Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism
Abstract
1. Introduction
2. Metabolic Diseases—A Health and Social Problem
3. Vegetables in the Human Diet
4. Some Helpful GLVs Components in Metabolic Disease
4.1. Carotenoids in the Prevention and Treatment of Metabolic Disorders
4.2. Phenolic Compounds and Metabolic Diseases
4.3. Antioxidant Vitamins in the Prevention and Treatment of MetS
4.4. Mineral Compounds in Metabolic Problems
4.5. Anti-Nutritional Substances of GLVs
5. Dietary GLVs and Metabolic Protection
5.1. GLV-Enriched Diet and Diabetes Prevention
5.2. GLVs as an Active Protective Complex in CVD
5.3. GLVs Against Obesity
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, J.; Fang, R.; Wang, H.; Xu, D.-X.; Yang, J.; Huang, X.; Cozzolino, D.; Fang, M.; Huang, Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. Environ. Int. 2022, 158, 106941. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.M.; Shalaby, M.A.; El-Shiekh, R.A.; El-Banna, H.A.; Emam, S.R.; Bekr, A.F. Metabolic syndrome: Risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chem. Adv. 2023, 3, 100335. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.; Mikhailidis, D.P.; Athyros, V.G.; Bullo, M.; Couture, P.; Covas, M.I.; de Koning, L.; Delgado-Lista, J.; Diaz-Lopez, A.; Drevon, C.A.; et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr. Rev. 2017, 75, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Montovani, A.; Mendez, M.A.; Nadal, A.; Polanza, P.; Panzica, G.; Savgis, R.; et al. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol. 2017, 68, 3–33. [Google Scholar] [CrossRef]
- Cook, L.T.; O’Reilly, G.A.; Goran, M.I.; Weigensberg, M.J.; Spruijt-Metz, D.; Davis, J.N. Vegetable consumption is linked to decreased visceral and liver fat and improved insulin resistance in overweight Latino youth. J. Acad. Nutr. Diet. 2014, 114, 1776–1783. [Google Scholar] [CrossRef]
- Hosseinpour-Niazi, S.; Bakhshi, B.; Betru, E.; Mirmiran, P.; Darand, M.; Fereidoun, A. Prospective study of total and various types of vegetables and the risk of metabolic syndrome among children and adolescents. World J. Diabetes 2019, 10, 362–375. [Google Scholar] [CrossRef]
- Muriuki, E.N.; Celik, B.; Kuhnle, G.G.C.; Mills, C.E. The association between leafy vegetable consumption and incidence of metabolic syndrome and its symptoms: A systematic review of randomised controlled and observational trials. Proc. Nutr. Soc. 2021, 80, E222. [Google Scholar] [CrossRef]
- Bricarello, P. Effects of the Dietary Approach to stop hypertension (DASH) diet on blood pressure, overweight and obesity in adolescents: A systematic review. Clin. Nutr. ESPEN 2018, 28, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, G.C.; Abittan, N.; Xing, J.; Mossavar-Rahmani, J.; Sotres-Alvarez, D.; Mattei, J.; Daviglus, M.; Isasi, C.R.; Hu, F.B.; et al. Healthy dietary patterns and risk of cardiovascular disease in US Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Am. J. Clin. Nutr. 2022, 116, 920–927. [Google Scholar] [CrossRef]
- Kaewpradup, T.; Kamonsuwan, K.; Chusak, C.; Siervo, M.; Adisakwattana, S. Effects of incorporating green leafy vegetables with meals on starch and lipid digestibility under simulated gastrointestinal digestion. Sci. Rep. 2025, 15, 5282. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384–392. [Google Scholar] [CrossRef]
