Riboflavin Transporter Deficiency Type 2: Expanding the Phenotype of the Lebanese Founder Mutation p.Gly306Arg in the SLC52A2 Gene
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochemical Genetics Testing
2.2. Neurological Evaluation
2.3. Ophthalmological and Audiological Assessment
2.4. Genetic Testing
3. Results
3.1. Family 1
3.2. Family 2
3.3. Family 3
4. Discussion
Family ref | Origin | Sex | Patient | Clinical Phenotype (from Onset to Last Evaluation) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Onset | Ataxia | NP * | MW | SNHL | Scoliosis | Visual Impairment | ||||
F1 [23] | Israeli Arab | M | P1 | 3 y | + | - | - | - | + | |
Israeli Arab | F | P2 | 3 y | + | + | + | - | + | ||
F2 [16] | Lebanese | F | P3 | 3.5 y | + | + | + | + | - | - |
Lebanese | M | P4 | 2.5 y | + | + | - | + | - | + | |
Lebanese | M | P5 | 1.5 y | + | - | + | + | - | - | |
Lebanese | M | P6 | 2 m | - | - | - | + | - | - | |
F3 [10] | Lebanese | F | P7 | 8 y | + | + | - | + | - | - |
Lebanese | F | P8 | 3 y | + | + | + | + | - | + | |
F4 [10] | Scottish | F | P9 | 1.5 y | + | + | + | + | - | + |
Lebanese | M | P10 | 3 y | + | + | + | + | - | + | |
Lebanese | M | P11 | 5 y | + | + | + | + | - | + | |
Lebanese | M | P12 | 3 y | + | + | + | + | - | + | |
F5 [10] | Lebanese | M | P13 | 3 y | - | + | + | + | - | - |
F6 [12] | Lebanese | M | P14 | 1.5 y | + | + | + | + | + | - |
Lebanese | M | P15 | 2.5 y | + | + | + | + | + | + | |
Lebanese | F | P16 | 3.5 y | + | + | + | + | + | + | |
Lebanese | F | P17 | 3 y | + | + | + | + | + | + | |
Lebanese | M | P18 | 1.5 y | + | + | - | - | - | - | |
F7 [20] | NR | NR | P19 | 1 m | + | + | + | + | - | - |
NR | NR | P20 | 3 y | + | - | + | + | - | - | |
F8 [15] | Lebanese | F | P21 | 2.5 y | + | + | - | - | + | - |
F9 * | Lebanese | M | P22/M1 | 3 y | + | + | + | + | + | - |
Lebanese | M | P23/M2 | AS | - | - | - | - | - | - | |
F10 * | Lebanese | M | P24/M3 | 2 y | + | + | + | + | + | + |
Lebanese | M | P25/M4 | 4 y | - | + | + | - | - | - | |
F11 * | Lebanese | M | P26/M5 | 2 y | + | + | + | + | + | - |
Lebanese | F | P27/M6 | 3 y | + | - | - | - | + | - | |
Total | Lebanese (22/25) 88% | 9/25 F (36%) 12/25 M (64%) | 27 | Median 3 y | 4/27 85% | 20/27 74% | 8/27 70% | 21/27 77% | (9/27) 33% | (12/27) 44% |
Family ref | Origin | Sex | Patient | Biochemical Phenotype Acylcarnitine profile | Riboflavin Treatment | Treatment Onset Age | Age at Last Follow-Up | Outcome |
---|---|---|---|---|---|---|---|---|
F1 [23] | Israeli Arab | M | P1 | 27 y | Motor delay | |||
Israeli Arab | F | P2 | 17 y | Regression | ||||
F2 [16] | Lebanese | F | P3 | 5 y | Motor delay | |||
Lebanese | M | P4 | 9 y 6 m | Stable | ||||
Lebanese | M | P5 | 5 y 6 m | Stable | ||||
Lebanese | M | P6 | 1 y | Motor, speech delay | ||||
F3 [10] | Lebanese | F | P7 | ↑ C4, C5, C6, C10, C;10:1 | 23 mg/kg/d | 10 y | 10 y 7 m | Improved hearing, motor |
