Excessive Effects of Extreme Energy Levels on Lipid Metabolism in Ningxiang Pigs: Insights from Gut Microbiota and Glycerophospholipid Metabolism
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Experimental Animals and Diets
2.3. Slaughter Survey and Sampling
2.4. Measurement of Parameters Related to Lipid Metabolism in Plasma and Liver
2.5. Determination of Apparent Total Tract Digestibility in Nutrients
2.6. Analysis of Digestive Enzyme Activity in Intestinal Digesta
2.7. Quantitative Real-Time PCR Analysis
2.8. Analysis of Intestinal Microbial Relative Abundance
2.9. Serum Untargeted Metabolomics Analysis
2.9.1. Metabolites Extraction
2.9.2. LC-MS/MS Analysis
2.9.3. Data Preprocessing and Annotation
2.10. Statistical Analyses
3. Results
3.1. Carcass Composition
3.2. Apparent Total Tract Digestibility and Digestive Enzyme Activity
3.3. Parameters Related to Lipid Metabolism in Plasma and Liver
3.4. Expression of Gene Related to Lipid Metabolism in Liver
3.5. Intestinal Microbial Relative Abundance
3.6. Serum Untargeted Metabolomics
4. Discussion
4.1. EE-Induction Strengthens Lipogenic Gene Expression and Bile Acid Metabolism May Account for Increased Body Fat Deposition and Hepatic Lipid Accumulation in Ningxiang Pigs
4.2. Dietary Energies Improved Host Energy Utilization by Increasing the Ratio of Firmicutes to Bacteroides, and EE-Induced Increase in the Abundance of g_Clostridium May Be Related to Liver Bile Acid Metabolism
4.3. Dietary Energy Changes Affected Hepatic Lipid Metabolism by Modulating the Glycerophospholipid Metabolism Pathway, and EE Also May Be Involved in This Pathway by Altering the Gut Microbial Metabolite TMAO
5. Conclusions
Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Chen, F.; Lin, X.; Wang, Y.; He, J.; Zhao, Y. Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs. Animals 2020, 11, 27. [Google Scholar] [CrossRef]
- Wells, J.C.K. Thrift: A Guide to Thrifty Genes, Thrifty Phenotypes and Thrifty Norms. Int. J. Obes. 2009, 33, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Gerstein, H.C. Why Don’t Pigs Get Diabetes? Explanations for Variations in Diabetes Susceptibility in Human Populations Living in a Diabetogenic Environment. Can. Med. Assoc. J. 2006, 174, 25–26. [Google Scholar] [CrossRef]
- Fang, X.; Mou, Y.; Huang, Z.; Li, Y.; Han, L.; Zhang, Y.; Feng, Y.; Chen, Y.; Jiang, X.; Zhao, W.; et al. The Sequence and Analysis of a Chinese Pig Genome. GigaScience 2012, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Groenen, M.A.M.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.-J.; et al. Analyses of Pig Genomes Provide Insight into Porcine Demography and Evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Xi, S.; Yin, W.; Wang, Z.; Kusunoki, M.; Lian, X.; Koike, T.; Fan, J.; Zhang, Q. A Minipig Model of High-fat/High-sucrose Diet-induced Diabetes and Atherosclerosis. Int. J. Exp. Pathol. 2004, 85, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Xia, Y.; Chen, S.; Wu, G.; Bazer, F.W.; Zhou, B.; Tan, B.; Zhu, G.; Deng, J.; Yin, Y. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Adv. Nutr. 2019, 10, 321–330. [Google Scholar] [CrossRef]
- Castillo, J.J.; Orlando, R.A.; Garver, W.S. Gene-Nutrient Interactions and Susceptibility to Human Obesity. Genes Nutr. 2017, 12, 29. [Google Scholar] [CrossRef]
- Hong, B.S.; Li, Y.; Lai, S.; Liu, J.; Guan, H.; Ke, W.; He, X.; Li, Y. Ectopic Fat Deposition on Insulin Sensitivity: Correlation of Hepatocellular Lipid Content and M Value. J. Diabetes Res. 2016, 2016, 3684831. [Google Scholar] [CrossRef]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chartrand, M.S.; Dadar, M.; Bjørklund, G. Is There a Relationship between Intestinal Microbiota, Dietary Compounds, and Obesity? Trends Food Sci. Technol. 2017, 70, 105–113. [Google Scholar] [CrossRef]
- Hou, G.; Wei, L.; Li, R.; Chen, F.; Yin, J.; Huang, X.; Yin, Y. Lactobacillus delbrueckii Ameliorated Blood Lipids via Intestinal Microbiota Modulation and Fecal Bile Acid Excretion in a Ningxiang Pig Model. Animals 2024, 14, 1801. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wang, Y.; Wang, K.; Chen, J.; Jin, K.; Peng, K.; Chen, X.; Liu, Z.; Ouyang, J.; Wang, Y.; et al. Effects of Litsea Cubeba Essential Oil on Growth Performance, Blood Antioxidation, Immune Function, Apparent Digestibility of Nutrients, and Fecal Microflora of Pigs. Front. Pharmacol. 2023, 14, 1166022. [Google Scholar] [CrossRef] [PubMed]
- GB/T28715-2012; Determination of Acidic and Neutral Protease Activity in Feed Additives by Spectrophotometry. The Standardization Administration of the People’s Republic of China: Beijing, China, 2012.