- Castagnino, A.M.; Diaz, K.E.; Rosini, M.B. Consumption of vegetables as a health factor. Hortic. Int. J. 2023, 7, 146–147. [Google Scholar] [CrossRef]
- Ülger, T.G.; Songur, A.N.; Çırak, O.; Çakıroğlu, F.P. Role of Vegetables in Human Nutrition and Disease Prevention; Asaduzzaman, M., Asao, T., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Van Treuren, R.; Coquin, P.; Lohwasser, U. Genetic resources collections of leafy vegetables (lettuce, spinach, chicory, artichoke, asparagus, lamb’s lettuce, rhubarb and rocket salad): Composition and gaps. Genet. Resour. Crop Evol. 2012, 59, 981–997. [Google Scholar] [CrossRef]
- Arasaretnam, S.; Kiruthika, A.; Mahendran, T. Nutritional and mineral composition of selected green leafy vegetables. Ceylon J. Sci. 2018, 47, 35–41. [Google Scholar] [CrossRef]
- Beaulah, A.; Rajamanickam, C.; Swaminathan, V. Nutritive values and importance of tropical green leafy vegetables in human diet—A review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 656–669. [Google Scholar] [CrossRef]
- Harris, J.; de Steenhuijsen Piters, B.; McMullin, S.; Bajwa, B.; de Jager, I.; Brouwer, I.D. Fruits and vegetables for healthy diets: Priorities for food system research and action. In Science and Innovations for Food Systems Transformation; Food Systems Summit Brief prepared by Research Partners of the Scientific Group for the Food Systems Summit March, Wageningen. Springer: Cham, Switzerland, 2021. [Google Scholar]
- Yaseen, A.A.; Khaleel, N.T.; Al-Azzami, A.A.; Aldossary, A.T.Y.; Ameen, R.A. Climate Change and Its Effect on Nutritional Value: A Review. IOP Conf. Ser. Earth Environ. Sci. 2025, 1449, 012163. [Google Scholar] [CrossRef]
- Margenat, A.; Matamoros, V.; Díez, S.; Cañameras, N.; Comas, J.; Bayona, J.M. Occurrence and human health implications of chemical contaminants in vegetables grown in peri-urban agriculture. Environ. Int. 2019, 124, 49–57. [Google Scholar] [CrossRef] [PubMed]
- de Santiago-Martín, A.; Meffe, R.; Teijón, G.; Martínez Hernández, V.; López-Heras, I.; Alonso, C.A.; Arenas Romasanta, M.; de Bustamante, I. Pharmaceuticals and trace metals in the surface water used for crop irrigation: Risk to health or natural attenuation? Sci. Total Environ. 2020, 705, 135825. [Google Scholar] [CrossRef]
- Mila, K.J.; Hassan, J.; Hasan, M.F.; Alfagham, A.T.; Ali, L.; Islam, M.D.; Zubayer, M.; Gomasta, J.; Ozaki, Y.; Siddiqui, M.H.; et al. Nutritional composition, bioactive compounds and antioxidant potentiality of some indigenous vegetables consumed in Bangladesh. Sci. Rep. 2024, 14, 27699. [Google Scholar] [CrossRef]
- Bayang, J.P.; Touwang, C.; Mamoudou, H.; Woudam, E.S.; Koubala, B.B. Variation of nutrients and bioactive compounds of five wild edible leafy vegetables from far north region of cameroon. Food Chem. Adv. 2025, 6, 100849. [Google Scholar] [CrossRef]
- Saini, R.K.; Song, M.H.; Yu, J.W.; Lee, J.H.; Ahn, H.Y.; Keum, Y.S.; Lee, J.H. Profiling of Nutritionally Vital Bioactive Compounds in Emerging Green Leafy Vegetables: A Comparative Study. Foods 2022, 11, 3867. [Google Scholar] [CrossRef]
- Haider, R.; Zehra, A.; Mehdi, A.; Kumari Das, G. Carotenoids. Metabolism and Disease. J. Biomed. Eng. Res. 2024, 2, 1–10. [Google Scholar]
