Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Effect of Process Control Agent on Microstructures and High-Temperature Oxidation Behavior of a Nickel-Based ODS Alloy
Metals 2022, 12(6), 1029; https://doi.org/10.3390/met12061029 - 17 Jun 2022
Viewed by 405
Abstract
Two nickel-based oxide-dispersion-strengthened (ODS) alloys supplemented with different amounts of process control agent (PCA) were prepared. The microstructures including grains and nanometric oxides and the subsequent oxidation behavior of these ODS alloys were investigated. It was found that the distribution of nanometric oxides [...] Read more.
Two nickel-based oxide-dispersion-strengthened (ODS) alloys supplemented with different amounts of process control agent (PCA) were prepared. The microstructures including grains and nanometric oxides and the subsequent oxidation behavior of these ODS alloys were investigated. It was found that the distribution of nanometric oxides in the nickel-based ODS alloy is uniform and the grains are refined by adding a proper amount of PCA in the mechanical milling, while the blocking effect on the diffusion of active elements Y, Al and Ti among powders takes place with an excessive amount of PCA, resulting in the precipitation of large-size oxides in local areas of the alloy. After oxidation in air at 1000 °C for 200 h, the oxide scales on the surface of both nickel-based ODS alloys are composed of Cr2O3. As Y-rich oxide particles are precipitated in the matrix, the thickness of the oxide scale is significantly reduced compared with non-ODS alloys. However, due to the influence of grain boundaries on the diffusion of elements, the oxide scale on the surface of an alloy with finer grain size is thicker. The oxidation resistance of ODS alloys strongly depends on the exact manufacturing process. Full article
(This article belongs to the Special Issue High Temperature Corrosion or Oxidation of Metals and Alloys)
Show Figures

Figure 1

Article
Biofilm Development on Carbon Steel by Iron Reducing Bacterium Shewanella putrefaciens and Their Role in Corrosion
Metals 2022, 12(6), 1005; https://doi.org/10.3390/met12061005 - 12 Jun 2022
Viewed by 479
Abstract
Microscopic, electrochemical and surface characterization techniques were used to investigate the effects of iron reducing bacteria (IRB) biofilm on carbon steel corrosion for 72 and 168 h under batch conditions. The organic nutrient availability for the bacteria was varied to evaluate biofilms formed [...] Read more.
Microscopic, electrochemical and surface characterization techniques were used to investigate the effects of iron reducing bacteria (IRB) biofilm on carbon steel corrosion for 72 and 168 h under batch conditions. The organic nutrient availability for the bacteria was varied to evaluate biofilms formed under nutritionally rich, as compared to nutritionally deficient, conditions. Focused ion beam-scanning electron microscopy (FIB-SEM) was used to investigate the effect of subsurface biofilm structures on the corrosion characteristics of carbon steel. Hydrated biofilms produced by IRB were observed under environmental scanning electron microscope (ESEM) with minimal surface preparation, and the elemental composition of the biofilms was investigated using energy dispersive spectroscopy (EDX). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) was used to provide information on the organic and inorganic chemical makeup of the biofilms. Electrochemical techniques employed for assessing corrosion, by open circuit potential, linear polarization and potentiodynamic polarization tests indicated no significant difference in the corrosion resistance for carbon steel in IRB-inoculated, compared to the abiotic solutions of common Postgate C after 72 and 168 h. However, the steel was found to be more susceptible to corrosion when the yeast extract was removed from the biotic environment for the 168 h test. In the absence of yeast nutrient, it is postulated that IRB received energy by transforming the protective film of Fe3+ into more soluble Fe2+ products. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials)
Show Figures

Figure 1

Article
The Holes of Zn Phosphate and Hot Dip Galvanizing on Electrochemical Behaviors of Multi-Coatings on Steel Substrates
Metals 2022, 12(5), 863; https://doi.org/10.3390/met12050863 - 18 May 2022
Cited by 4 | Viewed by 422
Abstract
The aim of this investigation is focused on the evaluation of distinctive coatings commonly applied in the automotive industry. The resulting corrosion behavior is analyzed by using electrochemical impedance spectroscopy (EIS), equivalent circuit (EC) and potentiodynamic polarization curves. The novelty concerns a comparison [...] Read more.
The aim of this investigation is focused on the evaluation of distinctive coatings commonly applied in the automotive industry. The resulting corrosion behavior is analyzed by using electrochemical impedance spectroscopy (EIS), equivalent circuit (EC) and potentiodynamic polarization curves. The novelty concerns a comparison between tricationic phosphate (TCP), cataphoretic electrodeposition (CED) of an epoxy layer, TCP + CED and HDG (hot-dip galvanized) + TCP + CED multi-coatings. Both the naturally deposited and defect-induced damage (incision) coatings are examined. The experimental impedance parameters and corrosion current densities indicate that multi-coating system (HDG + TCP + CED layers) provides better protection. Both planar and porous electrode behaviors are responsible to predict the corrosion mechanism of the majority of samples examined. Although induced-damage samples reveal that corrosion resistances decreased up to 10×, when compared with no damaged samples, the same trend of the corrosion protection is maintained, i.e., TCP < CED < TCP + CED < HDG + TCP + CED. It is also found that the same trend verified by using electrochemical parameters is also observed when samples are subjected under salt spray condition (500 h). It is also found that porous electrode behavior is not a deleterious aspect to corrosion resistance. It is more intimately associated with initial thickness coating, while corrosion resistance is associated with adhesion of the CED layer on TCP coating. The results of relative cost-to-efficiency to relative coating density ratios are associated with fact that a CED coating is necessary to top and clear coating applications and the TCP + CED and the HDG/TCP + CED coating systems exhibit the best results. Full article
Show Figures

Figure 1

Article
Electrochemical Corrosion Resistance of Mg Alloy ZK60 in Different Planes with Respect to Extrusion Direction
Metals 2022, 12(5), 782; https://doi.org/10.3390/met12050782 - 30 Apr 2022
Viewed by 560
Abstract
The electrochemical corrosion resistance of a Mg-Zn-Zr alloy, ZK60, in different planes with respect to the extrusion direction was investigated in 3.5 wt% NaCl. The motivation of this study lies in the influence of extrusion on the grain size, texture and precipitation characteristics [...] Read more.
The electrochemical corrosion resistance of a Mg-Zn-Zr alloy, ZK60, in different planes with respect to the extrusion direction was investigated in 3.5 wt% NaCl. The motivation of this study lies in the influence of extrusion on the grain size, texture and precipitation characteristics of magnesium alloys, and the profound role of these characteristics in the corrosion resistance of the alloys. Corrosion resistance was found to be considerably superior in the plane transverse to the extrusion direction (TD) than in the extrusion direction (ED) or normal to the extrusion direction (ND). The difference in the corrosion resistance was attributed to the variations in microstructural features in the TD, ED and ND directions. Full article
Show Figures

Figure 1

Article
Investigation on Corrosion Resistance Properties of 17-4 PH Bound Metal Deposition As-Sintered Specimens with Different Build-Up Orientations
Metals 2022, 12(4), 588; https://doi.org/10.3390/met12040588 - 30 Mar 2022
Viewed by 835
Abstract
Additive manufacturing is a promising and emerging technology that can transform the global manufacturing and logistics by cutting costs and times of production. Localized corrosion resistance properties of 0°, 45°, and 90° build-up orientations of 17-4 PH as-sintered samples, manufactured by means of [...] Read more.
Additive manufacturing is a promising and emerging technology that can transform the global manufacturing and logistics by cutting costs and times of production. Localized corrosion resistance properties of 0°, 45°, and 90° build-up orientations of 17-4 PH as-sintered samples, manufactured by means of Bound Metal Deposition (BMD), have been investigated by electrochemical and morphological investigations. The cyclic potentiodynamic polarization curves and the open circuit potential monitoring, together with potential drop analysis, revealed that the BMD localized corrosion resistance properties were lowered if compared to a wrought 17-4 PH: a characteristic anodic behavior and many drops in potential were recorded for BMD, whilst the wrought specimens presented a typical passive behavior with pitting corrosion. Morphological investigations by scanning electron microscopy and energy-dispersive X-ray analysis revealed the presence of porosities and defects, especially for the 90° build-up orientation, and inclusions of SiO2. The 45° build-up orientation showed the best corrosion resistance properties among all the BMD specimens, even though defects and porosities were observed, suggesting that their morphology and geometry influenced the overall corrosion behavior. Full article
(This article belongs to the Special Issue Corrosion and Protection of Stainless Steels)
Show Figures

Figure 1

Article
Corrosion Behavior of Gravity Cast and High-Pressure Die-Cast AM60 Mg Alloys with Ca and Y Addition
Metals 2022, 12(3), 495; https://doi.org/10.3390/met12030495 - 15 Mar 2022
Viewed by 525
Abstract
In this study, the microstructure and related corrosion behavior of AM60 alloys with/without Ca and Y addition upon gravity casting (GC) and high-pressure die-casting (HPDC) are investigated by means of SEM/EDS characterization, immersion/salt spray test, hydrogen releasing, as well as electrochemistry examination. When [...] Read more.
In this study, the microstructure and related corrosion behavior of AM60 alloys with/without Ca and Y addition upon gravity casting (GC) and high-pressure die-casting (HPDC) are investigated by means of SEM/EDS characterization, immersion/salt spray test, hydrogen releasing, as well as electrochemistry examination. When utilizing GC, AM60 alloy with Ca and Y addition (named AZXW6000 alloy) has better corrosion resistance compared with AM60 alloy. Thanks to grain refinement and second phase networks introduced in HPDC, the anti-corrosion properties of the AM alloy seem much better than those of the GC counterpart. The corrosion mechanism of both GCed and HPDCed AM60-based alloys is also investigated in detail. The inspiration from present work can provide more thinking for developing high corrosion-resistant Mg alloys using different casting methods. Full article
Show Figures