- Yang, Y.-Y.; Shi, L.-X.; Li, J.-H.; Yao, L.-Y.; Xiang, D.-X. Piperazine Ferulate Ameliorates the Development of Diabetic Nephropathy by Regulating Endothelial Nitric Oxide Synthase. Mol. Med. Rep. 2019, 19, 2245–2253. [Google Scholar] [CrossRef]
- Bai, M.; Liu, H.; Yan, Y.; Duan, S.; Szeto, I.M.-Y.; He, J.; Hu, J.; Fu, Y.; Xu, K.; Xiong, X. Hydrolyzed Protein Formula Improves the Nutritional Tolerance by Increasing Intestinal Development and Altering Cecal Microbiota in Low-Birth-Weight Piglets. Front. Nutr. 2024, 11, 1439110. [Google Scholar] [CrossRef]
- Wang, S.; Bao, Z.; Li, Z.; Zhao, M.; Wang, X.; Liu, F.; Wang, K.; Ma, J.; Li, Y.; Han, Q.; et al. Effects of Essential Oil Extracted from Artemisia Argyi Leaf on Lipid Metabolism and Gut Microbiota in High-Fat Diet-Fed Mice. Front. Nutr. 2025, 9, 1024722. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Shen, X.; Liu, J.; Zhao, D.; Sun, Y.; Wang, L.; Liu, Y.; Gong, X.; Liu, Y.; et al. Serum Metabolomics for Early Diagnosis of Esophageal Squamous Cell Carcinoma by UHPLC-QTOF/MS. Metabolomics 2016, 12, 116. [Google Scholar] [CrossRef]
- Wang, K.; Yang, A.; Li, Y.; Han, Q.; Yin, Z.; Xia, S.; Chen, J.; Mo, J.; Bin, P. Artemisia Argyi Essential Oil Modulates Lipid Metabolism via Linoleic Acid and Glycerophospholipid Pathways in High-Fat Diet-Induced Obese Mice. Front. Nutr. 2025, 12, 1650976. [Google Scholar] [CrossRef]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond Biomarkers and towards Mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef]
- Sejersen, H.; Sørensen, M.T.; Larsen, T.; Bendixen, E.; Ingvartsen, K.L. Liver Protein Expression in Young Pigs in Response to a High-Fat Diet and Diet Restriction1. J. Anim. Sci. 2013, 91, 147–158. [Google Scholar] [CrossRef]
- Yamashita, H.; Takenoshita, M.; Sakurai, M.; Bruick, R.K.; Henzel, W.J.; Shillinglaw, W.; Arnot, D.; Uyeda, K. A Glucose-Responsive Transcription Factor That Regulates Carbohydrate Metabolism in the Liver. Proc. Natl. Acad. Sci. USA 2001, 98, 9116–9121. [Google Scholar] [CrossRef] [PubMed]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the Complete Program of Cholesterol and Fatty Acid Synthesis in the Liver. J. Clin. Investig. 2002, 109, 1125–1131. [Google Scholar] [CrossRef]
- Hou, G.; Wei, L.; Li, R.; Chen, F.; Yin, J.; Huang, X.; Yin, Y.; Ji, Y.; Jeon, Y.G.; Lee, W.T.; et al. PKA Regulates Autophagy through Lipolysis during Fasting. Mol. Cells 2024, 47, 100149. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, M.; Gong, X.; Zhou, Y.; Chen, J.; Ma, J.; Zhang, P. Zhang Starch–Protein Interaction Effects on Lipid Metabolism and Gut Microbes in Host. Front. Nutr. 2022, 9, 1018026. [Google Scholar]
- Wang, H.H.; Garruti, G.; Liu, M.; Portincasa, P.; Wang, D.Q.-H. Cholesterol and Lipoprotein Metabolism and Atherosclerosis: Recent Advances in Reverse Cholesterol Transport. Ann. Hepatol. 2017, 16, S27–S42. [Google Scholar] [CrossRef]