- Ortega-Regules, A.E.; Martínez-Thomas, J.A.; Schürenkämper-Carrillo, K.; de Parrodi, C.A.; López-Mena, E.R.; Mejía-Méndez, J.L.; Lozada-Ramírez, J.D. Recent Advances in the Therapeutic Potential of Carotenoids in Preventing and Managing Metabolic Disorders. Plants 2024, 13, 1584. [Google Scholar] [CrossRef] [PubMed]
- Gopal, S.S.; Sukhdeo, S.V.; Vallikannan, B.; Ponesakki, G. Lutein ameliorates high-fat diet-induced obesity, fatty liver, and glucose intolerance in C57BL/6J mice. Phytother. Res. 2023, 37, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Gryszczyńska, A.; Gryszczyńska, B.; Opala, B.; Karotenoidy. Naturalne źródła, biosynteza, wpływ na organizm ludzki. Post. Fitoter. 2011, 2, 127–143. [Google Scholar]
- Bogacz-Radomska, L.; Harasym, J. Vegetable as a source of carotenoids. Eng. Sci. Technol. 2016, 4, 26–39. [Google Scholar]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wang, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; et al. Green leafy vegetable and lutein intake and multiple health outcomes. Food Chem. 2021, 360, 130145. [Google Scholar] [CrossRef]
- Thakur, V.; Mal, D.; Soga, K.; Gandhi, A. A review on nutritional quality of green leafy vegetables. Ecol. Environ. Conserv. 2022, 28, S351–S356. [Google Scholar] [CrossRef]
- Eisenhauer, B.; Natoli, S.; Liew, G.; Flood, V.M. Lutein and zeaxanthin—Food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients 2017, 9, 120. [Google Scholar] [CrossRef]
- Anusha, A.M.; Sherena, P.A.; Annamala, P.T.; Mukkadan, J.K. Screening of Sixteen Commonly Consumed Green Leafy Vegetables for Carotenoids. Int. J. Med. Res. Health Sci. 2020, 9, 79–88. [Google Scholar]
- Nurzyńska-Wierdak, R. Phenolic Compounds from New Natural Sources—Plant Genotype and Ontogenetic Variation. Molecules 2023, 28, 1731. [Google Scholar] [CrossRef]
- Tumurkhuu, M.; Bhat, S.A.; Hossain, M.Z.; Shafiq, M.; Hasnain, M.S.; Nayak, A.K.; Ahmed, S.A. Editorial: Cellular and molecular mechanisms in metabolic disorders: Role of inflammation and oxidative stress. Front. Pharmacol. 2025, 16, 1580553. [Google Scholar] [CrossRef]
- Liu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Sci. Technol. 2007, 40, 552–557. [Google Scholar] [CrossRef]
- Brinsi, C.; Jedidi, S.; Dhiffalah, A.; Selmi, H.; Sammari, H.; Sebai, H. Nutritional Value, Phytochemical Properties of Different Parts of Dill (Anethum graveolens L.) and Their Effects on in vitro Digestibility in Ruminants. Nat. Prod. Commun. 2024, 19, 1934578X241288854. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.V. In vitro anti-inflammatory properties of selected green leafy vegetables. Biomedicines 2018, 6, 107. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O.B.; Obode, O.C.; Elemo, G.N.; Ibekwe, D.; Adesioye, T.; Raji, F.A.; Adeyoju, O.A.; Okeke, G. Anti-inflammatory and anti-cancer properties of selected green leafy vegetables-a review. J. Nutr. Food Process. 2021, 4, 4. [Google Scholar] [CrossRef]
- Tufts, H.R.; Harris, C.S.; Bukania, Z.N.; Johns, T. Antioxidant and anti-inflammatory activities of Kenyan leafy green vegetables, wild fruits, and medicinal plants with potential relevance for kwashiorkor. Evid.-Based Complement. Altern. Med. 2015, 1, 807158. [Google Scholar] [CrossRef]
- Mulabagal, V.; Ngouajio, M.; Nair, A.; Zhang, Y.; Gottumukkala, A.L.; Nair, M.G. In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem. 2010, 118, 300–306. [Google Scholar] [CrossRef]
