Ductile–Brittle Transition Mechanism and Dilute Solution Softening Effect of Body-Centered Cubic Metals
Abstract
1. Introduction
2. DBT of BCC Metals
2.1. DBT Behavior of BCC Metals
2.2. Dislocations in DBT of BCC Metals
3. Role of Screw Dislocation in the DBT of BCC Metals
3.1. Double-Kink Structure in Screw Dislocation
3.2. Low-Temperature Mobility of Screw Dislocations
4. Dilute Solid Solution Softening Effect
4.1. Dilute Solid Solution System and Softening Effect
4.2. Dilute Solid Solution Softening Mechanim
5. Potential of Dilute Solid Solution Softening in Lowering the DBTT
6. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviations | Full Names | Symbols | Marginal Notes |
DBT | Ductile-to-brittle transition | ||
DBTT | Ductile-to-brittle transition temperature | ||
FCC | Face-centered cubic | ||
HCP | Hexagonal close-packed | ||
BCC | Body-centered cubic | ||
F-R dislocation source | Frank-Read (F-R) source | ||
Velocity ratio between screw and edge dislocations | α = vs/ve | ||
Screw dislocation motion rate | vs | ||
Edge dislocation motion rate | ve | ||
Ta | Tantalum | ||
Fe | Iron | ||
W | Tungsten | ||
Ni | Nickel | ||
P | Phosphorus | ||
S | Sulfur | ||
Ce | Cerium | ||
La | Lanthanoids | ||
Cr | Chromium | ||
TC | critical temperature | ||
αDBT | The α value at DBTT | ||
t0 | Time before dislocation bow out | ||
t1 | Time after dislocation bow out | ||
Si | Silicon | ||
∆E | Reduced energy difference of solute atoms for the transition from Easy core to the Hard core | ||
Al | Aluminum | ||
CRSS | Critical resolved shear stress | ||
DFT | Density functional theory | ||
WPM | Wiener Process Model | ||
DRKM | Discrete Rigid-Kink Model | ||
SRKM | Stochastic Rigid Kink Model | ||
Mo | Molybdenum | ||
Pt | Platinum | ||
∆γ | Chemical misfit | ||
Eint(0) | Interaction energy | ||
ΔEM | Energy difference between M point and Easy-core | ||
Re | Rare earth | ||
Ti | Titanium | ||
C | Carbon | ||
Sc | Scandium | ||
Mn | Manganese | ||
IF steels | Interstitial-free (IF) steels |
References
- Christian, J. Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall. Trans. A 1983, 14, 1237–1256. [Google Scholar] [CrossRef]
- Gumbsch, P.; Riedle, J.; Hartmaier, A.; Fischmeister, H.F. Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 1998, 282, 1293–1295. [Google Scholar] [CrossRef]
- John, C.S. The brittle-to-ductile transition in pre-cleaved silicon single crystals. Philos. Mag. 1975, 32, 1193–1212. [Google Scholar] [CrossRef]
- Rice, J.R.; Thomson, R. Ductile versus brittle behaviour of crystals. Philos. Mag. 1974, 29, 73–97. [Google Scholar] [CrossRef]
- Roberts, S.G.; Booth, A.S.; Hirsch, P.B. Dislocation activity and brittle-ductile transitions in single crystals. Mater. Sci. Eng. A 1994, 176, 91–98. [Google Scholar] [CrossRef]
- Tarleton, E.; Roberts, S.G. Dislocation dynamic modelling of the brittle–ductile transition in tungsten. Philos. Mag. 2009, 89, 2759–2769. [Google Scholar] [CrossRef]
- Suzuki, T.; Takeuchi, S.; Yoshinaga, H. Dislocation Dynamics and Plasticity; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Lu, Y.; Zhang, Y.H.; Ma, E.; Han, W.Z. Relative mobility of screw versus edge dislocations controls the ductile-to-brittle transition in metals. Proc. Natl. Acad. Sci. USA 2021, 118, e2110596118. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ma, E.; Sun, J.; Han, W.Z. A unified model for ductile-to-brittle transition in body-centered cubic metals. J. Mater. Sci. Technol. 2023, 141, 193–198. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Han, W.Z. Dislocation source efficiency as a governing factor in the ductile-to-brittle transition of metals. J. Mater. Sci. Technol. 2025, 229, 173–176. [Google Scholar] [CrossRef]