- Romański, K.W. The Role and Mechanism of Action of Bile Acids within the Digestive System–Bile Acids in the Liver and Bile. Adv. Clin. Exp. Med. 2007, 16, 793–799. [Google Scholar]
- Bauer, E.; Jakob, S.; Mosenthin, R. Principles of Physiology of Lipid Digestion. Asian. Austral. J. Anim. 2025, 18, 282–295. [Google Scholar] [CrossRef]
- Ma, H.; Patti, M.E. Bile Acids, Obesity, and the Metabolic Syndrome. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Wahlström, A.; Sayin, S.I.; Marschall, H.-U.; Bäckhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab. 2016, 24, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Sayin, S.I.; Wahlström, A.; Felin, J.; Jäntti, S.; Marschall, H.-U.; Bamberg, K.; Angelin, B.; Hyötyläinen, T.; Orešič, M.; Bäckhed, F. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-Beta-Muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013, 17, 225–235. [Google Scholar] [CrossRef]
- Begley, M.; Gahan, C.G.M.; Hill, C. The Interaction between Bacteria and Bile. FEMS Microbiol. Rev. 2005, 29, 625–651. [Google Scholar] [CrossRef]
- Barut, I.; Kaya, S. The Diagnostic Value of C-Reactive Protein in Bacterial Translocation in Experimental Biliary Obstruction. Adv. Clin. Exp. Med. 2021, 23, 197–203. [Google Scholar] [CrossRef]
- Islam, K.B.M.S.; Fukiya, S.; Hagio, M.; Fujii, N.; Ishizuka, S.; Ooka, T.; Ogura, Y.; Hayashi, T.; Yokota, A. Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology 2011, 141, 1773–1781. [Google Scholar] [CrossRef]
- Narushima, S.; Itoh, K.; Miyamoto, Y.; Park, S.; Nagata, K.; Kuruma, K.; Uchida, K. Deoxycholic Acid Formation in Gnotobiotic Mice Associated with Human Intestinal Bacteria. Lipids 2006, 41, 835–843. [Google Scholar] [CrossRef]
- Lamichhane, S.; Sen, P.; Alves, M.A.; Ribeiro, H.C.; Raunioniemi, P.; Hyötyläinen, T.; Orešič, M. Linking Gut Microbiome and Lipid Metabolism: Moving beyond Associations. Metabolites 2021, 11, 55. [Google Scholar] [CrossRef]
- Wei, M.; Huang, F.; Zhao, L.; Zhang, Y.; Yang, W.; Wang, S.; Li, M.; Han, X.; Ge, K.; Qu, C.; et al. A Dysregulated Bile Acid-Gut Microbiota Axis Contributes to Obesity Susceptibility. eBioMedicine 2020, 55, 102766. [Google Scholar] [CrossRef] [PubMed]
- Marion, S.; Studer, N.; Desharnais, L.; Menin, L.; Escrig, S.; Meibom, A.; Hapfelmeier, S.; Bernier-Latmani, R. In Vitro and in Vivo Characterization of Clostridium Scindens Bile Acid Transformations. Gut Microbes 2019, 10, 481–503. [Google Scholar] [CrossRef] [PubMed]
- Sharpton, S.R.; Schnabl, B.; Knight, R.; Loomba, R. Current Concepts, Opportunities, and Challenges of Gut Microbiome-Based Personalized Medicine in Nonalcoholic Fatty Liver Disease. Cell Metab. 2021, 33, 21–32. [Google Scholar] [CrossRef]