- Bhatt, S.K.; Nanjarajurs, M.S.; Eligar, S. In vitro lipoxygenase and hemolysis inhibition by polyphenolic antioxidants from tropical green leafy vegetables. Emir. J. Food Agric. 2022, 34, 544–552. [Google Scholar] [CrossRef]
- Surana, K.R.; Ahire, E.D.; Keservani, R.K.; Gupta, A.K. Nutritional advantages and effects of vitamins in human health. Chhattisgarh J. Sci. Technol. 2019, 16, 67–79. [Google Scholar]
- Sinbad, O.O.; Ajayi, A.F.; Okelei, L.O.; Abimbola, O.A. Vitamins as antioxidants. J. Food Sci. Nutr. Res. 2019, 2, 214–235. [Google Scholar] [CrossRef]
- Podsędek, A.; Sosnowska, D.; Redzynia, M.; Anders, B. Antioxidant capacity and content of Brassica oleracea dietary antioxidants. Int. J. Food Sci. Technol. 2006, 41, 49–58. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, A.K.; Prasad, K.; Bahadur, A.; Rai, M. Variability of carotenes, vitamin C, E and phenolics in Brassica vegetables. J. Food Compos. Anal. 2007, 20, 106–112. [Google Scholar] [CrossRef]
- Koudela, M.; Petříková, K. Nutrients content and yield in selected cultivars of leaf lettuce (Lactuca sativa L. var. crispa). Hortic. Sci. 2008, 35, 99–106. [Google Scholar] [CrossRef]
- Caunii, A.; Cuciureanu, R.; Zakar, A.M.; Tonea, E.; Giuchici, C. Chemical composition of common leafy vegetables. Stud. Univ. ”Vasile Goldis” Arad. Ser. Stiintele Vietii (Life Sci. Ser.) 2010, 20, 45–48. [Google Scholar]
- Fernandes, Â.; Polyzos, N.; Petropoulos, S.A.; Pinela, J.; Ardohain, E.; Moreira, G.; Ferreira, I.C.F.R.; Barros, L. Phytochemical composition and nutritional value of pot-grown turnip-rooted and plain and curly-leafed parsley cultivars. Agronomy 2020, 10, 1416. [Google Scholar] [CrossRef]
- Murray, J.J.; Latimer, S.R.; Simonne, A.H.; Bassed, G.J.; Hochmuth, R.C.; Sandoya, G.V. Tocopherols, phylloquinone, ascorbic acid, and sugar contents in hydroponically grown lettuce. J. Am. Soc. Hortic. Sci. 2023, 148, 134–147. [Google Scholar] [CrossRef]
- Chauhan, H.; Kumarkhaniya, H.; Maitreya, B. Nutritional profile and antioxidant nature of Anethum graveolens L. (dill). Bioinfolet 2025, 22, 51–52. [Google Scholar] [CrossRef]
- Di Vincenzo, A.; Tana, C.; El Hadi, H.; Pagano, C.; Vettor, R.; Rossato, M. Antioxidant, anti-inflammatory, and metabolic properties of tocopherols and tocotrienols: Clinical implications for vitamin E supplementation in diabetic kidney disease. Int. J. Mol. Sci. 2019, 20, 5101. [Google Scholar] [CrossRef]
- Punoševac, M.; Radović, J.; Leković, A.; Kundaković, T. A review of botanical characteristics, chemical composition, pharmacological activity and use of parsley. Arch. Pharm. 2021, 71, 177–196. [Google Scholar] [CrossRef]
- Nouioura, G.; Kettani, T.; Tourabi, M.; Elousrouti, L.T.; Al, A.A.; Al Kamaly, A.; Lyoussi, B.; Derwich, E. The Protective Potential of Petroselinum crispum (Mill.) Fuss. on Paracetamol-Induced Hepatio-Renal Toxicity and Antiproteinuric Effect: A Biochemical, Hematological, and Histopathological Study. Medicina 2023, 59, 1814. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S.; Wimalawansa, S.J. Minerals and human Health: From Deficiency to Toxicity. Nutrients 2025, 17, 454. [Google Scholar] [CrossRef] [PubMed]
- An, P.; Luo, Y.; Yang, A.; Li, J. Editorial: Micronutrients and metabolic diseases. Front. Nutr. 2024, 11, 1380743. [Google Scholar] [CrossRef] [PubMed]
- Tako, E. Dietary trace minerals. Nutrients 2020, 11, 2823. [Google Scholar] [CrossRef]
