- Article
Computational Modeling of Multiple-Phase Transformations in API X70 and X80 Steels
- Ry Karl,
- Jonas Valloton and
- Chad Cathcart
- + 4 authors
Continuous cooling transformation (CCT) diagrams for two thermo-mechanically controlled processed (TMCP) steels were produced using a modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) model, which accounted for the simultaneous transformation of multiple phases under non-isothermal conditions. A basin hopping algorithm was used to sequentially optimize the model parameters for each phase. Samples were prepared using a dilatometer which replicated the deformation and cooling rates experienced during TMCP. Scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD) were used to identify and quantify the phases present in each steel. CCT diagrams illustrating the start and stop temperatures of each phase were constructed for both steel samples. Through inclusion of the stop temperatures of each phase transformation, the utility of the CCT diagrams were expanded. This was done by introducing the possibility of applying the Scheil additive principle with respect to the beginning and end of each phase transformation. With this modification, the CCT diagrams are now more appropriately suited to predict the phase transformations that occur on the ROT, where non-continuous cooling occurs.
16 December 2025