Lebanese | F | P8 | ↑ C5, C6, C8, C10, C:12 | 26 mg/kg/d | 9 y | 9 y 7 m | Stable | |
F4 [10] | Scottish | F | P9 | ↑ C4–C6, C2, C10-C18 | 50 mg/kg/d | 10 y 6 m | 11 y 6 m | Improved hearing, |
Lebanese | M | P10 | Normal | 1000 mg/d | 16 y | 16 y 7 m | Improved motor | |
Lebanese | M | P11 | Normal | 1000 mg/d | 21 y | 21 y 7 m | Stable | |
Lebanese | M | P12 | Normal | 1000 mg/d | 16 y | 167 m | Stable | |
F5 [10] | Lebanese | M | P13 | Normal | 10 mg/kg/d | 6 y6 m | 7 y 7 m | Improved motor |
F6 [12] | Lebanese | M | P14 | ↑ C6, C8, C10, C10:1 | 10–15 mg/kg/d | 19 y | 19 y 3 m | Improved motor |
Lebanese | M | P15 | 22 y | Death | ||||
Lebanese | F | P16 | Normal | 10–15 mg/kg/d | 17 y | 17 y 3 m | Improved motor | |
Lebanese | F | P17 | 20 y | Stable | ||||
Lebanese | M | P18 | ↑ C6, C8, C10, C10:1 | 10–15 mg/kg/d | 4 y | 4 y 3 m | Improved motor | |
F7 [20] | NR | NR | P19 | - | 20–26 mg/kg/d | 10 y | 11 y | Improved hearing |
NR | NR | P20 | - | 20–26 mg/kg/d | 9 y | 10 y | Improved motor | |
F8 [15] | Lebanese | F | P21 | ↑ C16 | 10.5 mg/kg/d | 9 y | 15 y | Improved ataxia |
F9 * | Lebanese | M | P22/M1 | ↑C6 | 50 | 5 y | 8 y | Improved motor |
Lebanese | M | P23/M2 | Normal | 25 | 3 y 8 m | 6 y 8 m | Normal | |
F10 * | Lebanese | M | P24/M3 | ↑ C4, C6, C8 | 50 | 6 y/11 y # | 11 y 6 m | Stable |
Lebanese | M | P25/M4 | 7 y | Death | ||||
F11 * | Lebanese | M | P26/M5 | ↑ C16 | 25 | 7 y | 7 y 3 m | Stable |
Lebanese | F | P27/M6 | normal | 25 | 4 y | 4 y 3 m | Stable | |
Total | Lebanese (22/25) 88% | F: (9/25) 36% M: (12/25) 64% | 27 | (7/16) 44% | Range: 10–50 mg/kg/d | Median: 10 y Range: 4 y–19 y | Median: 12 y 6 m Range: 1 y–27 y |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RTD2 | Riboflavin transporter deficiency type 2 |
MRI | Magnetic resonance imaging |
EMG-NC | Electromyography–nerve conduction |
EEG | Electroencephalography |
OAE | Otoacoustic emissions |
ABR | Auditory brainstem response |
M | Male |
F | Female |
NR | Not reported |
y | Year |
m | Months |
NP | Polyneuropathy |
MW | Muscle weakness |
SNHL | Sensorineural hearing loss |
mg/kg/d | mg/kg/day |
References
- Magliocca, V.; Lanciotti, A.; Ambrosini, E.; Travaglini, L.; D’Ezio, V.; D’Oria, V.; Petrini, S.; Catteruccia, M.; Massey, K.; Tartaglia, M.; et al. Modeling Riboflavin Transporter Deficiency Type 2: From iPSC-Derived Motoneurons to iPSC-Derived Astrocytes. Front. Cell. Neurosci. 2024, 18, 1440555. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Yonezawa, A. Recent Advances in Riboflavin Transporter RFVT and Its Genetic Disease. Pharmacol. Ther. 2022, 233, 108023. [Google Scholar] [CrossRef] [PubMed]
- Cali, E.; Dominik, N.; Manole, A.; Houlden, H. Riboflavin Transporter Deficiency. Available online: https://www.ncbi.nlm.nih.gov/books/NBK299312/ (accessed on 1 April 2025).