- Lahhoba, Q.R.; Esmail Al-sanafd, A.; Mohammed, N.Y.; Abbasf, H.J.; Ibrahimg, Z.H.; Najima, M.K.; Ali Malikh, Z.; Budaiwii, Z.K.; Abdul-Jabbarj, Z.H.; Kadhamk, M.J. Mineral and trace elements, dietary sources, biological effects, deficiency, and toxicity: A review. Eurasian Chem. Commun. 2023, 5, 536–555. [Google Scholar] [CrossRef]
- Suliburska, J.; Bogdański, P.; Seraszek-Jaros, A.; Hashemi, M. Association of mineral status with metabolic disorders in newly diagnosed hypertensive patients. A preliminary study. J. Trace Elem. Miner. 2023, 3, 100053. [Google Scholar] [CrossRef]
- Farag, M.A.; Abib, B.; Qin, Z.; Ze, X.; Ali, S.E. Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life cycle with sex differences. Curr. Res. Food Sci. 2023, 6, 100450. [Google Scholar] [CrossRef]
- Nwanekezie, E.C.; Obiakor-Okeke, P.N. Mineral content of five tropical leafy vegetables and effect of holding methods and time. Am. J. Exp. Agric. 2014, 4, 1708–1717. [Google Scholar] [CrossRef]
- Allen, J.C.; Issa, J.Y.; Cai, W. Calcium content, in vitro digestibility, and bioaccessibility in leaves of spinach (Spinacia oleracea), sweet potato (Ipomea batatas), and drumstick tree (Moringa oleifera). F1000Research 2014, 3, 65. [Google Scholar] [CrossRef]
- Zihad, S.M.N.K.; Gupt, Y.; Uddin, S.J.; Islam, M.T.; Alam, M.R.; Aziz, S.; Hossain, M.; Shilpi, J.A.; Naharf, L.; Sarker, S.D. Nutritional value, micronutrient and antioxidant capacity of some green leafy vegetables commonly used by southern coastal people of Bangladesh. Heliyon 2019, 5, e02768. [Google Scholar] [CrossRef]
- Manivannan, C.; Viswanathan, G.; Sundaram, K.M. Calcium bioavailability in leafy vegetables and medicinal plants. Int. J. Health Sci. 2022, 6, 8802–8810. [Google Scholar] [CrossRef]
- Natesh, H.N.; Abbey, L.; Asiedu, S.K. An overview of nutritional and antinutritional factors in green leafy vegetables. Horticult. Int. J. 2017, 1, 58–65. [Google Scholar]
- Popova, A.; Mihaylova, D. Antinutrients in plant-based foods: A review. Open Biotechnol. J. 2019, 13, 68–76. [Google Scholar] [CrossRef]
- Zayed, A.; Adly, G.M.; Farag, M.A. Management Strategies for the Anti-nutrient Oxalic Acid in Foods: A Comprehensive Overview of Its Dietary Sources, Roles, Metabolism, and Processing. Food Bioprocess Technol. 2025, 18, 4280–4300. [Google Scholar] [CrossRef]
- Abdi, F.A.; Gemede, H.F.; Olika Keyata, E. Nutritional composition, antinutrient contents, and polyphenol compounds of selected underutilized and some commonly consumed vegetables in East Wollega, West Ethiopia. J. Food Qual. 2022, 1, 6942039. [Google Scholar] [CrossRef]
- Shanmugalingam, V.; Vivekanandarajah, S.; Rajamanoharan, P. Antidiabetic green leafy vegetables currently sold in Trincomalee District in Sri Lanka. Turk. J. Biod. 2021, 4, 82–97. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Marinkovic, A.; Prakash, S.; Williams, M.; Dixon, Y.; Okorie, C.; Orish, V.N.; Izurieta, R. Diabetes mellitus: An overview of the types, prevalence, comorbidity, complication, genetics, economic implication, and treatment. World J. Meta-Anal. 2023, 11, 134–143. [Google Scholar] [CrossRef]
- Nkobole, N.; Managa, L.R.; Prinsloo, G. Antidiabetic and Hypoglycaemic Activities of Commonly Used African Traditional Vegetables. Pharmacogn. J. 2023, 15, 339–356. [Google Scholar] [CrossRef]
