Background/Objectives: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition often accompanied by gastrointestinal (GI) symptoms and gut microbiota imbalances. The microbiota–gut–brain (MGB) axis is a bidirectional communication network linking gut microbes, the GI system, and the central nervous system (CNS). This narrative review explores the role of the MGB axis in ASD pathophysiology, focusing on communication pathways, neurodevelopmental implications, gut microbiota alteration, GI dysfunction, and emerging therapeutics.
Methods: A narrative review methodology was employed. We searched major scientific databases including PubMed, Scopus, and Google Scholar for research on MGB axis mechanisms, gut microbiota composition in ASD, dysbiosis, leaky gut, immune activation, GI disorders, and intervention (probiotics, prebiotics, fecal microbiota transplantation (FMT), antibiotics and diet). Key findings from recent human, animal and in vitro studies were synthesized thematically, emphasizing mechanistic insights and therapeutic outcomes. Original references from the initial manuscript draft were retained and supplemented for comprehensiveness and accuracy.
Results: The MGB axis involves neuroanatomical, neuroendocrine, immunological, and metabolic pathways that enable microbes to influence brain development and function. Individuals with ASD commonly exhibit gut dysbiosis characterized by reduced microbial diversity (notably lower
Bifidobacterium and
Firmicutes) and overpresentation of potentially pathogenic taxa (e.g.,
Clostridia,
Desulfovibrio,
Enterobacteriaceae). Dysbiosis is associated with increased intestinal permeability (“leaky gut”) and newly activated and altered microbial metabolite profiles, such as short-chain fatty acids (SCFAs) and lipopolysaccharides (LPSs). Functional gastrointestinal disorders (FGIDs) are prevalent in ASD, linking gut–brain axis dysfunction to behavioral severity. Therapeutically, probiotics and prebiotics can restore eubiosis, fortify the gut barrier, and reduce neuroinflammation, showing modest improvements in GI and behavioral symptoms. FMT and Microbiota Transfer Therapy (MTT) have yielded promising results in open label trials, improving GI function and some ASD behaviors. Antibiotic interventions (e.g., vancomycin) have been found to temporarily alleviate ASD symptoms associated with
Clostridiales overgrowth, while nutritional strategies (high-fiber, gluten-free, or ketogenic diets) may modulate the microbiome and influence outcomes.
Conclusions: Accumulating evidence implicates the MGB axis in ASD pathogenesis. Gut microbiota dysbiosis and the related GI pathology may exacerbate neurodevelopmental and behavioral symptoms via immune, endocrine and neural routes. Interventions targeting the gut ecosystem, through diet modification, probiotics, symbiotics, or microbiota transplants, offer therapeutic promise. However, heterogeneity in findings underscores the need for rigorous, large-scale studies to clarify causal relationships and evaluate long-term efficacy and safety. Understanding MGB axis mechanisms in ASD could pave the way for novel adjunctive treatments to improve the quality of life for individuals with ASD.
Full article