Figure 1

Article
Investigation on Blood Compatibility of Cu/Ti Metal Coating Prepared via Various Bias Voltages and Copper Content
Metals 2022, 12(3), 435; https://doi.org/10.3390/met12030435 - 01 Mar 2022
Viewed by 596
Abstract
Surface modification of some metal coatings is usually used to improve the blood compatibility of biomaterials; however, some aspects of the bological properties of metal coatings cannot be adjusted via the content of each component. In this work, Cu/Ti metal coatings with various [...] Read more.
Surface modification of some metal coatings is usually used to improve the blood compatibility of biomaterials; however, some aspects of the bological properties of metal coatings cannot be adjusted via the content of each component. In this work, Cu/Ti metal coatings with various amounts of copper content were prepared by the physical vapor deposition (PVD) method, and the influence of deposition bias was further investigated. Phase structure, element composition and surface morphology were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy, respectively. The hemolysis ratio, platelet adhesion and protein adsorption were applied to evaluate the blood compatibility. The results show that a Cu/Ti coating of uniform quality can be obtained; the dispersion of the deposition and copper content is regulated by the number of copper sheets, but the deposition bias does not obviously affect the copper content of the Cu/Ti coating. The hemolysis rate of the Cu/Ti coating is less than 0.4%, the degree of platelet adhesion is significantly reduced on Cu/Ti coatings compared to control samples, and the contact angle of all coatings is greater than that of pure titanium. The largest adsorption capacity of BSA was found on the coating with the deposition bias voltage of −40 V. The number of copper flakes is increased, and the adsorption of FIB on the Cu/Ti coating surface is reduced. Therefore, Cu/Ti coatings prepared via this deposition method have potential for applications to regulate blood compatibility and surface performance. Full article
(This article belongs to the Special Issue Frontiers in Stability of Metallic Implants)
Show Figures

Figure 1

Article
Effect of Intercritical Annealing Parameters and Starting Microstructure on the Microstructural Evolution and Mechanical Properties of a Medium-Mn Third Generation Advanced High Strength Steel
Metals 2022, 12(2), 356; https://doi.org/10.3390/met12020356 - 18 Feb 2022
Cited by 2 | Viewed by 674
Abstract
A prototype medium-Mn TRIP steel (0.2 C–6 Mn–1.7 Si–0.4 Al–0.5 Cr (wt %)) with a cold-rolled tempered martensite (CR) and martensitic (M) starting microstructures was subjected to continuous galvanizing line (CGL) compatible heat treatments. It was found that the M starting microstructures achieved [...] Read more.
A prototype medium-Mn TRIP steel (0.2 C–6 Mn–1.7 Si–0.4 Al–0.5 Cr (wt %)) with a cold-rolled tempered martensite (CR) and martensitic (M) starting microstructures was subjected to continuous galvanizing line (CGL) compatible heat treatments. It was found that the M starting microstructures achieved greater than 0.30 volume fraction of retained austenite and target 3G properties (UTS × TE ≥ 24,000 MPa%) using an intercritical annealing temperature (IAT) of 675 °C with an IA holding time of 60–360 s, whereas the CR microstructure required an IAT of 710 °C and annealing times of 360 s or greater to achieve comparable fractions of retained austenite and target 3G properties. This was attributed to the rapid austenite reversion kinetics for the M starting microstructures and rapid C partitioning from the C supersaturated martensite, providing chemical and mechanical stability to the retained austenite, thereby allowing for a gradual deformation-induced transformation of retained austenite to martensite—the TRIP effect—and the formation of nano-scale planar faults in the retained austenite (TWIP effect), such that a high work-hardening rate was maintained to elongation of greater than 0.20. Overall, it was concluded that the prototype steel with the M starting microstructure is a promising candidate for CGL processing for 3G AHSS properties. Full article
(This article belongs to the Special Issue Recent Developments in Medium and High Manganese Steels)
Show Figures

Figure 1

Article
Role of Hot Rolling in Microstructure and Texture Development of Strip Cast Non-Oriented Electrical Steel
Metals 2022, 12(2), 354; https://doi.org/10.3390/met12020354 - 18 Feb 2022
Cited by 1 | Viewed by 473
Abstract
In this study, the effect of the hot-cold rolling process on the evolution of the microstructure, texture and magnetic properties of strip-cast non-oriented electrical steel was investigated by introducing hot rolling with different reductions. The results indicate that hot rolling with an appropriate [...] Read more.
In this study, the effect of the hot-cold rolling process on the evolution of the microstructure, texture and magnetic properties of strip-cast non-oriented electrical steel was investigated by introducing hot rolling with different reductions. The results indicate that hot rolling with an appropriate reduction, such as the 20% used in this study, increases the shear bands and {100} deformed microstructure in the cold roll sheet. As a result, in our study, enhanced η and Cube recrystallization texture and the improved magnetic induction were obtained. However, hot rolling with excessive reduction (36–52%) decreased the shear bands and increased the α-oriented deformation microstructure with low stored energy. It enhanced the α recrystallization texture and weakened the η texture, resulting in a decrease in the magnetic induction. In addition, hot rolling promoted the precipitation of supersaturated solid solution elements in the as-cast strip, thereby affecting the subsequent microstructure evolution and the optimization of its magnetic properties. Full article
(This article belongs to the Special Issue Texture, Microstructure and Properties of Electrical Steels)
Show Figures

Figure 1

Article
Use of Porous Titanium Trabecular as a Bone Defect Regenerator: In Vivo Study
Metals 2022, 12(2), 327; https://doi.org/10.3390/met12020327 - 12 Feb 2022
Viewed by 468
Abstract
The application of porous materials is increasingly being used in orthopaedic surgery due to its good results. Bone growth within the pores results in excellent mechanical fixation with the bone, as well as good bone regeneration. The pores, in addition to being colonised [...] Read more.
The application of porous materials is increasingly being used in orthopaedic surgery due to its good results. Bone growth within the pores results in excellent mechanical fixation with the bone, as well as good bone regeneration. The pores, in addition to being colonised by bone, produce a decrease in the modulus of elasticity that favours the transfer of loads to the bone. This research shows the results of an experimental study where we have created critical osteoperiosteal defects of 10 mm on rabbit’s radius diaphysis. In one group of 10 rabbits (experimental group) we have implanted a bioactive porous titanium cylinder, and in another group we have allowed spontaneous regeneration (control group). Mechanical tests were performed to assess the material. Image diagnostic techniques (X-ray, scanner and 3D scan: there are no references on the literature with the use of CT-scan in bone defects) and histological and histomorphometric studies post-op and after 3, 6 and 12 months after the surgery were performed. All the control cases went through a pseudoarthrosis. In 9 of the 10 cases of the experimental group complete regeneration was observed, with a normal cortical-marrow structure established at 6 months, similar to normal bone. Titanium trabecular reached a bone percentage of bone inside the implant of 49.3% on its surface 3 months post-op, 75.6% at 6 months and 81.3% at 12 months. This porous titanium biomaterial has appropriate characteristics to allow bone ingrowth, and it can be proposed as a bone graft substitute to regenerate bone defects, as a scaffold, or as a coating to achieve implant osteointegration. Full article
Show Figures

Figure 1

Article
Rejuvenation-to-Relaxation Transition Induced by Elastostatic Compression and Its Effect on Deformation Behavior in a Zr-Based Bulk Metallic Glass
Metals 2022, 12(2), 282; https://doi.org/10.3390/met12020282 - 04 Feb 2022
Cited by 1 | Viewed by 466
Abstract
The effect of uniaxial elastostatic compression on the deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) bulk metallic glass (BMG) was reported. The as-cast alloy was pre-compressed under various time (20, 40 and 60 h) at [...] Read more.
The effect of uniaxial elastostatic compression on the deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit1) bulk metallic glass (BMG) was reported. The as-cast alloy was pre-compressed under various time (20, 40 and 60 h) at a preloading level of 87% of its yield strength. It was found that elastostatic compression can lead to structural rejuvenation or relaxation depending on the pre-compression time. Elastostatic compression, for 40 h, increased the free volume and improved the plasticity of the BMGs from 1.4% to 3.4%, but preloading for 60 h decreased the free volume and worsened the plasticity. In addition, the heterogeneous structure evolution during creep deformation has been analyzed by the Maxwell-Voigt model with two Kelvin units, revealing that more (less) defects with larger size are activated after elastostatic compression treatment for 40 h (60 h). This work sheds new light on the correlation between heterogeneous structure and plasticity/creep behaviors of Zr-based BMGs. Full article
(This article belongs to the Special Issue Structure and Properties of Amorphous Metallic Alloys)
Show Figures

Figure 1

Article
Effects of Thermomechanical Processing on Hydrogen Embrittlement Properties of UltraHigh-Strength TRIP-Aided Bainitic Ferrite Steels
Metals 2022, 12(2), 269; https://doi.org/10.3390/met12020269 - 31 Jan 2022
Viewed by 772
Abstract
The effects of thermomechanical processing on the microstructure and hydrogen embrittlement properties of ultrahigh-strength, low-alloy, transformation-induced plasticity (TRIP)-aided bainitic ferrite (TBF) steels were investigated to apply to automobile forging parts such as engine and drivetrain parts. The hydrogen embrittlement properties were evaluated by [...] Read more.
The effects of thermomechanical processing on the microstructure and hydrogen embrittlement properties of ultrahigh-strength, low-alloy, transformation-induced plasticity (TRIP)-aided bainitic ferrite (TBF) steels were investigated to apply to automobile forging parts such as engine and drivetrain parts. The hydrogen embrittlement properties were evaluated by conducting conventional tensile tests after hydrogen charging and constant load four-point bending tests with hydrogen charging. The 0.4 mass%C-TBF steel achieved refinement of the microstructure, improved retained austenite characteristics, and strengthening, owing to thermomechanical processing. This might be attributed to dynamic and static recrystallizations during thermomechanical processing in TBF steels. Moreover, the hydrogen embrittlement resistances were improved by the thermomechanical processing in TBF steels. This might be caused by the refinement of the microstructure, an increase in the stability of the retained austenite, and low hydrogen absorption of the thermomechanically processed TBF steels. Full article
(This article belongs to the Special Issue Recent Advances in High-Strength Forging Steels)
Show Figures