- Adokwe, J.B.; Waeyeng, D.; Suwan, K.; Camsanit, K.; Kaiduong, C.; Nuanrat, P.; Pouyfung, P.; Yimthiang, S.; Petchoo, J.; Satarug, S.; et al. Plant-Based Diet and Glycemic Control in Type 2 Diabetes: Evidence from a Thai Health-Promoting Hospital. Nutrients 2024, 16, 619. [Google Scholar] [CrossRef]
- Chen, G.C.; Koh, W.P.; Yuan, J.M.; Qin, L.Q.; van Dam, R.M. Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: Results from the Singapore Chinese Health Study and meta-analysis. Br. J. Nutr. 2018, 119, 1057–1067. [Google Scholar] [CrossRef]
- Wang, P.Y.; Fang, J.C.; Gao, Z.H.; Zang, C.; Xie, S.Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2016, 7, 56–69. [Google Scholar] [CrossRef]
- Yen, T.S.; Htet, M.K.; Lukito, W.; Bardosono, S.; Setiabudy, R.; Basuki, E.S.; Wibudi, A.; Martianto, D.; Subekti, I.; Fahmida, U. Increased vegetable intake improves glycaemic control in adults with type 2 diabetes mellitus: A clustered randomised clinical trial among Indonesian white-collar workers. J. Nutr. Sci. 2022, 11, e49. [Google Scholar] [CrossRef] [PubMed]
- Asekenye, C.; Alele, P.E.; Ogwang, P.E.; Olet, E.A. Frequency of consumption of green leafy vegetables and prevalence of hyperglycemia in Ankole and Teso sub-regions of Uganda. J. Clin. Transl. Res. 2023, 9, 398–413. [Google Scholar] [CrossRef]
- Tang, G.Y.; Meng, X.; Li, Y.; Zhao, C.N.; Liu, Q.; Li, H.-B. Effects of vegetables on cardiovascular diseases and related mechanisms. Nutrients 2017, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Lee, M.-S.; Kang, S.-A.; Kim, C.-T.; Kim, Y. Portulaca oleracea L. Extract Regulates Hepatic Cholesterol Metabolism via the AMPK/MicroRNA-33/34a Pathway in Rats Fed a High-Cholesterol Diet. Nutrients 2022, 14, 3330. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.I.K. Efects of Portulaca oleracea L. seeds in treatment of type-2 diabetes mellitus patients as adjunctive and alternative therapy. J. Ethnopharmacol. 2011, 137, 643–651. [Google Scholar] [CrossRef]
- Wainstein, J.; Landau, Z.; Dayan, Y.B.; Jakubowicz, D.; Grothe, T.; Perrinjaquet-Moccetti, T.; Boaz, M. Purslane extract and glucose homeostasis in adults with type 2 diabetes: A double-blind, placebo-controlled clinical trial of efficacy and safety. J. Med. Food 2016, 19, 133–140. [Google Scholar] [CrossRef]
- Heidarzadeh, S.; Farzanegi, P.; Azarbayjani, M.A.; Daliri, R. Purslane effect on GLP-1 and GLP-1 receptor in type 2 diabetes. Electron. Physician 2013, 5, 582–587. [Google Scholar] [CrossRef]
- Sharebiani, H.; Mokaram, M.; Mirghani, M.; Fazeli, B.; Stanek, A. The Effects of Antioxidant Supplementation on the Pathologic Mechanisms of Metabolic Syndrome and Cardiovascular Disease Development. Nutrients 2024, 16, 1641. [Google Scholar] [CrossRef]
- Francini, A.; Quattrini, E.; Giuffrida, F.; Ferrante, A. Biofortification of baby leafy vegetables using nutrient solution containing selenium. J. Sci. Food Agric. 2023, 103, 5472–5480. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Zarrelli, A.; Giordano, M.; De Pascale, S.; Kyriacou, M. Iodine biofortification of four microgreens species and its implications for mineral composition and potential contribution to the recommended dietary intake of iodine. Sci. Hortic. 2023, 320, 112229. [Google Scholar] [CrossRef]
- Chew, N.W.; Ng, C.H.; Tan, D.J.H.; Kong, G.; Lin, C.; Chin, Y.H.; Lim, W.H.; Huang, D.Q.; Quek, J.; Fu, C.E.; et al. The global burden of metabolic disease: Data from 2000 to 2019. Cell Metab. 2023, 35, 414–428. [Google Scholar] [CrossRef]