- Caillard, D.; Martin, J. Thermally Activated Mechanisms in Crystal Plasticity; University of Cambridge: Cambridge, UK, 2003. [Google Scholar]
- Ghafarollahi, A.; Curtin, W.A. Theory of kink migration in dilute BCC alloys. Acta Mater. 2021, 215, 117078. [Google Scholar] [CrossRef]
- Ghafarollahi, A.; Curtin, W.A. Theory of double-kink nucleation in dilute BCC alloys. Acta Mater. 2020, 196, 635–650. [Google Scholar] [CrossRef]
- Pink, E.; Arsenault, R.J. Low-temperature softening in body-centered cubic alloys. Prog. Mater. Sci. 1980, 24, 1–50. [Google Scholar] [CrossRef]
- Lin, P.D.; Nie, J.F.; Cui, S.G.; Lu, Y.P. Molecular dynamics study on the ductile-to-brittle transition in W-Re alloy systems. Acta Mater. 2025, 285, 120684. [Google Scholar] [CrossRef]
- Wakeda, M.; Tsuru, T.; Kohyama, M.; Ozaki, T.; Sawada, H.; Itakura, M.; Ogata, S. Chemical misfit origin of solute strengthening in iron alloys. Acta Mater. 2017, 131, 445–456. [Google Scholar] [CrossRef]
- Trinkle, D.R.; Woodward, C. The chemistry of deformation: How solutes soften pure metals. Science 2005, 310, 1665–1667. [Google Scholar] [CrossRef]
- Petch, N.J. The ductile-brittle transition in the fracture of α-iron: I. Philos. Mag. 1958, 3, 1089–1097. [Google Scholar] [CrossRef]
- Heslop, J.; Petch, N.J. The ductile-brittle transition in the fracture of α-iron: II. Philos. Mag. 1958, 3, 1128–1136. [Google Scholar] [CrossRef]
- Samuels, J.; Roberts, S.G.; Hirsch, P.B. The brittle-to-ductile transition in silicon. Mater. Sci. Eng. 1988, 105, 39–46. [Google Scholar] [CrossRef]
- Hirsch, P.B.; Roberts, S.G. The brittle-ductile transition in silicon. Philos. Mag. 1990, 64, 55–80. [Google Scholar] [CrossRef]
- Han, W.Z.; Lu, Y.; Zhang, Y.H. Mechanism of Ductile-to-Brittle transition in body-centered-cubic metals: A brief review. Acta Metall. Sin. 2023, 59, 335–348. [Google Scholar]
- Chang, S.L.; Li, W.W.; Yu, X.W.; Hui, Y.T.; Zhong, Y.C. Effect of hydrogen on the surface properties and cracking behavior of Ti-6Al-3Nb-2Zr-1Mo alloy welded joint. Corros. Sci. 2025, 249, 112837. [Google Scholar]
- Wu, X.D.; Zhao, T.L.; Hou, T.P. Effect of aging precipitation on the stress corrosion cracking behavior of Ni(Fe, Al)-maraging steel. Available online: http://ijmmm.ustb.edu.cn/article/doi/10.1007/s12613-024-3062-x (accessed on 30 May 2025).
- Seo, L.W.; Kim, J.Y.; Kim, Y.J. Combined Ductile-Brittle Fracture Simulation of API X80 Under Impact Loading. J. Pipeline Sci. Eng. 2025, 100295. [Google Scholar] [CrossRef]
- Jiao, J.S.; Fang, J.; Zhang, J.W.; Rolfe, R. Advancing fracture toughness evaluation: The Weighted Omega metric for enhanced sensitivity to Brittle-to-Ductile transitions and geometric variations. Theor. Appl. Fract. Mec. 2025, 138, 104928. [Google Scholar] [CrossRef]
- Clement, D.; Jacquemoud, C.; Chapuliot, S. A simple criterion to exclude the risk of brittle fracture in the brittle-to-ductile transition temperature range. Eng. Fract. Mech. 2025, 314, 110739. [Google Scholar] [CrossRef]
- Bharadwaja, B.; Alankar, A. Finite element implementation of Field Crack Mechanics for brittle and ductile fracture. Theor. Appl. Fract. Mec. 2024, 131, 104434. [Google Scholar] [CrossRef]
- Zhang, L.; Gabor, C.; Erik, V.D.G.; Francesco, M. Atomistic fracture in bcc iron revealed by active learning of Gaussian approximation potential. NPJ Comput. Mater. 2023, 9, 217. [Google Scholar] [CrossRef]
- Multi-Scale Simulation of Crack Propagation in the Ductile-Brittle Transition Region. Available online: https://www.researchgate.net/publication/257867878_Multi-Scale_Simulation_of_Crack_Propagation_in_the_Ductile-Brittle_Transition_Region (accessed on 1 August 2013).
