Harnessing the Power of NMR Metabolomics in Unraveling Metabolic Diseases

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Integrative Metabolomics".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 3196

Special Issue Editors

Healthy Aging Research Center, Chang Gung University, Taoyuan City 333323, Taiwan
Interests: metabolomics; structural biology; nuclear magnetic resonance spectroscopy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333323, Taiwan
Interests: metabolomics; free radical biomedical science; translational medicine
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metabolomics is an important branch of systems biology, applied to the study of endogenous metabolites in biological systems and their dynamic changes in response to both endogenous and exogenous factors. Metabolic diseases are highly significant risk factors for cardiovascular disease, diabetes mellitus, and other age-related degenerative diseases.

This Special Issue aims to highlight NMR-based metabolomics research on metabolic diseases. The translational application of metabolites, such as the discovery of new biomarkers for the early diagnosis and prognosis of metabolic diseases or monitoring therapeutic interventions, aligns with the theme of this Special Issue. The microbiome and nutriment of any individual play critical roles in the development of metabolic syndrome and diseases, such as diabetes mellitus, cardiovascular disease, and other metabolic-related diseases. Any submissions related to these topics are also encouraged.

Dr. Chi-Jen Lo
Prof. Dr. Mei-Ling Cheng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metabolomics
  • NMR
  • precision medicine
  • translational medicine
  • metabolic disease

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 7610 KB  
Article
Metabolomic Profiling of Hepatitis B-Associated Liver Disease Progression: Chronic Hepatitis B, Cirrhosis, and Hepatocellular Carcinoma
by Junsang Oh, Kei-Anne Garcia Baritugo, Jayoung Kim, Gyubin Park, Ki Jun Han, Sangheun Lee and Gi-Ho Sung
Metabolites 2025, 15(8), 504; https://doi.org/10.3390/metabo15080504 - 29 Jul 2025
Viewed by 675
Abstract
Background/Objective: The hepatitis B virus (HBV) can cause chronic hepatitis B (CHB), which can rapidly progress into fatal liver cirrhosis (CHB-LC) and hepatocellular carcinoma (CHB-HCC). Methods: In this study, we investigated metabolites associated with distinct clinical stages of HBV infection for the identification [...] Read more.
Background/Objective: The hepatitis B virus (HBV) can cause chronic hepatitis B (CHB), which can rapidly progress into fatal liver cirrhosis (CHB-LC) and hepatocellular carcinoma (CHB-HCC). Methods: In this study, we investigated metabolites associated with distinct clinical stages of HBV infection for the identification of stage-specific serum metabolite biomarkers using 1H-NMR-based metabolomics. Results: A total of 64 serum metabolites were identified, among which six core discriminatory metabolites, namely isoleucine, tryptophan, histamine (for CHB), and pyruvate, TMAO, lactate (for CHB-HCC), were consistently significant across univariate and multivariate statistical analyses, including ANOVA with FDR, OPLS-DA, and VIP scoring. These metabolites were closely linked to key metabolic pathways, such as propanoate metabolism, pyruvate metabolism, and the Warburg effect. Conclusions: The findings suggest that these six core metabolites serve as potential stage-specific biomarkers for CHB, CHB-LC, and CHB-HCC, respectively, and offer a foundation for the future development of metabolomics-based diagnostic and therapeutic strategies. Full article
Show Figures

Graphical abstract

11 pages, 650 KB  
Article
Additive Effect of Metabolic Syndrome on Brain Atrophy in People Living with HIV–Magnetic Resonance Volumetry Study
by Vanja Andric, Jasmina Boban, Daniela Maric, Dusko Kozic, Snezana Brkic and Aleksandra Bulovic
Metabolites 2024, 14(6), 331; https://doi.org/10.3390/metabo14060331 - 13 Jun 2024
Cited by 1 | Viewed by 1536
Abstract
With people living with HIV (PLWH) reaching the senium, the importance of aging-related comorbidities such as metabolic syndrome (MS) becomes increasingly important. This study aimed to determine the additive effect of MS on brain atrophy in PLWH. This prospective study included 43 PLWH, [...] Read more.
With people living with HIV (PLWH) reaching the senium, the importance of aging-related comorbidities such as metabolic syndrome (MS) becomes increasingly important. This study aimed to determine the additive effect of MS on brain atrophy in PLWH. This prospective study included 43 PLWH, average age of 43.02 ± 10.93 years, and 24 healthy controls, average age of 36.87 ± 8.89 years. PLWH were divided into two subgroups: without MS and with MS, according to NCEP ATP III criteria. All patients underwent brain magnetic resonance imaging (MRI) on a 3T clinical scanner with MR volumetry, used for defining volumes of cerebrospinal fluid (CSF) spaces and white and grey matter structures, including basal ganglia. A Student’s t-test was used to determine differences in brain volumes between subject subgroups. The binary classification was performed to determine the sensitivity and specificity of volumetry findings and cut-off values. Statistical significance was set at p < 0.05. PLWH presented with significantly lower volumes of gray matter, putamen, thalamus, globus pallidus, and nc. accumbens compared to healthy controls; cut-off values were: for gray matter 738.130 cm3, putamen 8.535 cm3, thalamus 11.895 cm3, globus pallidus 2.252 cm3, and nc. accumbens 0.715 cm3. The volumes of CSF and left lateral ventricles were found to be higher in PLWH with MS compared to those without MS, where, with a specificity of 0.310 and sensitivity of 0.714, it can be assumed that PLWH with a CSF volume exceeding 212.83 cm3 are likely to also have MS. This suggests that PLWH with metabolic syndrome may exhibit increased CSF volume above 212.83 cm3 as a consequence of brain atrophy. There seems to be an important connection between MS and brain volume reduction in PLWH with MS, which may add to the accurate identification of persons at risk of developing HIV-associated cognitive impairment. Full article
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 1328 KB  
Review
NMR-Based Metabolomic Profiling for Brain Cancer Diagnosis and Treatment Guidance
by Julia R. Zickus, José S. Enriquez, Paytience Smith, Bill T. Sun, Muxin Wang, Aldo Morales, Pratip K. Bhattacharya and Shivanand Pudakalakatti
Metabolites 2025, 15(9), 607; https://doi.org/10.3390/metabo15090607 - 11 Sep 2025
Viewed by 336
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a routinely used analytical tool for studying chemical entities of varying molecular sizes, ranging from approximately 20 Da to ~45 kDa, and in some cases even larger. Over the past two decades, the use of NMR spectroscopy [...] Read more.
Nuclear magnetic resonance (NMR) spectroscopy is a routinely used analytical tool for studying chemical entities of varying molecular sizes, ranging from approximately 20 Da to ~45 kDa, and in some cases even larger. Over the past two decades, the use of NMR spectroscopy has significantly expanded to the study of metabolomics. In this medium-sized review, the application of NMR-based metabolomics in the diagnosis, therapeutic intervention, and guidance of therapy for various types of brain cancer is discussed. Full article
Show Figures

Graphical abstract

Back to TopTop