- Khoury, C.K.; Sotelo, S.; Amariles, D.; Hawtin, G. The Plants that Feed the World—Baseline Data and Metrics to Inform Strategies for the Conservation and Use of Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
Green Leafy Vegetables | α-Carotene | β-Carotene | Lutein + Zeaxanthin |
---|---|---|---|
mg/100 g Edible Parts | |||
Cabbage (Brassica oleracea L. var. capitata L. f. alba) | 0–0.002 | 0.01–0.41 | 0.084–0.45 |
Cabbage (Brassica oleracea L. var. capitata L. f. rubra) | tr | 0.015–0.05 | 0.026–0.15 |
Brussels sprouts (Brassica oleracea L. var. gemmifera DC.) | 0.004–0.011 | 0.43–1.02 | 0.92–1.59 |
Kale (Brassica oleracea L. var. sabellica L.) | 0–0.15 | 2.84–43.80 | 3.04–39.55 |
Spinach (Spinacia oleracea L.) | 0–0.09 | 3.25–5.60 | 4.40–11.94 |
Lettuce (Lactuca sativa L.) | 0.04 | 0.98–1.55 | 1.35–2.92 |
Leek (Allium ampeloprasum L.) | - | 1.00–3.19 | 1.90–3.68 |
Lamb’s lettuce (Valerianella locusta (L.) Laterr) | 0.08 | 3.22 | 9.65 |
Parsley (Petroselinum crispum (Mill.) Fuss) | 0.17 | 5.50 | 14.12 |
Green Leafy Vegetables | mg GAE/g | % DPPH * |
---|---|---|
Lactuca sativa L. green cv. (Asteraceae) | 21.0 ± 5.1–34.7 ± 3.6 | 74.4 ± 6.5–84.2 ± 1.0 |
Lactuca sativa L. red cv. (Asteraceae) Anethum graveolens L. (Apiaceae) | 55.2 ± 4.4–73.9 ± 19.8 315.79 ± 1.38 | 81.2 ± 4.0–82.6 ± 1.8 114.5 ± 1.27 |
Hibiscus sabdariffa L. (Malvaceae) Corchorus oletorius L. (Malvaceae) Cucumis melo L. (Cucurbitaceae) Momordica charantia L. (Cucurbitaceae) | 212.49 ± 0.27 305.04 ± 0.51 198.26 ± 0.35 361.80 ± 0.73 | 26.23 ± 0.28 36.14 ± 0.39 16.17 ± 0.10 52.65 ± 0.43 |
Green Leafy Vegetables | L-Ascorbic Acid mg/100 g FW | Total Tocopherols μg/g FW |
---|---|---|
Petroselinum crispum (Mill.) Fuss. (Apiaceae) | 133.0 | 19.8 ± 0.6–31 ± 2 |
Anethum graveolens L. (Apiaceae) | 85.0 | 68.65 |
Lactuca sativa L. (Asteraceae) Brassica oleracea L. (Brassicaceae) | 24.0–30.2 51.0 | 274.7–526.5 0.03–0.82 |
Green Leafy Vegetables | Ca |
---|---|
Spinacia oleracea L. (Chenopodiaceae) | 1036 mg/100 g of product |
Petroselinum crispum (Mill.) Fuss. (Apiaceae) | 138 mg/100 g dry weight (DW) |
Anethum graveolens L. (Apiaceae) | 208 mg/100 g DW |
Lactuca sativa L. (Asteraceae) | 36 mg/100 g DW |
Brassica oleracea L. (Brassicaceae) | 47 mg/100 g DW |
Species | Oxalate | Tannin | Phytate |
---|---|---|---|
mg/100 g DW | |||
Cabbage (Brassica oleracea L.) | 0.88 ± 0.06 | 261.76 ± 0.23 | 130.88 ± 0.11 |
Swiss chard (Beta vulgaris L. var. cicla L.) | 3.56 ± 0.09 | 531.97 ± 0.01 | 163.31 ± 0.50 |
Celery (Apium graveolens L.) | 3.18 ± 0.03 | 327.62 ± 0.11 | 265.99 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzyńska-Wierdak, R. Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism. Metabolites 2025, 15, 502. https://doi.org/10.3390/metabo15080502
Nurzyńska-Wierdak R. Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism. Metabolites. 2025; 15(8):502. https://doi.org/10.3390/metabo15080502
Chicago/Turabian StyleNurzyńska-Wierdak, Renata. 2025. "Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism" Metabolites 15, no. 8: 502. https://doi.org/10.3390/metabo15080502
APA StyleNurzyńska-Wierdak, R. (2025). Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism. Metabolites, 15(8), 502. https://doi.org/10.3390/metabo15080502