- Du, H.; Ni, Y.S. Multi-scale simulation and toughness and brittleness analysis of three body-centered cubic metal cracks of tantalum, iron and tungsten. Acta Phys. Sin-Ch. Ed. 2016, 65, 196202. [Google Scholar]
- Zhao, Y.; Tong, X.; Wei, X.H.; Xu, S.S.; Lan, S.; Wang, X.L. Effects of microstructure on crack resistance and low-temperature toughness of ultra-low carbon high strength steel. Int. J. Plast. 2019, 116, 203–215. [Google Scholar] [CrossRef]
- Impact Toughness and Microstructure Characterization of Thermally Aged Alloy 52 Narrow-Gap Dissimilar Metal Weld. Available online: https://www.researchgate.net/publication/312895036_Impact_toughness_and_microstructure_characterization_of_thermally_aged_Alloy_52_narrow-gap_dissimilar_metal_weld (accessed on 1 November 2016).
- Ha, K.F. Fundamentals of Fracture Physics; Beijing Science Press: Beijing, China, 2000; p. 55. [Google Scholar]
- Raffo, P.L. Yielding and fracture in tungsten and tungsten-rhenium alloys. J. Less Common. Met. 1969, 17, 133–149. [Google Scholar] [CrossRef]
- Wei, S.H.; Lu, H.C.; Liu, T.S.; Wang, C.C.; Xie, X.; Dong, H. Effect of rare earth on low-temperature impact toughness of HRB400E rebar. Chi. Metal. 2022, 32, 16–25. [Google Scholar]
- Riedle, J.; Gumbsch, P.; Fischmeister, H.F. Cleavage anisotropy in tungsten single crystals. Phys. Rev. Lett. 1996, 76, 3594. [Google Scholar] [CrossRef] [PubMed]
- Pascale, E.T.; Mutasem, A. On the investigation of size effect in bcc α-iron under high strain rate and high temperature: Multiscale dislocations dynamics simulation. Eur. J. Mech. A-Solids 2023, 97, 104779. [Google Scholar]
- Dezerald, L.; Rodney, D.; Clouet, E.; Ventelon, L.; Willaime, F. Plastic anisotropy and dislocation trajectory in BCC metals. Nat. Commun. 2016, 7, 11695. [Google Scholar] [CrossRef] [PubMed]
- Dezerald, L.; Ventelon, L.; Clouet, E.; Denoual, C.; Rodnry, D. Ab initio modeling of the two-dimensional energy landscape of screw dislocations in bcc transition metals. Phys. Rev. B 2014, 89, 024104. [Google Scholar] [CrossRef]
- Egorov, A.; Kraych, A.; Mrovec, M.; Drautz, R. Core structure of dislocations in ordered ferromagnetic FeCo. Phys. Rev. Mater. 2024, 8, 093604. [Google Scholar] [CrossRef]
- Han, W.Z.; Lu, Y.; Zhang, Y.H. Research Progress on Tough-Brittle Transition Mechanism of Body-Centered Cubic Metals. Acta Metall. Sin. 2023, 59, 335–338. [Google Scholar]
- Kameda, J. A kinetic model for ductile-brittle fracture mode transition behavior. Acta Metall. 1986, 34, 2391–2398. [Google Scholar] [CrossRef]
- Brunner, D.; Glebovsky, V. Analysis of flow-stress measurements of high-purity tungsten single crystals. Mater. Lett. 2000, 44, 144–152. [Google Scholar] [CrossRef]
- Giannattasio, A.; Roberts, S.G. Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten. Philos. Mag. 2007, 87, 2589–2598. [Google Scholar] [CrossRef]
- Giannattasio, A.; Tanaka, M.; Joseph, T.; Roberts, S. An empirical correlation between temperature and activation energy for brittle-to-ductile transitions in single-phase materials. Phys. Scr. 2007, 89, 2589–2598. [Google Scholar] [CrossRef]
- Giannattasio, A.; Yao, Z.; Tarleton, E.; Roberts, S. Brittle-ductile transitions in polycrystalline tungsten. Philos. Mag. 2010, 90, 3947–3959. [Google Scholar] [CrossRef]
- Lu, Y.; Han, W.Z. Pre-stored edge dislocations-enabled pseudo-toughness in chromium. Acta Mater. 2023, 248, 118788. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Han, W.Z. Mechanism of brittle-to-ductile transition in tungsten under small-punch testing. Acta Mater. 2021, 220, 117332. [Google Scholar] [CrossRef]