- Zhao, S.; Che, F.; Yang, L.; Zheng, Y.; Wang, D.; Yang, Y.; Wang, Y. First Report of Paternal Uniparental Disomy of Chromosome 8 with SLC52A2 Mutation in Brown-Vialetto-van Laere Syndrome Type 2 and an Analysis of Genotype-Phenotype Correlations. Front. Genet. 2022, 13, 977914. [Google Scholar] [CrossRef] [PubMed]
- Carreau, C.; Benoit, C.; Ahle, G.; Cauquil, C.; Roubertie, A.; Lenglet, T.; Cosgrove, J.; Meunier, I.; Veauville-Merllié, A.; Acquaviva-Bourdain, C.; et al. Late-Onset Riboflavin Transporter Deficiency: A Treatable Mimic of Various Motor Neuropathy Aetiologies. J. Neurol. Neurosurg. Psychiatry 2021, 92, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, B.; Bosch, A.M. Clinical Presentation and Outcome of Riboflavin Transporter Deficiency: Mini Review after Five Years of Experience. J. Inherit. Metab. Dis. 2016, 39, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Console, L.; Tolomeo, M.; Cosco, J.; Massey, K.; Barile, M.; Indiveri, C. Impact of Natural Mutations on the Riboflavin Transporter 2 and Their Relevance to Human Riboflavin Transporter Deficiency 2. IUBMB Life 2022, 74, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Megarbane, A.; Desguerres, I.; Rizkallah, E.; Delague, V.; Nabbout, R.; Barois, A.; Urtizberea, A. Brown-Vialetto-Van Laere Syndrome in a Large Inbred Lebanese Family: Confirmation of Autosomal Recessive Inheritance? Am. J. Med. Genet. 2000, 92, 117–121. [Google Scholar] [CrossRef]
- Johnson, J.O.; Gibbs, J.R.; Megarbane, A.; Urtizberea, J.A.; Hernandez, D.G.; Foley, A.R.; Arepalli, S.; Pandraud, A.; Simón-Sánchez, J.; Clayton, P.; et al. Exome Sequencing Reveals Riboflavin Transporter Mutations as a Cause of Motor Neuron Disease. Brain 2012, 135, 2875–2882. [Google Scholar] [CrossRef] [PubMed]
- Foley, A.R.; Menezes, M.P.; Pandraud, A.; Gonzalez, M.A.; Al-Odaib, A.; Abrams, A.J.; Sugano, K.; Yonezawa, A.; Manzur, A.Y.; Burns, J.; et al. Treatable Childhood Neuronopathy Caused by Mutations in Riboflavin Transporter RFVT2. Brain 2014, 137, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Nimmo, G.A.M.; Ejaz, R.; Cordeiro, D.; Kannu, P.; Mercimek-Andrews, S. Riboflavin Transporter Deficiency Mimicking Mitochondrial Myopathy Caused by Complex II Deficiency. Am. J. Med. Genet. Part A 2018, 176, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Srour, M.; Putorti, M.L.; Schwartzentruber, J.; Bolduc, V.; Shevell, M.I.; FORGE Canada Consortium; Poulin, C.; O’ferrall, E.; Buhas, D.; Majewski, J.; et al. Mutations in Riboflavin Transporter Present with Severe Sensory Loss and Deafness in Childhood. Muscle Nerve 2014, 50, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Thyagarajan, D. Two Rare Cases of Long Surviving Riboflavin Transporter Deficiency with Co-Existing Adenosine Monophosphate Deaminase (AMP) Deficiency. Brain Sci. 2022, 12, 1605. [Google Scholar] [CrossRef] [PubMed]
- Fennessy, J.R.; Donlevy, G.A.; McKay, M.J.; Burns, J.; Cornett, K.M.D.; Menezes, M.P. Development of a Functional Outcome Measure for Riboflavin Transporter Deficiency. J. Peripher. Nerv. Syst. 2024, 29, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Fogel, B.L. Successful Treatment of a Genetic Childhood Ataxia Due to Riboflavin Transporter Deficiency. Cerebellum Ataxias 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Al-Twaijri, W.A.; Shevell, M.I. A Novel Chronic Childhood Sensory Predominant Neuropathy. Pediatr. Neurol. 2002, 27, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Barbour, B.; Salameh, P. Consanguinity in Lebanon: Prevalence, Distribution and Determinants. J. Biosoc. Sci. 2009, 41, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Allison, T.; Roncero, I.; Forsyth, R.; Coffman, K.; Pichon, J.-B.L. Brown-Vialetto-Van Laere Syndrome as a Mimic of Neuroimmune Disorders: 3 Cases From the Clinic and Review of the Literature. J. Child Neurol. 2017, 32, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Piecuch, A.K.; Skarżyński, P.H.; Skarżyński, H. A Case Report of Riboflavin Treatment and Cochlear Implants in a 4-Year-Old Girl with Progressive Hearing Loss and Delayed Speech Development: Brown-Vialetto-Van Laere Syndrome. Am. J. Case Rep. 2023, 24, e940439. [Google Scholar] [CrossRef] [PubMed]