- Studer, N.; Desharnais, L.; Beutler, M.; Brugiroux, S.; Terrazos, M.A.; Menin, L.; Schürch, C.M.; McCoy, K.D.; Kuehne, S.A.; Minton, N.P.; et al. Functional Intestinal Bile Acid 7α-Dehydroxylation by Clostridium Scindens Associated with Protection from Clostridium Difficile Infection in a Gnotobiotic Mouse Model. Front. Cell. Infect. Microbiol. 2016, 6, 191. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef]
- Cottenie, K. Integrating Environmental and Spatial Processes in Ecological Community Dynamics. Ecol. Lett. 2005, 8, 1175–1182. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human Gut Microbes Associated with Obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- Lovatto, P.A.; Sauvant, D.; Noblet, J.; Dubois, S.; van Milgen, J. Effects of Feed Restriction and Subsequent Refeeding on Energy Utilization in Growing Pigs. J. Anim. Sci. 2006, 84, 3329–3336. [Google Scholar] [CrossRef]
- Lebret, B.; Heyer, A.; Gondret, F.; Louveau, I. The Response of Various Muscle Types to a Restriction–Re-Alimentation Feeding Strategy in Growing Pigs. Animal 2007, 1, 849–857. [Google Scholar] [CrossRef]
- Chaosap, C.; Parr, T.; Wiseman, J. Effect of Compensatory Growth on Performance, Carcass Composition and Plasma IGF-1 in Grower Finisher Pigs. Animal 2011, 5, 749–756. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rouzer, C.A.; Ivanova, P.T.; Byrne, M.O.; Milne, S.B.; Marnett, L.J.; Brown, H.A. Lipid Profiling Reveals Arachidonate Deficiency in RAW264.7 Cells: Structural and Functional Implications. Biochemistry 2006, 45, 14795–14808. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Ding, T.; Lou, C.; Bui, H.H.; Kuo, M.-S.; Jiang, X.-C. Deficiency in Lysophosphatidylcholine Acyltransferase 3 Reduces Plasma Levels of Lipids by Reducing Lipid Absorption in Mice. Gastroenterology 2015, 149, 1519–1529. [Google Scholar] [CrossRef]
- Cole, L.K.; Vance, J.E.; Vance, D.E. Phosphatidylcholine Biosynthesis and Lipoprotein Metabolism. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2012, 1821, 754–761. [Google Scholar] [CrossRef]
- Vance, D.E. Role of Phosphatidylcholine Biosynthesis in the Regulation of Lipoprotein Homeostasis. Curr. Opin. Lipidol. 2008, 19, 229–234. [Google Scholar] [CrossRef]
- Kim, S.J.; Hyun, J. Altered Lipid Metabolism as a Predisposing Factor for Liver Metastasis in MASLD. Mol. Cells 2024, 47, 100010. [Google Scholar] [CrossRef]
- Bäckhed, F.; Manchester, J.K.; Semenkovich, C.F.; Gordon, J.I. Mechanisms Underlying the Resistance to Diet-Induced Obesity in Germ-Free Mice. Proc. Natl. Acad. Sci. USA 2007, 104, 979–984. [Google Scholar] [CrossRef]
- Velagapudi, V.R.; Hezaveh, R.; Reigstad, C.S.; Gopalacharyulu, P.; Yetukuri, L.; Islam, S.; Felin, J.; Perkins, R.; Borén, J.; Orešič, M.; et al. The Gut Microbiota Modulates Host Energy and Lipid Metabolism in Mice. J. Lipid Res. 2010, 51, 1101–1112. [Google Scholar] [CrossRef]