Figure 1

Article
Gallic Acid as a Potential Green Corrosion Inhibitor for Aluminum in Acidic Solution
Metals 2022, 12(2), 250; https://doi.org/10.3390/met12020250 - 28 Jan 2022
Cited by 1 | Viewed by 683
Abstract
Plant extracts are intensively studied as green corrosion inhibitors of aluminum. Because these extracts are complex systems, the influence of their individual constituents on the corrosion of aluminum should be determined. In this work, gallic acid was tested for the first time as [...] Read more.
Plant extracts are intensively studied as green corrosion inhibitors of aluminum. Because these extracts are complex systems, the influence of their individual constituents on the corrosion of aluminum should be determined. In this work, gallic acid was tested for the first time as a corrosion inhibitor of aluminum in orthophosphoric acid aqueous solution. So far, its potential inhibiting properties in acidic solutions were only suggested based on promising results obtained for various plant extracts. Evaluation of the potential inhibiting properties of gallic acid was performed using electrochemical methods. The corrosion potential, polarization curves, and impedance spectra of aluminum in 0.5 M orthophosphoric acid, at T = 303 K, were determined. The corrosion potential, corrosion current density, and corrosion rate of aluminum in orthophosphoric acid were equal to −1.151 V vs. Ag|AgCl (3M KCl) reference electrode, 36 μA∙cm−2 and 0.39 mm∙year−1, respectively. These values did not change with the addition of gallic acid. The results obtained show that gallic acid does not inhibit aluminum corrosion. UV-Vis absorption spectra of gallic acid solutions and quantum mechanical calculations show that this organic compound did not adsorb onto the aluminum surface under the studied conditions. Full article
Show Figures

Figure 1

Article
Structural and Tribological Studies of “(TiC + WC)/Hardened Steel” PMMC Coating Deposited by Air Pulsed Plasma
Metals 2022, 12(2), 218; https://doi.org/10.3390/met12020218 - 24 Jan 2022
Cited by 2 | Viewed by 723
Abstract
The deposition of a thin (several tens of microns) protective coating in atmospheric conditions is a challenging task for surface engineering. The structural features and tribological properties of a particle-reinforced metal matrix composite coating synthesized on middle-carbon steel by air pulse-plasma treatments were [...] Read more.
The deposition of a thin (several tens of microns) protective coating in atmospheric conditions is a challenging task for surface engineering. The structural features and tribological properties of a particle-reinforced metal matrix composite coating synthesized on middle-carbon steel by air pulse-plasma treatments were studied in the present work. The 24–31 µm thick coating of “24 vol.% (TiC + WC)/Hardened steel matrix” was produced by 10 plasma pulses generated by an electro-thermal axial plasma accelerator equipped with a consumable cathode of novel design (low-carbon steel tube filled with “TiC/WC + Epoxy resin” mixture). The study included optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD, microhardness measurements, and dry “Ball-on-Plate” testing. The carbides were directly plasma-transferred to the substrate (steel of AISI 4145H grade) from the cathode without substantial melting. The hard (500–1044 HV) coating matrix consisted of 57 vol.% austenite (1.43 wt.% C) and 43 vol.% plate martensite was formed via carbon enrichment of steel from plasma flow. Additionally, a minor amount of oxide phases (TiO2, WO2, WO3) were dispersed in the matrix. As compared to substrate, the coating had a lower coefficient of friction; its volumetric wear was decreased by 4.4 times when sliding against hardened steel ball and by 16 times when sliding against SiC ball. Full article
Show Figures

Figure 1

Article
The Microstructure and Mechanical Properties of 5083, 6005A and 7N01 Aluminum Alloy Gas Metal Arc-Welded Joints for High-Speed Train: A Comparative Study
Metals 2022, 12(2), 213; https://doi.org/10.3390/met12020213 - 24 Jan 2022
Cited by 3 | Viewed by 860
Abstract
This study aimed to conduct a comparative study on the microstructure and mechanical performance of 5083, 6005A and 7N01 Al joints used in China Railway High-speed (CRH) trains. We connected 10 mm-thick plates by three-layer and three-pass gas metal arc welding (GMAW). The [...] Read more.
This study aimed to conduct a comparative study on the microstructure and mechanical performance of 5083, 6005A and 7N01 Al joints used in China Railway High-speed (CRH) trains. We connected 10 mm-thick plates by three-layer and three-pass gas metal arc welding (GMAW). The results indicated that 6005A and 7N01 Al joints were more sensitive to grain boundary liquation in the partially melted zone (PMZ) than 5083 Al joins. Besides, recrystallization was obtained in heat-affected zones (HAZ). The 5083 Al joints experienced the most severe recrystallization and the grain size changed from 6.32 (BM) to 32.44 (HAZ) μm duo to intracrystalline strain induced by cold-rolled processes. The 7N01 Al alloys experienced the lowest extent of recrystallization and the grain size increased from 5.32 (BM) to 22.31 (HAZ) μm. Furthermore, significant precipitate evolution in the HAZ was observed. Original thin β” precipitates dissolved in HAZ of 6005A Al joints and transformed to the softer β phase. However, less precipitation transition was examined in 5083 and 7N01 Al joints. The precipitates’ evolution produced a softening region in HAZ of 6005A joints where the hardness was only 55 HV. The microhardness profile of the other two Al joints was less affected. The tensile strength of 5083, 6005A, and 7N01 Al alloy joints reached 323, 206 and 361 MPa, respectively. The 5083 Al and 6005A Al joints failed at HAZ near the fusion line while 7N01 Al joints failed at the fusion zone owing to the high strength of the base metal. The liquation, coarse grains by recrystallization, and precipitate evolution all decreased local strength, resulting in the fracture at HAZ. Full article
(This article belongs to the Special Issue Advanced Welding Technology in Metals II)
Show Figures

Figure 1

Article
Performance of a Nozzle to Control Bath Level Oscillations and Turbulence of the Metal-Flux Interface in Slab Molds
Metals 2022, 12(1), 140; https://doi.org/10.3390/met12010140 - 12 Jan 2022
Viewed by 373
Abstract
The characterization of the turbulent flow of liquid steel in a slab mold using a commercial nozzle was carried out through physical experiments and mathematical models. Six ultrasonic sensors were located at each side of the nozzle to obtain real-time plotting of the [...] Read more.
The characterization of the turbulent flow of liquid steel in a slab mold using a commercial nozzle was carried out through physical experiments and mathematical models. Six ultrasonic sensors were located at each side of the nozzle to obtain real-time plotting of the bath levels during the experimental time. An ultrasonic transducer located in the mold, 20 mm below the meniscus, determines the velocities and the turbulent variables along with the distance from the narrow face to the position of the nozzle’s outer wall. These data, together with the mathematical simulations, demonstrated a high correlation of bath level oscillations and the time-dependent behavior of the discharging jets. The flow inside the mold shows low-frequency non-symmetric patterns without a severe turbulent in the meniscus. The source of this instability is the partial opening of the slide valve gate used to control the mass flow of liquid. Full article
(This article belongs to the Special Issue Continuous Casting and Fluid Mechanics of Steels)
Show Figures

Figure 1

Article
The Research on Recrystallization Behaviors and Mechanism of a Medium-Density Ni-Based Alloy
Metals 2022, 12(1), 137; https://doi.org/10.3390/met12010137 - 11 Jan 2022
Viewed by 289
Abstract
Revealing the recrystallization behavior and mechanism of this new alloy is of great significance to subsequent research. In this study, the Ni-36.6W-15Co ternary medium heavy alloy was solution-treated at 1100–1200 °C for different lengths of time. The grain size change, microstructure and texture [...] Read more.
Revealing the recrystallization behavior and mechanism of this new alloy is of great significance to subsequent research. In this study, the Ni-36.6W-15Co ternary medium heavy alloy was solution-treated at 1100–1200 °C for different lengths of time. The grain size change, microstructure and texture evolution as well as twin development during recrystallization annealing were analyzed using SEM, EBSD and TEM techniques. The study found that complete recrystallization occurs at 1150 °C/60 min. In addition, it takes a longer amount of time for complete recrystallization to occur at 1100 °C. The value of the activation energy Q1 of the studied alloys is 701 kJ/mol and the recrystallization process is relatively slow. By comparing the changes of microstructure and texture with superalloys, it is found that the recrystallization mechanism of the studied alloy is different from that of the superalloy. The development of annealing twins has a great influence on the recrystallization behavior and mechanism. The results show that the twin mechanism is considered as the dominant recrystallization mechanism of the studied alloy, although the formation and development of sub-grains appear in the early stage of recrystallization. Full article
Show Figures

Figure 1

Article
Transmission Electron Microscopy Study on the Precipitation Behaviors of Laser-Welded Ferritic Stainless Steels and Their Implications on Intergranular Corrosion Resistance
Metals 2022, 12(1), 86; https://doi.org/10.3390/met12010086 - 04 Jan 2022
Cited by 1 | Viewed by 386
Abstract
The intergranular corrosion susceptibility of ferritic stainless-steel weldments is strongly dependent on chromium carbide precipitation phenomena. Hence, stabilization is widely used to mitigate the aforementioned precipitation. In contrast, stabilization has proved ineffective to fully prevent intergranular corrosion due to segregation of unreacted chromium [...] Read more.
The intergranular corrosion susceptibility of ferritic stainless-steel weldments is strongly dependent on chromium carbide precipitation phenomena. Hence, stabilization is widely used to mitigate the aforementioned precipitation. In contrast, stabilization has proved ineffective to fully prevent intergranular corrosion due to segregation of unreacted chromium during solid-state heat-treatments. To analyze the precipitation behavior of 17 wt.-% chromium ferritic stainless steels during laser welding, sheets of unstabilized and titanium-stabilized ferritic stainless steels were welded in a butt joint configuration and characterized with special consideration of precipitation behavior by means of transmission electron microscopy. While unstabilized ferritic stainless steels exhibit pronounced chromium precipitate formation at grain boundaries, titanium-stabilization leads to titanium precipitates without adjacent chromium segregation. However, corrosion tests reveal three distinctive corrosion mechanisms within the investigated ferritic stainless steels based on their inherent precipitation behaviors. In light of the precipitation formation, it is evident that immersion in sulfuric acid media leads to the dissolution of either grain boundaries or the grain boundary vicinity. As a result, the residual mechanical strength of the joint is substantially degraded. Full article
(This article belongs to the Special Issue Corrosion and Protection of Stainless Steels)
Show Figures