- Chen, B.; Li, S.Z.; Ding, J.; Ding, X.D.; Sun, J. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys. Scr. Mater. 2025, 138, 104928. [Google Scholar] [CrossRef]
- Duesbery, M.S.; Vitek, V. Plastic anisotropy in bcc transition metals. Acta Mater. 1998, 46, 1481–1492. [Google Scholar] [CrossRef]
- Mrovec, M.; Gröger, R.; Bailey, A.G. Bond-order potential for simulations of extended defects in tungsten. Phys. Rev. B 2007, 75, 104119. [Google Scholar] [CrossRef]
- Vitek, V. Core structure of screw dislocations in body-centred cubic metals: Relation to symmetry and interatomic bonding. Philos. Mag. 2004, 84, 415–428. [Google Scholar] [CrossRef]
- Screw dislocations in BCC transition metals: From ab initio modeling to yield criterion. Comptes Rendus Phys. 2021, 22, 83–116. [CrossRef]
- Cottrell, A.H. Theory of brittle fracture in steel and similar metals. Trans. Met. Soc. AIME 1958, 212, 192–203. [Google Scholar]
- Butler, B.G.; Paramore, J.D.; Ligda, J.P. Mechanisms of deformation and ductility in tungsten—A review. Int. J. Refract. Met. Hard Mater. 2018, 75, 248–261. [Google Scholar] [CrossRef]
- Shinzato, S.; Wakeda, M.; Ogata, S. An atomistically informed kinetic Monte Carlo model for predicting solid solution strengthening of body-centered cubic alloys. Int. J. Plast. 2019, 122, 319–337. [Google Scholar] [CrossRef]
- Weertman, J. Dislocation Model of Low-Temperature Creep. J. Appl. Phys. 1958, 29, 1685–1689. [Google Scholar] [CrossRef]
- Zhao, Y.; Marian, J. Direct prediction of the solute softening-to-hardening transition in W-Re alloys using stochastic simulations of screw dislocation motion. Model. Simul. Mater. Sc. 2018, 26, 045002. [Google Scholar] [CrossRef]
- Caillard, D. On the stress discrepancy at low-temperatures in pure iron. Acta Mater. 2014, 62, 267–275. [Google Scholar] [CrossRef]
- Lu, Y.; Han, W.Z. Lowering the ductile-to-brittle transition temperature to—36° C via fine-grained structures in chromium. Scr. Mater. 2024, 239, 115813. [Google Scholar] [CrossRef]
- Zheng, R.Y.; Jian, R.W.; Beyerlein, I.J.; Han, W.Z. Atomic-scale hidden point-defect complexes induce ultrahigh-irradiation hardening in tungsten. Nano Lett. 2021, 21, 5798–5804. [Google Scholar] [CrossRef]
- Pan, Q.S.; Zhang, L.X.; Feng, R.; Lu, Q.H. Gradient cell–structured high-entropy alloy with exceptional strength and ductility. Science 2021, 376, 984–989. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Fang, Y.; Cheng, P.M.; Ke, X.X.; Zhang, M.C.; Zou, J.W.; Ding, J. The origin of exceptionally large ductility in molybdenum alloys dispersed with irregular-shaped La2O3 nano-particles. Nat. Commun. 2024, 15, 4105. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, R. The double-kink model for low-temperature deformation of BCC metals and solid solutions. Acta Metall. 1967, 15, 501–511. [Google Scholar] [CrossRef]
- Medvedeva, N.; Gornostyrev, Y.N.; Freeman, A.J. Solid solution softening in bcc Mo alloys: Effect of transition-metal additions on dislocation structure and mobility. Phys. Rev. B 2005, 72, 134107. [Google Scholar] [CrossRef]
- Sato, A.; Meshii, M. Solid solution softening and solid solution hardening. Acta Metall. 1973, 21, 753–768. [Google Scholar] [CrossRef]
- Maresca, F.; Curtin, W.A. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys. Acta Mater. 2020, 182, 144–162. [Google Scholar] [CrossRef]