- He, Q.; Ren, P.; Kong, X.; Wu, Y.; Wu, G.; Li, P.; Hao, F.; Tang, H.; Blachier, F.; Yin, Y. Comparison of Serum Metabolite Compositions between Obese and Lean Growing Pigs Using an NMR-Based Metabonomic Approach. J. Nutr. Biochem. 2012, 23, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Rezzi, S.; Ramadan, Z.; Fay, L.B.; Kochhar, S. Nutritional Metabonomics: Applications and Perspectives. J. Proteome Res. 2007, 6, 513–525. [Google Scholar] [CrossRef]
- Li, M.; Wang, B.; Zhang, M.; Rantalainen, M.; Wang, S.; Zhou, H.; Zhang, Y.; Shen, J.; Pang, X.; Zhang, M.; et al. Symbiotic Gut Microbes Modulate Human Metabolic Phenotypes. Proc. Natl. Acad. Sci. USA 2008, 105, 2117–2122. [Google Scholar] [CrossRef] [PubMed]
- Schoeler, M.; Caesar, R. Dietary Lipids, Gut Microbiota and Lipid Metabolism. Rev. Endocr. Metab. Disord. 2019, 20, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef]
- Caesar, R.; Nygren, H.; Orešič, M.; Bäckhed, F. Interaction between Dietary Lipids and Gut Microbiota Regulates Hepatic Cholesterol Metabolism. J. Lipid Res. 2016, 57, 474–481. [Google Scholar] [CrossRef]
- Roura, E.; Koopmans, S.-J.; Lallès, J.-P.; Le Huerou-Luron, I.; de Jager, N.; Schuurman, T.; Val-Laillet, D. Critical Review Evaluating the Pig as a Model for Human Nutritional Physiology. Nutr. Res. Rev. 2016, 29, 60–90. [Google Scholar] [CrossRef]
- Gątarek, P.; Kałużna-Czaplińska, J. Trimethylamine N-Oxide (TMAO) in Human Health. EXCLI J. 2021, 20, 301–319. [Google Scholar] [CrossRef] [PubMed]
- Florea, C.M.; Rosu, R.; Moldovan, R.; Vlase, L.; Toma, V.; Decea, N.; Baldea, I.; Filip, G.A. The Impact of Chronic Trimethylamine N-Oxide Administration on Liver Oxidative Stress, Inflammation, and Fibrosis. Food Chem. Toxicol. 2024, 184, 114429. [Google Scholar] [CrossRef] [PubMed]
- Kararli, T.T. Comparison of the Gastrointestinal Anatomy, Physiology, and Biochemistry of Humans and Commonly Used Laboratory Animals. Biopharm. Drug Dispos. 1995, 16, 351–380. [Google Scholar] [CrossRef] [PubMed]
- Hoyles, L.; Fernández-Real, J.-M.; Federici, M.; Serino, M.; Abbott, J.; Charpentier, J.; Heymes, C.; Luque, J.L.; Anthony, E.; Barton, R.H.; et al. Molecular Phenomics and Metagenomics of Hepatic Steatosis in Non-Diabetic Obese Women. Nat. Med. 2018, 24, 1070–1080. [Google Scholar] [CrossRef]



| Ingredient, % | CON | EE | RE |
|---|---|---|---|
| Corn | 54.90 | 57.10 | 47.90 |
| Soybean meal | 8.20 | 5.60 | 8.20 |
| Peanut meal | 0.00 | 5.00 | 0.00 |
| Wheat bran | 21.30 | 0.00 | 29.8 |
| Rice bran | 6.40 | 21.40 | 0.00 |
| Soybean oil | 3.20 | 7.90 | 0.00 |
| CaHPO4 | 0.27 | 0.51 | 0.19 |
| Limestone | 1.01 | 0.90 | 1.05 |
| L-Lys HCl 98% | 0.11 | 0.11 | 0.13 |
| Threonine | 0.01 | 0.00 | 0.03 |
| Tryptophan | 0.00 | 0.02 | 0.00 |
| Rice chaff | 1.7 | 0.46 | 1.5 |
| Zeolite | 1.90 | 0.00 | 10.20 |
| Premix 2 | 1.00 | 1.00 | 1.00 |
| Total | 100.00 | 100.00 | 100.00 |
| Nutrient levels 3 | |||
| Digestible energy, MJ/kg | 13.02 | 15.22 | 10.84 |