Figure 1

Article
Microstructure and Strengthening Mechanisms in an HSLA Steel Subjected to Tempforming
Metals 2022, 12(1), 48; https://doi.org/10.3390/met12010048 - 27 Dec 2021
Cited by 2 | Viewed by 725
Abstract
An effect of tempforming on the microstructure, the carbide precipitation, and the strengthening mechanisms of high-strength low-alloyed steel has been analyzed. The quenched steel was subjected to 1 h tempering at a temperature of 873 K, 923 K, or 973 K followed by [...] Read more.
An effect of tempforming on the microstructure, the carbide precipitation, and the strengthening mechanisms of high-strength low-alloyed steel has been analyzed. The quenched steel was subjected to 1 h tempering at a temperature of 873 K, 923 K, or 973 K followed by plate rolling at the same temperature. Tempforming resulted in the formation of an ultrafine grained lamellar-type microstructure with finely dispersed carbides of (Nb,V)C, Fe3C and Cr23C6. A decrease in tempforming temperature resulted in a reduction of the transverse grain size from 950 nm to 350 nm. Correspondingly, the size of Fe3C/Cr23C6 particles decreased from 90 nm to 40 nm while the size of (Nb,V)C particles decreased from 17 nm to 4 nm. Refining the tempformed microstructure with a decrease in thetempforming temperature provided an increase in the yield strength from 690 MPa to 1230 MPa. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

Article
Effect of V and Ti on the Oxidation Resistance of WMoTaNb Refractory High-Entropy Alloy at High Temperatures
Metals 2022, 12(1), 41; https://doi.org/10.3390/met12010041 - 25 Dec 2021
Cited by 4 | Viewed by 1016
Abstract
Alloying with V and Ti elements effectively improves the strength of WMoTaNb refractory high entropy alloys (RHEAs) at elevated temperatures. However, their effects on the oxidation resistance of WMoTaNb RHEAs are unknown, which is vitally important to their application at high temperatures. In [...] Read more.
Alloying with V and Ti elements effectively improves the strength of WMoTaNb refractory high entropy alloys (RHEAs) at elevated temperatures. However, their effects on the oxidation resistance of WMoTaNb RHEAs are unknown, which is vitally important to their application at high temperatures. In this work, the effect of V and Ti on the oxidation behavior of WMoTaNb RHEA at 1000 °C was investigated using a thermogravimetric system, X-ray diffraction and scanning electron microscopy. The oxidation of all alloys was found to obey a power law passivating oxidation at the early stage. The addition of V aggravates the volatility of V2O5, MoO3 and WO3, and leads to disastrous internal oxidation. The addition of Ti reduces the mass gain in forming the full coverage of passivating scale and prolongs the passivation duration of alloys. Full article
(This article belongs to the Special Issue Advanced Refractory Alloys)
Show Figures

Figure 1

Article
The Effects of Deteriorated Boundary Conditions on Horizontally Framed Miter Gates
Metals 2022, 12(1), 37; https://doi.org/10.3390/met12010037 - 24 Dec 2021
Viewed by 1012
Abstract
The U.S. navigable infrastructure is a system of waterways dependent upon hydraulic steel structures (HSS) to facilitate the passage of ships and cargo. The system is linear in the sense that if one HSS is impassable, the entire river system is halted at [...] Read more.
The U.S. navigable infrastructure is a system of waterways dependent upon hydraulic steel structures (HSS) to facilitate the passage of ships and cargo. The system is linear in the sense that if one HSS is impassable, the entire river system is halted at that point. The majority of the HSS in this system were built in the first half of the 20th Century, and over seventy percent of them are past or near past their design life. Miter gates are critical HSS components within the system and many are showing signs of structural distress from continued operation past their design life. Common distress features include shear cracking within the pintle socket, partially missing Quoin blocks, fatigue fracturing, and bolt failure in the pintle region. This article focuses on gaining a fundamental understanding of the consequences of quoin block deterioration on a miter gate. The work was conducted by developing a computational model of a miter gate with different levels of quoin block deterioration. This model was validated using analytical solutions. The deterioration results demonstrated that the miter gate thrust diaphragm and quoin post experienced changes in their limit states due to deterioration. The results also demonstrated that the miter gate could overcome up to 10% of quoin block deterioration. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

Article
Effect of Ni Doping on the Embrittlement of Liquid Zinc at Σ5 Fe Austenite Grain Boundary
Metals 2022, 12(1), 27; https://doi.org/10.3390/met12010027 - 23 Dec 2021
Viewed by 791
Abstract
In this study, first-principles computational tensile tests have been performed for the Σ5 symmetrically tilted grain boundaries of the face-centered cubic (fcc) Fe to investigate the effects of Zn and Zn-Ni doping on the boundary energy and electronic structure. The obtained results indicate [...] Read more.
In this study, first-principles computational tensile tests have been performed for the Σ5 symmetrically tilted grain boundaries of the face-centered cubic (fcc) Fe to investigate the effects of Zn and Zn-Ni doping on the boundary energy and electronic structure. The obtained results indicate that the mismatch between the sizes of Zn and Fe atoms at the Zn-doped grain boundary causes its expansion, which increases the lengths of Fe-Fe bonds, leading to their weakening, and reduces the overall boundary strength. After the Zn doping of the Fe grain boundary, Zn atoms form covalent bonds with Fe atoms, that decreases the charge density of Fe-Fe bonds and their strength. Meanwhile, the strength of the newly formed Fe-Zn covalent bonds oriented at a certain angle with respect to the grain boundary direction is very low. The breakage of Fe-Fe bonds that occurs under tensile loading rapidly decreases the boundary strength. Finally, after the Zn-Ni co-doping of the Fe grain boundary, Ni atoms form metallic bonds with Fe atoms, thus increasing both the charge density of Fe-Fe bonds (as compared with that of the Fe-Fe bonds at the Zn-doped grain boundary). Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

Article
Kinetic and Metallography Study of the Oxidation at 1250 °C of {Co+Ni}-Based Superalloys Containing Ti to Form MC Carbides
Metals 2022, 12(1), 10; https://doi.org/10.3390/met12010010 - 22 Dec 2021
Cited by 3 | Viewed by 739
Abstract
Six conventionally cast chromium-rich titanium-containing alloys based on cobalt and nickel with various Co/Ni ratios were considered. They were tested in oxidation in air at 1250 °C for 70 h in a thermo-balance. The mass gain curves were exploited to specify different types [...] Read more.
Six conventionally cast chromium-rich titanium-containing alloys based on cobalt and nickel with various Co/Ni ratios were considered. They were tested in oxidation in air at 1250 °C for 70 h in a thermo-balance. The mass gain curves were exploited to specify different types of kinetic constants as well as several parameters characterizing the oxide spallation occurring during cooling. The obtained results show that, the higher the Ni content, the slower the mass gain and the better the quality of the protective external chromia scale. Secondly, no dependence of the oxide spallation characteristics on the Co content was clearly noted. Globally, the isothermal oxidation behavior becomes better when Ni is more and more present at the expense of Co. Titanium seems to be playing a particular role in the process of oxidation. It notably leads to the presence of an external thin TiO2 continuous scale beyond the chromia scale. The thermogravimetry records were numerically treated to determine the parabolic constant and the chromia volatilization constant. The values of these constants evidenced a double tendency: chromia growth acceleration and chromia volatilization slow-down. These trends are to be confirmed and further investigated. Full article
(This article belongs to the Special Issue Hot Oxidation and Corrosion of High Performance Metallic Alloys)
Show Figures

Figure 1

Article
The Study of Graphene Oxide on the Regulations and Controls of the Sol-Gel Film Structure and Its Performance
Metals 2022, 12(1), 20; https://doi.org/10.3390/met12010020 - 22 Dec 2021
Viewed by 850
Abstract
A facile strategy to boost anticorrosion potency of graphene oxide/silica hybrid sol-gel coating is developed through fully exploiting the capabilities of graphene oxide (GO). Together with a barrier to corrosives and crack inhibitor, GO was further explored herein as a regulator to regulate [...] Read more.
A facile strategy to boost anticorrosion potency of graphene oxide/silica hybrid sol-gel coating is developed through fully exploiting the capabilities of graphene oxide (GO). Together with a barrier to corrosives and crack inhibitor, GO was further explored herein as a regulator to regulate the gelation process and provide robust coating films with stratified microstructures and ultimately extended diffusion paths. The sol-gel coating with stratified microstructure achieved on AA5052 aluminum alloy surface afforded greatly enhanced corrosion protection capability as assessed by electrochemical measurements and immersion tests. The corrosion current density of the sample of a hybrid GO sol-gel film was about 30 times less than that of sample of pure sol-gel film sample. The regulation mechanism of GO during the film formation process and the anticorrosive protection properties of the film were discussed. Full article
(This article belongs to the Special Issue Corrosion and Protection of Metallic Materials)
Show Figures

Graphical abstract

Article
Fatigue Behavior of Laser-Cut Sheet Metal Parts with Brazed-On Elements
Metals 2021, 11(12), 2063; https://doi.org/10.3390/met11122063 - 20 Dec 2021
Viewed by 942
Abstract
Laser cutting is used in the production of formed sheet metal components. However, the cyclic load capacity is reduced compared to other subtractive processes. Laser cutting results in a significant loss of fatigue strength; however, thermal joining has its own effect on the [...] Read more.
Laser cutting is used in the production of formed sheet metal components. However, the cyclic load capacity is reduced compared to other subtractive processes. Laser cutting results in a significant loss of fatigue strength; however, thermal joining has its own effect on the cyclic load capacity. Accordingly, brazing causes a significant reduction in the mechanical strength. However, the open question is what consequences a combination of both processes may have on the overall fatigue strength of sheet metals. Laser-cut samples of AISI 304 with and without a brazed-on element were investigated for their microstructure and mechanical properties. The brazing process was found to have an annealing effect on the microstructure. It was further observed that the fatigue behavior of brazed specimens is dominated by inhomogeneities at the surface of the filler metal fillet located in the geometric notch of the brazed joint. Fatigue strength decreased by almost 50% compared to as-cut specimens. As long as no shared diffusion zone is formed between the laser-cut and the brazed joint, the use of laser cutting for the production of such components appears to be reasonable and does not further contribute to the loss of cyclic strength. Full article
(This article belongs to the Special Issue Technology of Welding and Joining 2021)
Show Figures