- Manole, A.; Jaunmuktane, Z.; Hargreaves, I.; Ludtmann, M.H.R.; Salpietro, V.; Bello, O.D.; Pope, S.; Pandraud, A.; Horga, A.; Scalco, R.S.; et al. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain 2017, 140, 2820–2837. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Cui, Y.; Tan, Y.; Zhuang, C.; Li, X.; Yong, Y.; Zhang, X.; Ren, X.; Cai, M.; Yang, J.; et al. Fluoride induces immunotoxicity by regulating riboflavin transport and metabolism partly through IL-17A. J. Hazard. Mater. 2024, 476, 135085. [Google Scholar] [CrossRef] [PubMed]
- Kentab, A.Y.; Alsalloum, Y.; Labani, M.; Hudairi, A.; Hamad, M.H.; Jamjoom, D.Z.; Alwadei, A.H.; Alhammad, R.M.; Bashiri, F.A. A rare treatable metabolic syndrome (Brown–Vialetto–Van Laere syndrome) masquerading as chronic inflammatory demyelinating polyneuropathy: A case report. Front. Pediatr. 2024, 12, 1377515. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, S.; Gowda, V.K.; Udhayabanu, T.; O’Callaghan, B.; Efthymiou, S.; Varalakshmi, P.; Benakappa, N.; Houlden, H.; Ashokkumar, B. Brown-Vialetto-Van Laere and Fazio-Londe Syndromes: SLC52A3 Mutations with Puzzling Phenotypes and Inheritance. Eur. J. Neurol. 2021, 28, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Menezes, M.P.; O’Brien, K.; Hill, M.; Webster, R.; Antony, J.; Ouvrier, R.; Birman, C.; Gardner-Berry, K. Auditory Neuropathy in Brown–Vialetto–Van Laere Syndrome Due to Riboflavin Transporter RFVT2 Deficiency. Dev. Med. Child Neurol. 2016, 58, 848–854. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.A.; Culican, S.M.; Shinawi, M.S.; Zaidman, C.M. Child Neurology: Five-Year Update on Siblings With Riboflavin Transporter Deficiency: Stable Visual and Neurologic Status With Continued Riboflavin Therapy. Neurology 2024, 103, e209969. [Google Scholar] [CrossRef] [PubMed]
- Mordaunt, D.; Cox, D.; Fuller, M. Metabolomics to Improve the Diagnostic Efficiency of Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020, 21, 1195. [Google Scholar] [CrossRef] [PubMed]
- Stark, Z.; Schofield, D.; Martyn, M.; Rynehart, L.; Shrestha, R.; Alam, K.; Lunke, S.; Tan, T.Y.; Gaff, C.L.; White, S.M. Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectiveness. Genet. Med. 2019, 21, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.; Tan, N.B.; Tan, T.Y.; Stark, Z.; Brown, N.; Hunter, M.F.; Delatycki, M.; Stutterd, C.; Savarirayan, R.; Mcgillivray, G.; et al. A cost-effectiveness analysis of genomic sequencing in a prospective versus historical cohort of complex pediatric patients. Genet. Med. 2020, 22, 1986–1993. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jreissati, J.-M.T.; Lawandos, L.; Jreissati, J.T.; Karam, P.E. Riboflavin Transporter Deficiency Type 2: Expanding the Phenotype of the Lebanese Founder Mutation p.Gly306Arg in the SLC52A2 Gene. Metabolites 2025, 15, 491. https://doi.org/10.3390/metabo15070491
Jreissati J-MT, Lawandos L, Jreissati JT, Karam PE. Riboflavin Transporter Deficiency Type 2: Expanding the Phenotype of the Lebanese Founder Mutation p.Gly306Arg in the SLC52A2 Gene. Metabolites. 2025; 15(7):491. https://doi.org/10.3390/metabo15070491
Chicago/Turabian StyleJreissati, Jean-Marc T., Leonard Lawandos, Julien T. Jreissati, and Pascale E. Karam. 2025. "Riboflavin Transporter Deficiency Type 2: Expanding the Phenotype of the Lebanese Founder Mutation p.Gly306Arg in the SLC52A2 Gene" Metabolites 15, no. 7: 491. https://doi.org/10.3390/metabo15070491
APA StyleJreissati, J.-M. T., Lawandos, L., Jreissati, J. T., & Karam, P. E. (2025). Riboflavin Transporter Deficiency Type 2: Expanding the Phenotype of the Lebanese Founder Mutation p.Gly306Arg in the SLC52A2 Gene. Metabolites, 15(7), 491. https://doi.org/10.3390/metabo15070491