| Crude protein | 12.01 | 12.01 | 12.01 |
| Crude fiber | 4.07 | 3.31 | 4.06 |
| Crude fat | 5.28 | 9.40 | 2.12 |
| Lys | 0.60 | 0.60 | 0.60 |
| Met | 0.20 | 0.20 | 0.20 |
| Thr | 0.44 | 0.44 | 0.44 |
| Try | 0.13 | 0.12 | 0.13 |
| Calcium | 0.50 | 0.50 | 0.50 |
| Total phosphorus | 0.53 | 0.61 | 0.49 |
| Available phosphorus | 0.16 | 0.16 | 0.16 |
| Gene | Accession No. | Primer Sequence (5′-3′) | Product Size (bp) |
|---|---|---|---|
| SREBP-1c | NM_214157.1 | F: GCGACGGTGCCTCTGGTAGT | 96 |
| R: CGCAAGACGGCGGATTTA | |||
| LPL | NM 214286 | F: ATCTGCGGGATACACCAAGC R: CCAAGGCTGTATCCCAGGAG | 110 |
| ACC | NM-001114269 | F: GGCCATCAAGGACTTCAACC | 120 |
| R: ACGATGTAAGCGCCGAACTT | |||
| FAS | NM-001099930 | F: ACACCTTCGTGCTGGCCTAC | 112 |
| R: ATGTCGGTGAACTGCTGCAC | |||
| PPAR γ | NM-214379 | F: GAGGGCGATCTTGACAGGAA | 124 |
| R: GCCACCTCTTTGCTCTGCTC | |||
| β-actin | XM-003124280.3 | F: CCTGCGGCATCCACGAAAC | 123 |
| R: TGTCGGCGATGCCTGGGTA | |||
| GAPDH | NM-001206359.1 | F: TCGGAGTGAACGGATTTGGC | 95 |
| R: GAAGGGGTCATTGATGGCGA |
| Parameters | CON | EE | RE | SEM | p-Value |
|---|---|---|---|---|---|
| Dressing percentage/% | 73.95 | 73.43 | 72.34 | 0.71 | 0.678 |
| Kidney fat percentage/% | 5.06 | 6.04 | 5.57 | 0.38 | 0.603 |
| Fat percentage/% | 39.50 b | 42.98 a | 38.77 b | 0.74 | 0.047 |
| Lean meat percentage/% | 39.53 | 38.20 | 39.38 | 0.60 | 0.663 |
| Backfat thickness/mm | 37.42 | 42.93 | 36.53 | 1.66 | 0.290 |
| Hepatosomatic index/% | 1.65 b | 2.17 a | 1.68 b | 0.09 | 0.018 |
| Parameters | CON | EE | RE | SEM | p-Value |
|---|---|---|---|---|---|
| apparent total tract digestibility (ATTD)/% | |||||
| CP | 71.60 b | 80.94 a | 72.22 b | 1.55 | 0.005 |
| Ash | 72.50 b | 81.91 a | 68.31 c | 1.82 | 0.000 |
| DM | 70.76 b | 80.41 a | 66.07 c | 1.92 | 0.000 |
| GE | 75.79 b | 83.75 a | 75.40 b | 1.3 | 0.001 |
| EE | 55.79 b | 71.21 a | 40.72 c | 3.94 | 0.000 |
| Jejunum | |||||
| LPS/(U/dl) | 74.59 b | 200.39 a | 107.25 a,b | 23.06 | 0.043 |
| NP/(U/mL) | 123.47 b | 371.21 a | 137.48 b | 46.93 | 0.049 |
| Ileum | |||||
| LPS/(U/dl) | 46.43 b | 79.86 a | 31.58 b | 7.89 | 0.016 |
| NP/(U/mL) | 181.95 | 247.11 | 174.69 | 28.95 | 0.591 |
| Parameters | CON | EE | RE | SEM | p-Value |
|---|---|---|---|---|---|
| Serum | |||||
| TG | 0.57 | 0.88 | 0.67 | 0.88 | 0.396 |
| TC | 3.67 | 4.13 | 3.19 | 0.2 | 0.169 |
| HDL-C (mmol/L) | 1.49 | 1.53 | 1.13 | 0.09 | 0.120 |
| LDL-C (mmol/L) | 1.65 | 1.72 | 1.62 | 0.1 | 0.922 |
| HDL-C/LDL-C | 0.94 | 0.9 | 0.76 | 0.06 | 0.415 |
| Liver | |||||
| HDL-C (mmol/gprot) | 14.21 b | 20.47 b | 31.38 a | 2.41 | 0.002 |
| TBA (umol/gprot) | 3.91 b | 7.07 a | 5.98 a,b | 0.56 | 0.041 |
| NEFA (mmol/L) | 0.24 a | 0.34 a | 0.10 b | 0.03 | 0.006 |
| TG (mmol/L) | 1.26 a | 1.60 a | 0.88 b | 0.10 | 0.006 |
| LDL-C(mmol/L) | 0.43 b | 0.65 a | 0.34 b | 0.04 | 0.000 |