Figure 1

Article
Effect of Multi-Step Austempering Treatment on the Microstructure and Mechanical Properties of a High Silicon Carbide-Free Bainitic Steel with Bimodal Bainite Distribution
Metals 2021, 11(12), 2055; https://doi.org/10.3390/met11122055 - 19 Dec 2021
Cited by 3 | Viewed by 790
Abstract
The effect of multi-step austempering treatments on the microstructure and mechanical properties of a novel medium carbon high silicon carbide-free bainitic steel was studied. Five different isothermal treatment processes were selected, including single-step isothermal treatments above martensite start temperature (at 350 °C and [...] Read more.
The effect of multi-step austempering treatments on the microstructure and mechanical properties of a novel medium carbon high silicon carbide-free bainitic steel was studied. Five different isothermal treatment processes were selected, including single-step isothermal treatments above martensite start temperature (at 350 °C and 370 °C, respectively), and three kinds of two-step routes (370 °C + 300 °C, 370 °C + 250 °C, and 350 °C + 250 °C). In comparison with single-step austempering treatment adopting a two-step process, a microstructure with a bimodal-size distribution of bainitic ferrite and without martensite was obtained. Bainitic transformation was studied using dilatometry both for single-step and two-step routes and the specimens were completely characterised by electron microscopy (SEM and TEM), X-ray diffraction (XRD) and standard tensile tests. The mechanical response of the samples subjected to two-step routes was superior to those treated at a single temperature. Full article
(This article belongs to the Special Issue Steel Heat Treatment)
Show Figures

Figure 1

Article
Development of an Experimental Setup to Investigate Influences on Component Distortion in Gravity Die Casting and a First Variation of Temperature Control Strategy
Metals 2021, 11(12), 2028; https://doi.org/10.3390/met11122028 - 14 Dec 2021
Cited by 1 | Viewed by 642
Abstract
Distortion (1), residual stresses and hot cracks can facilitate significant decreases in quality characteristics of casting products. Their reduction by a suitable component design (2) and process control is therefore desirable. In the casting process, these characteristics are assumed as a result of [...] Read more.
Distortion (1), residual stresses and hot cracks can facilitate significant decreases in quality characteristics of casting products. Their reduction by a suitable component design (2) and process control is therefore desirable. In the casting process, these characteristics are assumed as a result of the combination of solidification shrinkage paired with the local self-feeding and the geometric constraints imposed on the component by the mold. In gravity die casting (3) of aluminum (4) with thermally well conducting and rigid metal molds, the control of solidification through a localized adjustment of the heat balance (5) appears to be a suitable approach to minimize these effects. The development of an experimental setup for the assessment of the interdependencies of the alloy, casting geometry and cooling are described in this work. A first series of experiments with A356 aluminum alloy and the introduction to the different methods of evaluation are presented. Furthermore, an approach to improve the understanding of the underlying mechanisms is outlined. Full article
(This article belongs to the Special Issue Casting and Solidification Processing)
Show Figures

Figure 1

Article
Groove Formation on Metal Substrates by Nanosecond Laser Removal of Melted Material
Metals 2021, 11(12), 2026; https://doi.org/10.3390/met11122026 - 14 Dec 2021
Viewed by 685
Abstract
An effective strategy to produce grooves on carbon steel substrates by nanosecond laser radiation is proposed. The aim is to increase the productivity of grooves creation. In this study, two different modes of laser treatment are compared. The first mode focuses on the [...] Read more.
An effective strategy to produce grooves on carbon steel substrates by nanosecond laser radiation is proposed. The aim is to increase the productivity of grooves creation. In this study, two different modes of laser treatment are compared. The first mode focuses on the evaporation of material, while the second focuses on the formation of melted material and its removal by the action of pressure vapors produced by evaporated material. Within some ranges of processing parameters, the shape of the groove can be linearly controlled. The dependence of the groove depth also has a logarithmic nature when the number of passes is increased. Using the liquid phase mode in some ranges of parameters can reduce the amount of evaporated material in comparison with standard techniques in which the material is removed in the form of gas, and fine dust is emitted. Full article
(This article belongs to the Special Issue Surface Modification Technology in Metals)
Show Figures

Figure 1

Article
Carbide Precipitation in a Low Alloyed Steel during Aging Studied by Atom Probe Tomography and Thermodynamic Modeling
Metals 2021, 11(12), 2009; https://doi.org/10.3390/met11122009 - 13 Dec 2021
Cited by 1 | Viewed by 727
Abstract
Carbide precipitation in martensitic low alloyed steels contributes to the mechanical properties through precipitation hardening. A high number density of carbides is desired to maximize the hardening effect, which is achieved through the precipitation of carbides on the dislocations in the martensitic structure. [...] Read more.
Carbide precipitation in martensitic low alloyed steels contributes to the mechanical properties through precipitation hardening. A high number density of carbides is desired to maximize the hardening effect, which is achieved through the precipitation of carbides on the dislocations in the martensitic structure. In this study, the nucleation, growth, and coarsening of vanadium and molybdenum carbides during aging at 600 °C for periods up to four weeks were investigated. The work covers characterization with atom probe tomography, which showed that the nucleation of V and Mo rich MC/M2C carbides takes place on dislocations. The growth of these carbides proceeds by the diffusion of elements to the dislocations, which has been modeled using Dictra software, confirming the rate of the reaction as well as the depletion of carbide formers in the matrix. For longer aging times, particle coarsening will decrease the number density of particles with a transition from dislocation-based carbides to separate rounded carbides. Full article
(This article belongs to the Section Computation and Simulation on Metals)
Show Figures

Figure 1

Article
Microstructural Stability of the CoCrFe2Ni2 High Entropy Alloys with Additions of Cu and Mo
Metals 2021, 11(12), 1994; https://doi.org/10.3390/met11121994 - 09 Dec 2021
Viewed by 911
Abstract
New High Entropy Alloys based on the CoCrFe2Ni2 system have been developed by adding up to 10 at. % of Cu, Mo, and Cu + Mo in different amounts. These alloys showed a single face-centred cubic (FCC) structure after homogenization [...] Read more.
New High Entropy Alloys based on the CoCrFe2Ni2 system have been developed by adding up to 10 at. % of Cu, Mo, and Cu + Mo in different amounts. These alloys showed a single face-centred cubic (FCC) structure after homogenization at 1200 °C. In order to evaluate their thermal stability, aging heat treatments at 500, 700, and 900 °C for 8 h were applied to study the possible precipitation phenomena. In the alloys where only Cu or Mo was added, we found the precipitation of an FCC Cu-rich phase or the µ phase rich in Mo, respectively, in agreement with some of the results previously shown in the literature. Nevertheless, we have observed that when both elements are present, Cu precipitation does not occur, and the formation of the Mo-rich phase is inhibited (or delayed). This is a surprising result as Cu and Mo have a positive enthalpy of mixing, being immiscible in a binary system, while added together they improve the stability of this system and maintain a single FCC crystal structure from medium to high temperatures Full article
Show Figures

Figure 1

Article
Corner Strengthening by Local Thickening and Ausforming Using Planar Compression in Hot Stamping of Ultra-High Strength Steel Parts
Metals 2021, 11(12), 1977; https://doi.org/10.3390/met11121977 - 08 Dec 2021
Viewed by 960
Abstract
Hot-stamped products are widely used for the body-in-white of an automobile as they are lightweight and improve crashworthiness. A hot-stamping process using planar compression was developed to strengthen corners of ultra-high strength parts by local thickening and hardening. In this process, the corners [...] Read more.
Hot-stamped products are widely used for the body-in-white of an automobile as they are lightweight and improve crashworthiness. A hot-stamping process using planar compression was developed to strengthen corners of ultra-high strength parts by local thickening and hardening. In this process, the corners are thickened by compressing the blank in the planar direction with the upper and lower dies while blocking the movement of both edges with stoppers in the latter stage of forming. Thickening of the corners largely heightens the strength of the formed parts. Not only the thickness but also the hardness of the corner was increased by large plastic deformation and die quenching. For a hot hat-shaped part, a 30% increase in thickness and a 530 HV20 hardness around the corners were attained. The bending rigidity and strength of the formed parts thickened by 30% in the corners increased by 25% and 20%, respectively. In addition, the improvements of the part shape accuracy and the sidewall quenchability were obtained. Full article
(This article belongs to the Special Issue Forming and Heat Treatment of Steel)
Show Figures

Figure 1

Article
Effects of La on Thermal Stability, Phase Formation and Magnetic Properties of Fe–Co–Ni–Si–B–La High Entropy Alloys
Metals 2021, 11(12), 1907; https://doi.org/10.3390/met11121907 - 26 Nov 2021
Cited by 1 | Viewed by 480
Abstract
The microstructure, phase formation, thermal stability and soft magnetic properties of melt-spun high entropy alloys (HEAs) Fe27Co27Ni27Si10−xB9Lax with various La substitutions for Si (x = 0, 0.2, 0.4, 0.6, 0.8, and [...] Read more.
The microstructure, phase formation, thermal stability and soft magnetic properties of melt-spun high entropy alloys (HEAs) Fe27Co27Ni27Si10−xB9Lax with various La substitutions for Si (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) were investigated in this work. The Fe27Co27Ni27Si10−xB9La0.6 alloy shows superior soft magnetic properties with low coercivity Hc of ~7.1 A/m and high saturation magnetization Bs of 1.07 T. The content of La has an important effect on the primary crystallization temperature (Tx1) and the secondary crystallization temperature (Tx2) of the alloys. After annealing at relatively low temperature, the saturation magnetization of the alloy increases and the microstructure with a small amount of body-centered cubic (BCC) phase embedded in amorphous matrix is observed. Increasing the annealing temperature reduces the magnetization due to the transformation of BCC phase into face-centered cubic (FCC) phase. Full article
(This article belongs to the Special Issue Advances in Metal-Containing Magnetic Materials)
Show Figures

