.00 ± 0.95 |
Variables | Cu | Hg | Ni | Fe | Mn | Zn |
---|---|---|---|---|---|---|
Cr | 0.718 | −0.217 | −0.393 | 0.725 | −0.090 | 0.631 |
Cu | −0.159 | −0.108 | 0.996 | −0.636 | 0.984 | |
Hg | 0.106 | −0.236 | 0.211 | −0.062 | ||
Ni | −0.091 | −0.574 | −0.073 | |||
Fe | −0.654 | 0.974 | ||||
Mn | −0.641 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vella, C.; Attard, E. Consumption of Minerals, Toxic Metals and Hydroxymethylfurfural: Analysis of Infant Foods and Formulae. Toxics 2019, 7, 33. https://doi.org/10.3390/toxics7020033
Vella C, Attard E. Consumption of Minerals, Toxic Metals and Hydroxymethylfurfural: Analysis of Infant Foods and Formulae. Toxics. 2019; 7(2):33. https://doi.org/10.3390/toxics7020033
Chicago/Turabian StyleVella, Christian, and Everaldo Attard. 2019. "Consumption of Minerals, Toxic Metals and Hydroxymethylfurfural: Analysis of Infant Foods and Formulae" Toxics 7, no. 2: 33. https://doi.org/10.3390/toxics7020033