- Luo, A.; Jacobson, D.; Shin, K. Cross-kinks control hanism of iridium and rhenium in tungsten at room temperature. Int. J. Refract. Met. Hard Mater. 1991, 10, 107–114. [Google Scholar] [CrossRef]
- Stephens, J.R.; Witzke, W.R. Alloy softening in group via metals alloyed with rhenium. J. Less. Common. Met. 1971, 23, 325–342. [Google Scholar] [CrossRef]
- Stephens, J.R.; Witzke, W.R. Alloy softening in binary iron solid solutions. J. Less. Common. Met. 1976, 48, 285–308. [Google Scholar] [CrossRef]
- Tanaka, T.; Watanabe, S. The temperature dependence of the yield stress and solid solution softening in Fe Ni and Fe Si alloys. Acta Metall. 1971, 19, 991–1000. [Google Scholar] [CrossRef]
- Kocks, U.; Argon, A.; Ashby, M. Models for macroscopic slip. Prog. Mater. Sci. 1975, 19, 171–185. [Google Scholar]
- Zhou, X.R.; He, S.C.; Marian, J. Cross-kinks control screw dislocation strength in equiatomic bcc refractory alloys. Acta Mater. 2021, 211, 116875. [Google Scholar] [CrossRef]
- Itakura, M.; Kaburaki, H.; Yamaguchi, M. First-principles study on the mobility of screw dislocations in bcc iron. Acta Metall. 2012, 60, 3698–3710. [Google Scholar] [CrossRef]
- Kinoshita, K.; Shimokawa, T.; Kinari, T. Influence of non-glide stresses on the peierls energy of screw dislocations. Trans. JSME 2014, 80, CM0018. [Google Scholar] [CrossRef]
- Ventelon, L.; Willaime, F.; Clouet, E.; Sawada, H.; Kawakami, K. Ab initio investigation of the Peierls potential of screw dislocations in bcc Fe and W. Acta Mater. 2013, 61, 3973–3985. [Google Scholar] [CrossRef]
- Hu, Y.J.; Fellinger, M.R.; Butler, B.G.; Wang, Y.; Darling, K.A. Solute-induced solid-solution softening and hardening in bcc tungsten. Acta Mater. 2017, 141, 304–316. [Google Scholar] [CrossRef]
- Romaner, L.; Ambrosch-Draxl, C.; Pippan, R. Effect of rhenium on the dislocation core structure in tungsten. Phys. Rev. Lett. 2010, 104, 195503. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ma, E.; Sun, J.; Han, W.Z. Unveiling the intrinsic rhenium effect in Tungsten. Acta Mater. 2024, 264, 119586. [Google Scholar] [CrossRef]
- Wu, L.P.; Liu, Y.; Zhi, J.G.; Zhang, J.S.; Liu, Q. Effect mechanism of rare earth Ce on the strength and toughness of C-Mn low-temperature steel. Rare Matal Mater. Eng. 2022, 51, 4561–4569. [Google Scholar]
- Tanaka, M.; Matsuo, K.; Yoshimura, N.; Shigesato, G.; Hoshino, M. Effects of Ni and Mn on brittle-to-ductile transition in ultralow-carbon steels. Mater. Sci. Eng. A 2017, 682, 370–375. [Google Scholar] [CrossRef]
- Uenishi, A.; Teodosiu, C. Solid solution softening at high strain rates in Si-and/or Mn-added interstitial free steels. Acta Mater. 2003, 51, 4437–4446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhao, T.; Hou, T.; Li, Y.; Wu, K. Ductile–Brittle Transition Mechanism and Dilute Solution Softening Effect of Body-Centered Cubic Metals. Metals 2025, 15, 743. https://doi.org/10.3390/met15070743
Zhang J, Zhao T, Hou T, Li Y, Wu K. Ductile–Brittle Transition Mechanism and Dilute Solution Softening Effect of Body-Centered Cubic Metals. Metals. 2025; 15(7):743. https://doi.org/10.3390/met15070743
Chicago/Turabian StyleZhang, Jie, Tianliang Zhao, Tingping Hou, Yan Li, and Kaiming Wu. 2025. "Ductile–Brittle Transition Mechanism and Dilute Solution Softening Effect of Body-Centered Cubic Metals" Metals 15, no. 7: 743. https://doi.org/10.3390/met15070743
APA StyleZhang, J., Zhao, T., Hou, T., Li, Y., & Wu, K. (2025). Ductile–Brittle Transition Mechanism and Dilute Solution Softening Effect of Body-Centered Cubic Metals. Metals, 15(7), 743. https://doi.org/10.3390/met15070743