Figure 1

Article
Creep Behavior of Compact γ′-γ″ Coprecipitation Strengthened IN718-Variant Superalloy
Metals 2021, 11(12), 1897; https://doi.org/10.3390/met11121897 - 25 Nov 2021
Cited by 1 | Viewed by 646
Abstract
The development of high-temperature heavy-duty turbine disk materials is critical for improving the overall efficiency of combined cycle power plants. An alloy development strategy to this end involves superalloys strengthened by ‘compact’ γ′-γ″ coprecipitates. Compact morphology of coprecipitates consists of [...] Read more.
The development of high-temperature heavy-duty turbine disk materials is critical for improving the overall efficiency of combined cycle power plants. An alloy development strategy to this end involves superalloys strengthened by ‘compact’ γ′-γ″ coprecipitates. Compact morphology of coprecipitates consists of a cuboidal γ′ precipitate such that γ″ discs coat its six {001} faces. The present work is an attempt to investigate the microstructure and creep behavior of a fully aged alloy exhibiting compact coprecipitates. We conducted heat treatments, detailed microstructural characterization, and creep testing at 1200 °F (649 °C) on an IN718-variant alloy. Our results indicate that aged IN718-27 samples exhibit a relatively uniform distribution of compact coprecipitates, irrespective of the cooling rate. However, the alloy ruptured at low strains during creep tests at 1200 °F (649 °C). At 100 ksi (689 MPa) load, the alloy fails around 0.1% strain, and 75 ksi (517 MPa) loading causes rupture at 0.3% strain. We also report extensive intergranular failure in all the tested samples, which is attributed to cracking along grain boundary precipitates. The results suggest that while the compact coprecipitates are indeed thermally stable during thermomechanical processing, the microstructure of the alloy needs to be optimized for better creep strength and rupture life. Full article
(This article belongs to the Special Issue Creep Behavior of Metals and Alloys)
Show Figures

Figure 1

Article
Influence of Quenching and Partitioning Parameters on Phase Transformations and Mechanical Properties of Medium Manganese Steel for Press-Hardening Application
Metals 2021, 11(11), 1879; https://doi.org/10.3390/met11111879 - 22 Nov 2021
Viewed by 505
Abstract
It has been proven that through targeted quenching and partitioning (Q & P), medium manganese steels can exhibit excellent mechanical properties combining very high strength and ductility. In order to apply the potential of these steels in industrial press hardening and to avoid [...] Read more.
It has been proven that through targeted quenching and partitioning (Q & P), medium manganese steels can exhibit excellent mechanical properties combining very high strength and ductility. In order to apply the potential of these steels in industrial press hardening and to avoid high scrap rates, it is of utmost importance to determine a robust process window for Q & P. Hence, an intensive study of dilatometry experiments was carried out to identify the influence of quenching temperature (TQ) and partitioning time (tp) on phase transformations, phase stabilities, and the mechanical properties of a lean medium manganese steel. For this purpose, additional scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDX) examinations as well as tensile testing were performed. Based on the dilatometry data, an adjustment of the Koistinen–Marburger (K-M) equation for medium manganese steel was developed. The results show that a retained austenite content of 12–21% in combination with a low-phase fraction of untempered secondary martensite (max. 20%) leads to excellent mechanical properties with a tensile strength higher than 1500 MPa and a total elongation of 18%, whereas an exceeding secondary martensite phase fraction results in brittle failure. The optimum retained austenite content was adjusted for TQ between 130 °C and 150 °C by means of an adapted partitioning. Full article
(This article belongs to the Special Issue Alloy and Process Design of Metallic Materials)
Show Figures

Figure 1

Article
A Comparative Investigation of Conventional and Hammering-Assisted Incremental Sheet Forming Processes for AA1050 H14 Sheets
Metals 2021, 11(11), 1862; https://doi.org/10.3390/met11111862 - 19 Nov 2021
Cited by 1 | Viewed by 551
Abstract
Incremental Sheet Forming (ISF) is emerging as one of the popular dieless forming processes for the small-sized batch production of sheet metal components. However, the parts formed by the ISF process suffer from poor surface finish, geometric inaccuracy, and non-uniform thinning, which leads [...] Read more.
Incremental Sheet Forming (ISF) is emerging as one of the popular dieless forming processes for the small-sized batch production of sheet metal components. However, the parts formed by the ISF process suffer from poor surface finish, geometric inaccuracy, and non-uniform thinning, which leads to poor part characteristics. Hammering, on the other hand, plays an important role in relieving residual stresses, and thus enhances the material properties through a change in grain structure. A few studies based on shot peening, one of the types of hammering operation, revealed that shot peening can produce nanostructure surfaces with different characteristics. This paper introduces a novel process, named the Incremental Sheet Hammering (ISH) process, i.e., integration of incremental sheet forming (ISF) process and hammering to improve the efficacy of the ISF process. Controlled hammering in the ISF process causes an alternating motion at the tool-sheet interface in the local deformation zone. This motion leads to enhanced material flow and subsequent improvement in the surface finish. Typical toolpath strategies are incorporated to impart the tool movement. The mechanics of the process is further explored through explicit-dynamic numerical models and experimental investigations on 1 mm thick AA1050 sheets. The varying wall angle truncated cone (VWATC) and constant wall angle truncated cone (CWATC) test geometries are identified to compare the ISF and ISH processes. The results indicate that the formability is improved in terms of wall angle, forming depth and forming limits. Further, ISF and ISH processes are compared based on the numerical and experimental results. The indicative statistical analysis is performed which shows that the ISH process would lead to an overall 10.99% improvement in the quality of the parts primarily in the surface finish and forming forces. Full article
(This article belongs to the Special Issue Physical Metallurgy of Light Alloys and Composite Materials)
Show Figures

Figure 1

Article
Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques
Metals 2021, 11(11), 1836; https://doi.org/10.3390/met11111836 - 16 Nov 2021
Cited by 1 | Viewed by 647
Abstract
With its excellent property combinations and ability to specifically adjust tailor-made microstructures, steel is still the world’s most important engineering and construction material. To fulfill ever-increasing demands and tighter tolerances in today’s steel industry, steel research remains indispensable. The continuous material development leads [...] Read more.
With its excellent property combinations and ability to specifically adjust tailor-made microstructures, steel is still the world’s most important engineering and construction material. To fulfill ever-increasing demands and tighter tolerances in today’s steel industry, steel research remains indispensable. The continuous material development leads to more and more complex microstructures, which is especially true for steel designs that include bainitic structures. This poses new challenges for the classification and quantification of these microstructures. Machine learning (ML) based microstructure classification offers exciting potentials in this context. This paper is concerned with the automated, objective, and reproducible classification of the carbon-rich second phase objects in multi-phase steels by using machine learning techniques. For successful applications of ML-based classifications, a holistic approach combining computer science expertise and material science domain knowledge is necessary. Seven microstructure classes are considered: pearlite, martensite, and the bainitic subclasses degenerate pearlite, debris of cementite, incomplete transformation product, and upper and lower bainite, which can all be present simultaneously in one micrograph. Based on SEM images, textural features (Haralick parameters and local binary pattern) and morphological parameters are calculated and classified with a support vector machine. Of all second phase objects, 82.9% are classified correctly. Regarding the total area of these objects, 89.2% are classified correctly. The reported classification can be the basis for an improved, sophisticated microstructure quantification, enabling process–microstructure–property correlations to be established and thereby forming the backbone of further, microstructure-centered material development. Full article
Show Figures

Figure 1

Article
Dual Cluster Model for Medium-Range Order in Metallic Glasses
Metals 2021, 11(11), 1840; https://doi.org/10.3390/met11111840 - 16 Nov 2021
Viewed by 493
Abstract
The atomic structure of medium-range order in metallic glasses is investigated by using molecular dynamics (MD) simulations. Glass formation processes were simulated by rapid cooling from liquid phases of a model binary alloy system of different-sized elements. Two types of short-range order of [...] Read more.
The atomic structure of medium-range order in metallic glasses is investigated by using molecular dynamics (MD) simulations. Glass formation processes were simulated by rapid cooling from liquid phases of a model binary alloy system of different-sized elements. Two types of short-range order of atomic clusters with the five-fold symmetry are found in glassy phases: icosahedral clusters (I-clusters) formed around the smaller-sized atoms and Frank–Kasper clusters (i.e., Z14, Z15, and Z16 clusters (Z-clusters)) formed around the bigger-sized atoms. Both types of clusters (I-and Z-clusters) are observed even in liquid phases and the population of them goes up as the temperature goes down. A considerable atomic size difference between alloying elements would enhance the formation of both the I- and Z-clusters. In glassy phases, the I- and Z-clusters are mutually connected to form a complicated network, and the network structure becomes denser as the structural relaxation goes on. In the network, the medium-range order is mainly constructed by the volume sharing type connection between I- and Z-clusters. Following Nelson’s disclination theory, the network structure can be understood as a random network of Z-clusters, which is complimentarily surrounded by another type of network formed by I-clusters. Full article
(This article belongs to the Special Issue Structure and Properties of Amorphous Metallic Alloys)
Show Figures

Figure 1

Article
Microstructure and Texture Evolution during Severe Plastic Deformation at Cryogenic Temperatures in an Al-0.1Mg Alloy
Metals 2021, 11(11), 1822; https://doi.org/10.3390/met11111822 - 13 Nov 2021
Viewed by 529
Abstract
The deformation structures formed in an Al-0.1Mg single-phase aluminium alloy have been studied during plane strain compression (PSC) down to liquid nitrogen temperature, following prior equal channel angular extrusion (ECAE) to a strain of ten. Under constant deformation conditions a steady state was [...] Read more.
The deformation structures formed in an Al-0.1Mg single-phase aluminium alloy have been studied during plane strain compression (PSC) down to liquid nitrogen temperature, following prior equal channel angular extrusion (ECAE) to a strain of ten. Under constant deformation conditions a steady state was approached irrespective of the temperature, where the rate of grain refinement stagnated and a minimum grain size was reached which could not be further reduced. A 98% reduction at 77 K (−196 °C) only transformed the ECAE processed submicron grain structure into a microstructure with thin ribbon grains, where a nanoscale high angle boundary (HAB) spacing was only approached in the sheet normal direction. It is shown that the minimum grain size achievable in severe deformation processing is controlled by a balance between the rate of compression of the HAB structure and dynamic recovery. The required boundary migration rate to maintain a constant boundary spacing is found far higher than can be justified from conventional diffusion-controlled grain growth and at low temperatures, a constant boundary spacing can only be maintained by invoking an athermal mechanism and is considered to be dominated by the operation of grain boundary dislocations. Full article
Show Figures