| TC (mmol/L) | 0.89 a | 0.87 a | 0.71 b | 0.03 | 0.001 |
| Parameters | CON | EE | RE | SEM | p-Value |
|---|---|---|---|---|---|
| phylum level | |||||
| p__Firmicutes | 74.97 b | 85.44 a | 88.42 a | 1.97 | 0.001 |
| p__Bacteroidetes | 8.11 a | 3.81 b | 2.78 b | 0.89 | 0.019 |
| p__Firmicutes/Bacteroidetes | 10.06 b | 24.53 a,b | 34.00 a | 3.85 | 0.024 |
| genus level | |||||
| p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae | |||||
| g__Streptococcus | 2.82 b | 1.59 b | 11.65 a | 1.75 | 0.012 |
| p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae_1 | |||||
| g__Clostridium_sensu_stricto_1 | 11.30 b | 19.48 a | 11.50 b | 1.59 | 0.017 |
| p__Firmicutes; g__ c__Clostridia;o__Clostridiales; f__Peptostreptococcaceae | |||||
| g__Terrisporobacter | 8.78 a | 3.86 b | 9.74 a | 1.07 | 0.035 |
| p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae | |||||
| g__Lachnospiraceae_XPB1014_group | 3.08 | 6.05 | 1.50 | 0.83 | 0.050 |
| Metabolites | Biological Role | EE | RE |
|---|---|---|---|
| LysoPE (0:0/20:5(5Z,8Z,11Z,14Z,17Z)) | Glycerophospholipids | + | - |
| LysoPE (18:1(9Z)/0:0) | Glycerophospholipids | + | - |
| LysoPE (18:3(6Z,9Z,12Z)/0:0) | Glycerophospholipids | + | - |
| PC (P-18:1(11Z)/22:5(4Z,7Z,10Z,13Z,16Z)) | Glycerophospholipids | + | - |
| PC (P-18:1(11Z)/20:5(5Z,8Z,11Z,14Z,17Z)) | Glycerophospholipids | + | - |
| PC (22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:0) | Glycerophospholipids | + | - |
| LysoPC (20:0/0:0) (C04230) | Glycerophospholipids | + | - |
| PC (18:0/22:5(4Z,7Z,10Z,13Z,16Z)) (C00157) | Glycerophospholipids | - | - |
| PC (20:3(5Z,8Z,11Z)/16:0) (C00157) | Glycerophospholipids | + | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wu, Y.; He, J.; Wang, Y.; Wang, M.; Lu, Y.; Chen, F.; Zhao, Y. Excessive Effects of Extreme Energy Levels on Lipid Metabolism in Ningxiang Pigs: Insights from Gut Microbiota and Glycerophospholipid Metabolism. Nutrients 2025, 17, 3648. https://doi.org/10.3390/nu17233648
Chen J, Wu Y, He J, Wang Y, Wang M, Lu Y, Chen F, Zhao Y. Excessive Effects of Extreme Energy Levels on Lipid Metabolism in Ningxiang Pigs: Insights from Gut Microbiota and Glycerophospholipid Metabolism. Nutrients. 2025; 17(23):3648. https://doi.org/10.3390/nu17233648
Chicago/Turabian StyleChen, Jiayi, Yongmei Wu, Jianhua He, Yaodong Wang, Min Wang, Yifei Lu, Fengming Chen, and Yurong Zhao. 2025. "Excessive Effects of Extreme Energy Levels on Lipid Metabolism in Ningxiang Pigs: Insights from Gut Microbiota and Glycerophospholipid Metabolism" Nutrients 17, no. 23: 3648. https://doi.org/10.3390/nu17233648
APA StyleChen, J., Wu, Y., He, J., Wang, Y., Wang, M., Lu, Y., Chen, F., & Zhao, Y. (2025). Excessive Effects of Extreme Energy Levels on Lipid Metabolism in Ningxiang Pigs: Insights from Gut Microbiota and Glycerophospholipid Metabolism. Nutrients, 17(23), 3648. https://doi.org/10.3390/nu17233648