Figure 1

Article
Corrosion of N10276 in a H2S, HCl, and CO2 Containing Atmosphere at 480 °C and 680 °C
Metals 2021, 11(11), 1817; https://doi.org/10.3390/met11111817 - 12 Nov 2021
Cited by 1 | Viewed by 581
Abstract
In several industrial processes, metallic materials suffer from chlorine- and sulfur-induced high-temperature corrosion. In previous studies, several steels have been tested at laboratory scale in a simulated gas atmosphere of a pyrolysis process of anthropogenic resources. In this paper, we propose a model [...] Read more.
In several industrial processes, metallic materials suffer from chlorine- and sulfur-induced high-temperature corrosion. In previous studies, several steels have been tested at laboratory scale in a simulated gas atmosphere of a pyrolysis process of anthropogenic resources. In this paper, we propose a model on the course of corrosion in a H2S and HCl-containing atmosphere for N10276, which contains, besides iron, chromium, and nickel, also molybdenum as main alloying element. Bearing in mind the impact of the main alloying elements, as well as thermodynamic considerations and kinetic effects, the corrosion behavior of N10276 in a H2S and HCl-containing atmosphere at 480 °C and 680 °C can be explained. In addition, the corrosion behavior of N10276 is compared with earlier tested Fe-Cr-Ni alloys and differences in the corrosion behavior are stated within this paper. Full article
(This article belongs to the Special Issue Hot Oxidation and Corrosion of High Performance Metallic Alloys)
Show Figures

Figure 1

Article
Numerical Simulation on Motion Behavior of Inclusions in the Lab-Scale Electroslag Remelting Process with a Vibrating Electrode
Metals 2021, 11(11), 1784; https://doi.org/10.3390/met11111784 - 05 Nov 2021
Cited by 2 | Viewed by 503
Abstract
In order to meet the requirement of high-quality ingots, the vibrating electrode technique in the electroslag remelting (ESR) process has been proposed. Non-metallic inclusions in ingots may cause serious defects and deteriorate mechanical properties of final products. Moreover, the dimension, number and distribution [...] Read more.
In order to meet the requirement of high-quality ingots, the vibrating electrode technique in the electroslag remelting (ESR) process has been proposed. Non-metallic inclusions in ingots may cause serious defects and deteriorate mechanical properties of final products. Moreover, the dimension, number and distribution of non-metallic inclusions should be strictly controlled during the ESR process in order to produce high-quality ingots. A transient 2-D coupled model is established to analyze the motion behavior of inclusions in the lab-scale ESR process with a vibrating electrode, especially under the influence of the vibration frequency, current, slag layer thickness, and filling ratio, as well as type and diameter of inclusions. Simulation model of inclusions motion behavior is established based on the Euler-Lagrange approach. The continuous phase including metal and slag, is calculated based on the volume of fluid (VOF) method, and the trajectory of inclusions is tracked with the discrete phase model (DPM). The vibrating electrode is simulated by the user-defined function and dynamic mesh. The results show that when the electrode vibration frequency is 0.25 Hz or 1 Hz, the inclusions will gather on one side of the slag layer. When it increases from 0.25 Hz to 1 Hz, the removal ratio of 10 μm and 50 μm inclusions increases by 5% and 4.1%, respectively. When the current increases from 1200 A to 1800 A, the flow following property of inclusions in the slag layer becomes worse. The removal ratio of inclusions reaches the maximum value of 92% with the current of 1500 A. The thickness of slag layer mainly affects the position of inclusions entering the liquid-metal pool. As the slag layer thickens, the inclusions removal ratio increases gradually from 82.73% to 85.91%. As the filling ratio increases, the flow following property of inclusions in the slag layer is enhanced. The removal ratio of 10 μm inclusions increases from 94.82% to 97%. However, for inclusions with a diameter of 50 μm, the maximum removal ratio is 96.04% with a filling ratio of 0.46. The distribution of 50 μm inclusions is significantly different, while the distribution of 10 μm inclusions is almost similar. Because of the influence of a vibrating electrode, 10 μm Al2O3 and MnO have a similar removal ratios of 81.33% and 82.81%, respectively. Full article
Show Figures

Figure 1

Article
Hot Rolling of the Twin-Roll Cast and Homogenized Mg-6.8Y-2.5Zn (WZ73) Magnesium Alloy Containing LPSO Structures
Metals 2021, 11(11), 1771; https://doi.org/10.3390/met11111771 - 03 Nov 2021
Viewed by 478
Abstract
In this study, hot rolling trials were conducted on a twin-roll cast and homogenized magnesium alloy Mg-6.8Y-2.5Zn (WZ73). The WZ73 contains long period stacking ordered (LPSO) structures due to the ratio of Y and Zn content. Microstructural and texture evolution depending on the [...] Read more.
In this study, hot rolling trials were conducted on a twin-roll cast and homogenized magnesium alloy Mg-6.8Y-2.5Zn (WZ73). The WZ73 contains long period stacking ordered (LPSO) structures due to the ratio of Y and Zn content. Microstructural and texture evolution depending on the different strain and strain rates were investigated, and the resulting mechanical properties were also considered. Therefore, samples were quenched in water directly after hot rolling. The results revealed that the rolling parameters significantly influence dynamic recrystallization (DRX), while continuous and twin-induced dynamic recrystallization are assumed to be the main DRX mechanisms. It was also found that high strains and strain rates are required to proceed the DRX. The resulting textures revealed that the non-basal slip of <a>-dislocations and <c+a>-dislocations is activated during hot rolling. Hot rolling results in increased strength and ductility compared to the initial twin-roll cast and homogenized state. Full article
(This article belongs to the Special Issue Casting and Rolling of Alloys)
Show Figures

Figure 1

Article
Preparation of Bulk TiZrNbMoV and NbTiAlTaV High-Entropy Alloys by Powder Sintering
Metals 2021, 11(11), 1748; https://doi.org/10.3390/met11111748 - 31 Oct 2021
Cited by 9 | Viewed by 705
Abstract
The refractory HEAs block material was prepared by powder sintering, using an equal atomic proportion of mixed TiZrNbMoV and NbTiAlTaV metal powder raw materials. The phase was analyzed, using an XRD. The microstructure of the specimen was observed, employing a scanning electron microscope, [...] Read more.
The refractory HEAs block material was prepared by powder sintering, using an equal atomic proportion of mixed TiZrNbMoV and NbTiAlTaV metal powder raw materials. The phase was analyzed, using an XRD. The microstructure of the specimen was observed, employing a scanning electron microscope, and the compressive strength of the specimen was measured, using an electronic universal testing machine. The results showed that the bulk cubic alloy structure was obtained by sintering at 1300 °C and 30 MPa for 4 h, and a small amount of complex metal compounds were contained. According to the pore distribution, the formed microstructure can be divided into dense and porous zones. At a compression rate of 10−4s1, the yield strengths of TiZrNbMoV and NbTiAlTaV alloys are 1201 and 700 MPa, respectively. Full article
(This article belongs to the Special Issue Shaping and Deformation of High-Entropy Alloys)
Show Figures

Figure 1

Article
An Effective Strengthening Strategy of Nano Carbide Precipitation and Cellular Microstructure Refinement in a Superalloy Fabricated by Selective Laser Melting Process
Metals 2021, 11(11), 1691; https://doi.org/10.3390/met11111691 - 23 Oct 2021
Viewed by 849
Abstract
An effective strategy to strengthen a superalloy processed by selective laser melting (SLM) is proposed. The aim is to increase the yield strength of Inconel 718 fabricated by SLM to beyond 1400 MPa, which has never been achieved before. In this study, various [...] Read more.
An effective strategy to strengthen a superalloy processed by selective laser melting (SLM) is proposed. The aim is to increase the yield strength of Inconel 718 fabricated by SLM to beyond 1400 MPa, which has never been achieved before. In this study, various NbC additions (0.0%, 0.5%, 1.0%, and 5.0% by weight) were added in the powder bed of Inconel 718, and two types of post-SLM heat treatments were investigated, i.e., solution heat treated plus aging (STA) and direct aging (DA). With NbC addition, smaller depth of melt pool and finer dendritic cells were obtained. Both STA and DA promoted the precipitations of γ′ and γ″. STA eliminated the cellular dendrites and induced grain growth while DA retained the as-built cellular dendrites, grain size, and nano-carbide from NbC addition, rendering a significant 326.2 MPa increase in yield strength. In this work, 0.5% NbC addition exhibited a record-high yield strength of 1461 MPa and ultimate tensile strength of 1575 MPa for Inconel 718 processed by laser manufacturing process according to literature data to-date. Full article
(This article belongs to the Special Issue Advances in Superalloys and High Temperature Intermetallics)
Show Figures

Figure 1

Article
Influence of Anodization on the Fatigue and Corrosion-Fatigue Behaviors of the AZ31B Magnesium Alloy
Metals 2021, 11(10), 1573; https://doi.org/10.3390/met11101573 - 01 Oct 2021
Cited by 3 | Viewed by 649
Abstract
The aim of the present work was to investigate the effect of anodization on the fatigue and corrosion-fatigue behavior of the AZ31B magnesium alloy. Samples were anodized in constant current density mode at 20 mA cm−2 for 5 min at room temperature, [...] Read more.
The aim of the present work was to investigate the effect of anodization on the fatigue and corrosion-fatigue behavior of the AZ31B magnesium alloy. Samples were anodized in constant current density mode at 20 mA cm−2 for 5 min at room temperature, in an environmentally friendly electrolyte consisting of a mixture of sodium hydroxide and sodium silicate. Fatigue tests were conducted in air and in phosphate buffer solution (PBS) at room temperature in the tension-tension mode, at a frequency of 5 Hz and stress ratio of 0.1. S-N curves were obtained for polished and anodized samples. Fracture surface morphology was examined by optical stereo-microscopy and scanning electron microscopy. Results indicated that the fatigue limit was reduced approximately 60% at 106 cycles for the anodized specimens, either for the fatigue tests conducted in air or PBS solution. Anodization had a remarkable effect on the fatigue behavior of the AZ31B alloy. The effect of the corrosive environment, in turn, was not significant. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Materials)
Show Figures

Figure 1

Article
Effect of the Thermomechanical Treatment on the Corrosion of UNSM Processed Inconel 718: An Electrochemical Study
Metals 2021, 11(9), 1488; https://doi.org/10.3390/met11091488 - 18 Sep 2021
Viewed by 580
Abstract
In this work, the influence of thermal (TT), mechanical, and thermomechanical (TMT) treatments using the ultrasonic nanocrystal surface modification (UNSM) on the corrosion protection properties of Inconel 718 was studied, correlating the changes in the electrochemical properties with the promoted microstructure. The UNSM [...] Read more.
In this work, the influence of thermal (TT), mechanical, and thermomechanical (TMT) treatments using the ultrasonic nanocrystal surface modification (UNSM) on the corrosion protection properties of Inconel 718 was studied, correlating the changes in the electrochemical properties with the promoted microstructure. The UNSM treatment had a grain refinement effect on the top surface, reducing the grain size from 11.5 to 7.4 µm for the first 10 µm in depth. The high grain boundary density, due to the grain refinement, enabled a faster growth of the passive film. The impedance showed a decrease in the charge transfer resistance by three orders of magnitude, from 106 to 103 Ω cm2 for as-received to 1000 °C, as the TT temperature crossed the solvus of the γ′/γ″ and approached the solvus of the δ-phase. The UNSM treatment lowered the pitting corrosion susceptibility, increasing the charge transfer resistance and decreasing the effective capacitance of the double layer, leading to the thickest passive film with 6.8 nm. Full article
(This article belongs to the Special Issue Corrosion and Inhibition Processes)
Show Figures

Figure 1

Article
Local Lattice Distortion in High-Entropy Carbide Ceramics
Metals 2021, 11(9), 1399; https://doi.org/10.3390/met11091399 - 03 Sep 2021
Cited by 1 | Viewed by 774
Abstract
Using the ab initio calculations, we study the lattice distortion of HfNbTaTiVC5, HfNbTaTiZrC5 and MoNbTaTiVC5 high-entropy carbide (HEC) ceramics. Results indicate that the Bader atomic radius and charge transfer in HECs is very close to those from binary carbide. [...] Read more.
Using the ab initio calculations, we study the lattice distortion of HfNbTaTiVC5, HfNbTaTiZrC5 and MoNbTaTiVC5 high-entropy carbide (HEC) ceramics. Results indicate that the Bader atomic radius and charge transfer in HECs is very close to those from binary carbide. The degree of lattice distortion strongly depends on the alloying element. The Bader atomic radius can excellently describe the lattice distortion in HEC. Further, the corresponding atomic radius and formation enthalpy of binary carbides may be indicators to predict the single-phase HECs. Full article
(This article belongs to the Special Issue Advances in First-Principles Calculations on Metallic Materials)
Show Figures

Figure 1

Article
Element Distribution and Its Induced Peritectic Reaction during Solidification of Ti-Al-Nb Alloys
Metals 2021, 11(9), 1386; https://doi.org/10.3390/met11091386 - 31 Aug 2021
Cited by 3 | Viewed by 631
Abstract
The element distribution and the microstructures of directionally solidified ingots of Ti-45Al-8Nb and Ti-46Al-8Nb alloys were studied by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with wavelength-dispersive X-ray spectroscope (WDS). At high solidification rates, e.g., more than 50 μm/s, the [...] Read more.
The element distribution and the microstructures of directionally solidified ingots of Ti-45Al-8Nb and Ti-46Al-8Nb alloys were studied by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with wavelength-dispersive X-ray spectroscope (WDS). At high solidification rates, e.g., more than 50 μm/s, the ingot solidified in columnar β dendrites, while at low solidification rates, e.g., less than 30 μm/s, the solidification path changed from initial β solidification to L + β→α peritectic solidification, forming cellular dendrites with the β phase matrix surrounded by the α phase. The difference of Ti content in dendritic arms and interdendritic regions was not pronounced. The composition segregation was mainly caused by the mutual conversion of Al and Nb contents. Therefore, it was difficult to distinguish the variation of Ti in microstructure by EPMA-WDS map and line profiles. The composition of the peritectic α phase was different from that of the α phase transformed directly from the β phase. The Al content of the former was about 1 at% higher than that of the latter, while the Nb content was about 1 at% lower. The change of solidification path in the final solidified part resulted from the more severe segregation caused by slow solidification. Full article
Show Figures

Figure 1

Article
Mg-Ca0.3 Electrochemical Activity Exposed to Hank’s Physiological Solution and Properties of Ag-Nano-Particles Deposits
Metals 2021, 11(9), 1357; https://doi.org/10.3390/met11091357 - 29 Aug 2021
Cited by 3 | Viewed by 991
Abstract
This work compares the degradation of Mg and Mg-Ca0.3 alloy when they are exposed for 14 days to Hank’s solution at 37 °C. A combination of immersion test, electrochemical techniques (PDP, EIS, EN), and surface characterization methods (SEM-EDS, XRD, and XPS) were carried [...] Read more.
This work compares the degradation of Mg and Mg-Ca0.3 alloy when they are exposed for 14 days to Hank’s solution at 37 °C. A combination of immersion test, electrochemical techniques (PDP, EIS, EN), and surface characterization methods (SEM-EDS, XRD, and XPS) were carried out. The pH change over time, the lower mass loss (≈20%), and the lower concentration of the released Mg2+ ions (≈3.6 times), as well as the lower level of the surface degradation, allowed to consider the positive effect of Ca, presenting Mg-Ca0.3 alloy with lower electrochemical activity than that of Mg. The positive effect of Ca may be due to the formed layer characteristics on the alloy surface, which impedes the cathodic hydrogen evolution and Mg-ions release. The electroless deposited Ag-nano-particles (Ag-NPs) on Mg-Ca0.3 surface were characterized by SEM-EDS, XRD, UV-Vis, and contact angle. The agar-diffusion test was used to compare the growth of Staphylococcus aureus and Escherichia coli bacteria on Mg-Ca0.3 in the presence of Ag-NPs deposits in different size. Zeta-potential of the bacteria was negative, with respect to pH of the Mueller-Hinton culture broth. The greater antibacterial effect of S. aureus was attributed to its more negative zeta-potential, attracting more released Ag+ ions. Full article
Show Figures

Figure 1

Article
Modelling of Hot Flow Stress of Duplex Steel in Dependence of Microstructure Using the Rule of Mixture
Metals 2021, 11(8), 1285; https://doi.org/10.3390/met11081285 - 15 Aug 2021
Cited by 1 | Viewed by 729
Abstract
The ferrite fraction and phase distribution of duplex steels depend strongly on the temperature evolution during hot deformation and are correlated to different mechanical behaviors during hot deformation as well as cold deformation. Therefore, the control of microstructure evolution during hot forming is [...] Read more.
The ferrite fraction and phase distribution of duplex steels depend strongly on the temperature evolution during hot deformation and are correlated to different mechanical behaviors during hot deformation as well as cold deformation. Therefore, the control of microstructure evolution during hot forming is relevant for target-oriented material design. In flow stress modelling for hot forming, the influence of microstructure beyond the ferrite fraction is often neglected. In the present work, a new method is demonstrated to also consider the influence of grain size in flow stress modelling. For this purpose, different initial microstructures with different ferrite fractions and phase distribution were tested in compression tests at 1100 °C and 0.1 s−1. The microstructure was analyzed before and after forming and it was observed that the differences in ferrite fractions vanished during the compression tests. Those microstructure data were used in a model including a rule of mixture and Hall–Petch relationship to extract the single-phase flow curves of ferrite and austenite. Based on the flow stress of the single phases, in combination with ferrite fraction and individual grain size, the flow curves of the different material conditions were calculated and the concurrent influence of ferrite fraction and phase distance on the mechanical behavior was discussed. Full article
Show Figures

Graphical abstract

Article
Corrosion Behavior of CW6MC Nickel Cast Alloy (Inconel 625) Welded by Shielded Metal Arc Welding
Metals 2021, 11(8), 1286; https://doi.org/10.3390/met11081286 - 15 Aug 2021
Cited by 1 | Viewed by 1107
Abstract
The aim of this study concerns the effect of multi-pass shielded metal arc welding (SMAW) on the corrosion behavior of CW6MC cast nickel alloy. Using optical and SEM techniques the welded joint is analyzed. Vickers microhardness mapping and potentiodynamic polarization in NaCl and [...] Read more.
The aim of this study concerns the effect of multi-pass shielded metal arc welding (SMAW) on the corrosion behavior of CW6MC cast nickel alloy. Using optical and SEM techniques the welded joint is analyzed. Vickers microhardness mapping and potentiodynamic polarization in NaCl and H2SO4 solutions are also evaluated. Both the Laves phase and NbC-type carbides are identified in the base metal (BM) and weld metal (WM) regions. The main microstructural difference observed between these regions is the morphology aspect and fineness of the dendritic arrays. The welding process promotes the finer columnar grains formation with refined intermetallic particles in the WM than equiaxed grains of the BM, which in turn results in higher microhardness values in the former region. However, no substantial changes were observed in the corrosion behavior between the BM and WM regions, considering both acid and saline media. Nevertheless, during the multi-pass SMAW process, some non-metallic micrometric inclusions (Mo and S-rich regions) can be constituted to occur in the WM region. This is associated with a significant drop in the corrosion performance of this region when the electrochemical tests are evaluated. Full article
Show Figures

Figure 1